
Algorithms Non-Lecture A: Greedy Algorithms

The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clarifies, cuts through, and captures the essence of the evolutionary
spirit. Greed in all its forms, greed for life, money, love, knowledge has marked
the upward surge in mankind. And greed—mark my words—will save not only
Teldar Paper but the other malfunctioning corporation called the USA.

— Michael Douglas as Gordon Gekko, Wall Street (1987)

There is always an easy solution to every human problem—
neat, plausible, and wrong.

— H. L. Mencken, New York Evening Mail (November 16, 1917)

A Greedy Algorithms

A.1 Storing Files on Tape

Suppose we have a set of n files that we want to store on a tape. In the future, users will want to
read those files from the tape. Reading a file from tape isn’t like reading from disk; first we have to
fast-forward past all the other files, and that takes a significant amount of time. Let L[1 .. n] be an
array listing the lengths of each file; specifically, file i has length L[i]. If the files are stored in order
from 1 to n, then the cost of accessing the kth file is

cost(k) =
k∑

i=1

L[i].

The cost reflects the fact that before we read file k we must first scan past all the earlier files on the
tape. If we assume for the moment that each file is equally likely to be accessed, then the expected
cost of searching for a random file is

E[cost] =
n∑

k=1

cost(k)
n

=
n∑

k=1

k∑
i=1

L[i]
n

.

If we change the order of the files on the tape, we change the cost of accessing the files; some
files become more expensive to read, but others become cheaper. Different file orders are likely
to result in different expected costs. Specifically, let π(i) denote the index of the file stored at
position i on the tape. Then the expected cost of the permutation π is

E[cost(π)] =
n∑

k=1

k∑
i=1

L[π(i)]
n

.

Which order should we use if we want the expected cost to be as small as possible? The answer
is intuitively clear; we should store the files in order from shortest to longest. So let’s prove this.

Lemma 1. E[cost(π)] is minimized when L[π(i)] ≤ L[π(i + 1)] for all i.

Proof: Suppose L[π(i)] > L[π(i+1)] for some i. To simplify notation, let a = π(i) and b = π(i+1).
If we swap files a and b, then the cost of accessing a increases by L[b], and the cost of accessing b
decreases by L[a]. Overall, the swap changes the expected cost by (L[b]− L[a])/n. But this change
is an improvement, because L[b] < L[a]. Thus, if the files are out of order, we can improve the
expected cost by swapping some mis-ordered adjacent pair. �
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This example gives us our first greedy algorithm. To minimize the total expected cost of accessing
the files, we put the file that is cheapest to access first, and then recursively write everything else; no
backtracking, no dynamic programming, just make the best local choice and blindly plow ahead. If
we use an efficient sorting algorithm, the running time is clearly O(n log n), plus the time required
to actually write the files. To prove the greedy algorithm is actually correct, we simply prove that
the output of any other algorithm can be improved by some sort of swap.

Let’s generalize this idea further. Suppose we are also given an array f [1 .. n] of access frequencies
for each file; file i will be accessed exactly f [i] times over the lifetime of the tape. Now the total
cost of accessing all the files on the tape is

Σcost(π) =
n∑

k=1

(
f [π(k)] ·

k∑
i=1

L[π(i)]

)
=

n∑
k=1

k∑
i=1

(
f [π(k)] · L[π(i)]

)
.

Now what order should store the files if we want to minimize the total cost?
We’ve already proved that if all the frequencies are equal, then we should sort the files by

increasing size. If the frequencies are all different but the file lengths L[i] are all equal, then
intuitively, we should sort the files by decreasing access frequency, with the most-accessed file first.
And in fact, this is not hard to prove by modifying the proof of Lemma 1. But what if the sizes and
the frequencies are both different? In this case, we should sort the files by the ratio L/f .

Lemma 2. Σcost(π) is minimized when
L[π(i)]
F [π(i)]

≤ L[π(i + 1)]
F [π(i + 1)]

for all i.

Proof: Suppose L[π(i)]/F [π(i)] > L[π(i + 1)]/F [π(i + i)] for some i. To simplify notation, let
a = π(i) and b = π(i + 1). If we swap files a and b, then the cost of accessing a increases by
L[b], and the cost of accessing b decreases by L[a]. Overall, the swap changes the total cost by
L[b]F [a]− L[a]F [a]. But this change is an improvement, since

L[a]
F [a]

>
L[b]
F [b]

=⇒ L[b]F [a]− L[a]F [a] < 0.

Thus, if the files are out of order, we can improve the total cost by swapping some mis-ordered
adjacent pair. �

A.2 Scheduling Classes

The next example is slightly less trivial. Suppose you decide to drop out of computer science at the
last minute and change your major to Applied Chaos. The Applied Chaos department has all of its
classes on the same day every week, referred to as “Soberday” by the students (but interestingly, not
by the faculty). Every class has a different start time and a different ending time: AC 101 (‘Toilet
Paper Landscape Architecture’) starts at 10:27pm and ends at 11:51pm; AC 666 (‘Immanentizing
the Eschaton’) starts at 4:18pm and ends at 7:06pm, and so on. In the interests of graduating as
quickly as possible, you want to register for as many classes as you can. (Applied Chaos classes
don’t require any actual work.) The University’s registration computer won’t let you register for
overlapping classes, and no one in the department knows how to override this ‘feature’. Which
classes should you take?

More formally, suppose you are given two arrays S[1 .. n] and F [1 .. n] listing the start and finish
times of each class. Your task is to choose the largest possible subset X ∈ {1, 2, . . . , n} so that for
any pair i, j ∈ X, either S[i] > F [j] or S[j] > F [i]. We can illustrate the problem by drawing each
class as a rectangle whose left and right x-coordinates show the start and finish times. The goal is
to find a largest subset of rectangles that do not overlap vertically.
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A maximal conflict-free schedule for a set of classes.

This problem has a fairly simple recursive solution, based on the observation that either you
take class 1 or you don’t. Let B4 be the set of classes that end before class 1 starts, and let L8 be the
set of classes that start later than class 1 ends:

B4 = {i | 2 ≤ i ≤ n and F [i] < S[1]} L8 = {i | 2 ≤ i ≤ n and S[i] > F [1]}
If class 1 is in the optimal schedule, then so are the optimal schedules for B4 and L8, which we
can find recursively. If not, we can find the optimal schedule for {2, 3, . . . , n} recursively. So we
should try both choices and take whichever one gives the better schedule. Evaluating this recursive
algorithm from the bottom up gives us a dynamic programming algorithm that runs in O(n2) time.
I won’t bother to go through the details, because we can do better.1

Intuitively, we’d like the first class to finish as early as possible, because that leaves us with
the most remaining classes. If this greedy strategy works, it suggests the following very simple
algorithm. Scan through the classes in order of finish time; whenever you encounter a class that
doesn’t conflict with your latest class so far, take it!

The same classes sorted by finish times and the greedy schedule.

We can write the greedy algorithm somewhat more formally as follows. (Hopefully the first line
is understandable.)

GREEDYSCHEDULE(S[1 .. n], F [1 .. n]):
sort F and permute S to match
count← 1
X[count]← 1
for i← 2 to n

if S[i] > F [X[count]]
count← count + 1
X[count]← i

return X[1 .. count]

1But you should still work out the details yourself. The dynamic programming algorithm can be used to find the
“best” schedule for any definition of “best”, but the greedy algorithm I’m about to describe only works that “best” means
“biggest”. Also, you need the practice.
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This algorithm clearly runs in O(n log n) time.
To prove that this algorithm actually gives us a maximal conflict-free schedule, we use an ex-

change argument, similar to the one we used for tape sorting. We are not claiming that the greedy
schedule is the only maximal schedule; there could be others. (See the figures on the previous
page.) All we can claim is that at least one of the maximal schedules is the one that the greedy
algorithm produces.

Lemma 3. At least one maximal conflict-free schedule includes the class that finishes first.

Proof: Let f be the class that finishes first. Suppose we have a maximal conflict-free schedule X
that does not include f . Let g be the first class in X to finish. Since f finishes before g does, f
cannot conflict with any class in the set S \ {g}. Thus, the schedule X ′ = X ∪ {f} \ {g} is also
conflict-free. Since X ′ has the same size as X, it is also maximal. �

To finish the proof, we call on our old friend, induction.

Theorem 4. The greedy schedule is an optimal schedule.

Proof: Let f be the class that finishes first, and let L be the subset of classes the start after f
finishes. The previous lemma implies that some optimal schedule contains f , so the best schedule
that contains f is an optimal schedule. The best schedule that includes f must contain an optimal
schedule for the classes that do not conflict with f , that is, an optimal schedule for L. The greedy
algorithm chooses f and then, by the inductive hypothesis, computes an optimal schedule of classes
from L. �

The proof might be easier to understand if we unroll the induction slightly.

Proof: Let 〈g1, g2, . . . , gk〉 be the sequence of classes chosen by the greedy algorithm. Suppose we
have a maximal conflict-free schedule of the form

〈g1, g2, . . . , gj−1, cj , cj+1, . . . , cm〉,

where the classes ci are different from the classes chosen by the greedy algorithm. By construction,
the jth greedy choice gj does not conflict with any earlier class g1, g2, . . . , gj−1, and since our
schedule is conflict-free, neither does cj . Moreover, gj has the earliest finish time among all classes
that don’t conflict with the earlier classes; in particular, gj finishes before cj . This implies that gj

does not conflict with any of the later classes cj+1, . . . , cm. Thus, the schedule

〈g1, g2, . . . , gj−1, gj , cj+1, . . . , cm〉,

is conflict-free. (This is just a generalization of Lemma 3, which considers the case j = 1.) By
induction, it now follows that there is an optimal schedule 〈g1, g2, . . . , gk, ck+1, . . . , cm〉 that includes
every class chosen by the greedy algorithm. But this is impossible unless k = m; if there were a class
ck+1 that does not conflict with gk, the greedy algorithm would choose more than k classes. �

A.3 General Structure

The basic structure of this correctness proof is exactly the same as for the tape-sorting problem: an
inductive exchange argument.
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• Assume that there is an optimal solution that is different from the greedy solution.

• Find the ‘first’ difference between the two solutions.

• Argue that we can exchange the optimal choice for the greedy choice without degrading the
solution.

This argument implies by induction that there is an optimal solution that contains the entire greedy
solution. Sometimes, as in the scheduling problem, an additional step is required to show no
optimal solution strictly improves the greedy solution.

A.4 Huffman codes

A binary code assigns a string of 0s and 1s to each character in the alphabet. A binary code is
prefix-free if no code is a prefix of any other. 7-bit ASCII and Unicode’s UTF-8 are both prefix-free
binary codes. Morse code is a binary code, but it is not prefix-free; for example, the code for S (· · ·)
includes the code for E (·) as a prefix. Any prefix-free binary code can be visualized as a binary tree
with the encoded characters stored at the leaves. The code word for any symbol is given by the
path from the root to the corresponding leaf; 0 for left, 1 for right. The length of a codeword for a
symbol is the depth of the corresponding leaf. (Note that the code tree is not a binary search tree.
We don’t care at all about the sorted order of symbols at the leaves. (In fact. the symbols may not
have a well-defined order!)

Suppose we want to encode messages in an n-character alphabet so that the encoded message
is as short as possible. Specifically, given an array frequency counts f [1 .. n], we want to compute a
prefix-free binary code that minimizes the total encoded length of the message:2

n∑
i=1

f [i] · depth(i).

In 1952, David Huffman developed the following greedy algorithm to produce such an optimal
code:

HUFFMAN: Merge the two least frequent letters and recurse.

For example, suppose we want to encode the following helpfully self-descriptive sentence, discov-
ered by Lee Sallows:3

This sentence contains three a’s, three c’s, two d’s, twenty-six e’s, five f’s, three g’s, eight h’s,
thirteen i’s, two l’s, sixteen n’s, nine o’s, six r’s, twenty-seven s’s, twenty-two t’s, two u’s,
five v’s, eight w’s, four x’s, five y’s, and only one z.

To keep things simple, let’s forget about the forty-four spaces, nineteen apostrophes, nineteen
commas, three hyphens, and one period, and just encode the letters. Here’s the frequency table:

A C D E F G H I L N O R S T U V W X Y Z

3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1

2This looks almost exactly like the cost of a binary search tree, but the optimization problem is very different: code
trees are not search trees!

3A. K. Dewdney. Computer recreations. Scientific American, October 1984. Douglas Hofstadter published a few
earlier examples of Lee Sallows’ self-descriptive sentences in his Scientific American column in January 1982.
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Huffman’s algorithm picks out the two least frequent letters, breaking ties arbitrarily—in this case,
say, Z and D—and merges them together into a single new character DZ with frequency 3. This
new character becomes an internal node in the code tree we are constructing, with Z and D as
its children; it doesn’t matter which child is which. The algorithm then recursively constructs a
Huffman code for the new frequency table

A C E F G H I L N O R S T U V W X Y DZ

3 3 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 3

After 19 merges, all 20 characters have been merged together. The record of merges gives us our
code tree. The algorithm makes a number of arbitrary choices; as a result, there are actually several
different Huffman codes. One such code is shown below.

147

F
5

V
5

10

Y
5

R
6

11

21

L
2

U
2

4

8

X
4

O
9

17 T
22
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37

E
26

D
2

Z
1

3G
3

6

A
3

C
3

6

12 I
13

25

51

88

S
27

N
16

32

H
8

W
8

16

59

A Huffman code for Lee Sallows’ self-descriptive sentence; the numbers are frequencies for merged characters

For example, the code for A is 110000, and the code for S is 00. The encoded message starts like
this:

1001
T

0100
H

1101
I

00
S

00
S

111
E

011
N

1001
T

111
E

011
N

110001
C

111
E

110001
C

10001
O

011
N

1001
T

110000
A

1101
I

···

Here is the list of costs for encoding each character, along with that character’s contribution to the
total length of the encoded message:

char. A C D E F G H I L N O R S T U V W X Y Z

freq. 3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1
× depth 6 6 7 3 5 6 4 4 7 3 4 4 2 4 7 5 4 6 5 7
= total 18 18 14 78 25 18 32 52 14 48 36 24 54 88 14 25 32 24 25 7

Altogether, the encoded message is 646 bits long. Different Huffman codes would assign different
codes, possibly with different lengths, to various characters, but the overall length of the encoded
message is the same for any Huffman code: 646 bits.

Given the simple structure of Huffman’s algorithm, it’s rather surprising that it produces an
optimal prefix-free binary code. Encoding Lee Sallows’ sentence using any prefix-free code requires
at least 646 bits! Fortunately, the recursive structure makes this claim easy to prove using an ex-
change argument, similar to our earlier optimality proofs. We start by proving that the algorithm’s
very first choice is correct.
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Lemma 5. Let x and y be the two least frequent characters (breaking ties between equally frequent
characters arbitrarily). There is an optimal code tree in which x and y are siblings.

Proof: I’ll actually prove a stronger statement: There is an optimal code in which x and y are
siblings and have the largest depth of any leaf.

Let T be an optimal code tree with depth d. Since T is a full binary tree, it has at least two
leaves at depth d that are siblings. (Verify this by induction!) Suppose those two leaves are not x
and y, but some other characters a and b.

Let T ′ be the code tree obtained by swapping x and a. The depth of x increases by some
amount ∆, and the depth of a decreases by the same amount. Thus,

cost(T ′) = cost(T )− (f [a]− f [x])∆.

By assumption, x is one of the two least frequent characters, but a is not, which implies that
f [a] ≥ f [x]. Thus, swapping x and a does not increase the total cost of the code. Since T was an
optimal code tree, swapping x and a does not decrease the cost, either. Thus, T ′ is also an optimal
code tree (and incidentally, f [a] actually equals f [x]).

Similarly, swapping y and b must give yet another optimal code tree. In this final optimal code
tree, x and y as maximum-depth siblings, as required. �

Now optimality is guaranteed by our dear friend the Recursion Fairy! Essentially we’re relying
on the following recursive definition for a full binary tree: either a single node, or a full binary tree
where some leaf has been replaced by an internal node with two leaf children.

Theorem 6. Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial.
Otherwise, let f [1 .. n] be the original input frequencies, where without loss of generality, f [1]

and f [2] are the two smallest. To keep things simple, let f [n + 1] = f [1] + f [2]. By the previous
lemma, we know that some optimal code for f [1 .. n] has characters 1 and 2 as siblings.

Let T ′ be the Huffman code tree for f [3 .. n + 1]; the inductive hypothesis implies that T ′ is an
optimal code tree for the smaller set of frequencies. To obtain the final code tree T , we replace
the leaf labeled n + 1 with an internal node with two children, labelled 1 and 2. I claim that T is
optimal for the original frequency array f [1 .. n].

To prove this claim, we can express the cost of T in terms of the cost of T ′ as follows. (In these
equations, depth(i) denotes the depth of the leaf labelled i in either T or T ′; if the leaf appears in
both T and T ′, it has the same depth in both trees.)

cost(T ) =
n∑

i=1

f [i] · depth(i)

=
n+1∑
i=3

f [i] · depth(i) + f [1] · depth(1) + f [2] · depth(2)− f [n + 1] · depth(n + 1)

= cost(T ′) + f [1] · depth(1) + f [2] · depth(2)− f [n + 1] · depth(n + 1)
= cost(T ′) + (f [1] + f [2]) · depth(T )− f [n + 1] · (depth(T )− 1)
= cost(T ′) + f [1] + f [2]

This equation implies that minimizing the cost of T is equivalent to minimizing the cost of T ′; in
particular, attaching leaves labeled 1 and 2 to the leaf in T ′ labeled n+1 gives an optimal code tree
for the original frequencies. �

7



Algorithms Non-Lecture A: Greedy Algorithms

Oh, I almost forgot! To actually implement Huffman codes efficiently, we keep the characters in
a min-heap, keyed by frequency. We also construct the code tree by keeping three arrays of indices,
listing the left and right children and the parent of each node. The root of the tree is the node with
index 2n− 1.

BUILDHUFFMAN(f [1 .. n]):
for i← 1 to n

L[i]← 0; R[i]← 0
INSERT(i, f [i])

for i← n to 2n− 1
x← EXTRACTMIN( )
y ← EXTRACTMIN( )
f [i]← f [x] + f [y]
L[i]← x; R[i]← y
P [x]← i; P [y]← i
INSERT(i, f [i])

P [2n− 1]← 0

The algorithm performs O(n) min-heap operations. If we use a balanced binary tree as the heap,
each operation requires O(log n) time, so the total running time of BUILDHUFFMAN is O(n log n).

Finally, here are simple algorithms to encode and decode messages:

HUFFMANENCODE(A[1 .. k]):
m← 1
for i← 1 to k

HUFFMANENCODEONE(A[i])

HUFFMANENCODEONE(x):
if x < 2n− 1

HUFFMANENCODEONE(P [x])
if x = L[P [x]]

B[m]← 0
else

B[m]← 1
m← m + 1

HUFFMANDECODE(B[1 ..m]):
k ← 1
v ← 2n− 1
for i← 1 to m

if B[i] = 0
v ← L[v]

else
v ← R[v]

if L[v] = 0
A[k]← v
k ← k + 1
v ← 2n− 1
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