
Algorithms Pre-lecture R: Solving Recurrences

R Solving Recurrences

R.1 Fun with Fibonacci numbers

Consider the reproductive cycle of bees. Each male bee has a mother but no father; each female

bee has both a mother and a father. If we examine the generations we see the following family

tree:

♂

♀

♀

♀

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀ ♂

♂

♀

♂

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀

♀

♀ ♂

♂

♀

♂

♀

♀ ♂

♂

♀

♀

♀ ♂

♂

♀

We easily see that the number of ancestors in each generation is the sum of the two numbers

before it. For example, our male bee has three great-grandparents, two grandparents, and one

parent, and 3 = 2 + 1. The number of ancestors a bee has in generation n is defined by the

Fibonacci sequence; we can also see this by applying the rule of sum.

As a second example, consider light entering two adjacent planes of glass:

At any meeting surface (between the two panes of glass, or between the glass and air), the light

may either reflect or continue straight through (refract). For example, here is the light bouncing

seven times before it leaves the glass.

In general, how many different paths can the light take if we are told that it bounces n times before

leaving the glass?

The answer to the question (in case you haven’t guessed) rests with the Fibonacci sequence.

We can divide the set of paths with n reflections into two subsets, depending on where the first

reflection happens.

1

Algorithms Pre-lecture R: Solving Recurrences

• Suppose the first bounce is on the boundary between the two panes. After the bounce, the

light either leaves the class immediately (so n = 1), or bounces again off the top of the upper

pane. After the second bounce, if any, the path is equivalent to a path that enters from the top

and bounces n − 2 times.

• Suppose the first bounce is not at the boundary between the two panes. Then either there

are no bounces at all (so n = 0) or the first bounce is off the bottom pane. After the first

bounce, the path is equivalent to a path that enters from the bottom and bounces n−1 times.

Entering through the bottom pane is the same as entering through the top pane (but flipped

over).

Thus, we obtain the following recurrence relation for Fn, the number of paths with exactly n
bounces. There is exactly one way for the light to travel with no bounces—straight through—and

exactly two ways for the light to travel with only one bounce—off the bottom and off the middle.

For any n > 1, there are Fn−1 paths where the light bounces off the bottom of the glass, and Fn−2

paths where the light bounces off the middle and then off the top.

F0 = 1

F1 = 2

Fn = Fn−1 + Fn−2

R.2 Sequences, sequence operators, and annihilators

We have shown that several different problems can be expressed in terms of Fibonacci sequences,

but we don’t yet know how to explicitly compute the nth Fibonacci number, or even (and more

importantly) roughly how big it is. We can easily write a program to compute the nth Fibonacci

number, but that doesn’t help us much here. What we really want is a closed form solution for the

Fibonacci recurrence—an explicit algebraic formula without conditionals, loops, or recursion.

In order to solve recurrences like the Fibonacci recurrence, we first need to understand opera-

tions on infinite sequences of numbers. Although these sequences are formally defined as functions

of the form A : IN → IR, we will write them either as A = 〈a0, a1, a2, a3, a4, . . .〉 when we want to

emphasize the entire sequence1, or as A = 〈ai〉 when we want to emphasize a generic element. For

example, the Fibonacci sequence is 〈0, 1, 1, 2, 3, 5, 8, 13, 21, . . .〉.
We can naturally define several sequence operators:

• We can add or subtract any two sequences:

〈ai〉 + 〈bi〉 = 〈a0, a1, a2, . . .〉 + 〈b0, b1, b2, . . .〉 = 〈a0 + b0, a1 + b1, a2 + b2, . . .〉 = 〈ai + bi〉
〈ai〉 − 〈bi〉 = 〈a0, a1, a2, . . .〉 − 〈b0, b1, b2, . . .〉 = 〈a0 − b0, a1 − b1, a2 − b2, . . .〉 = 〈ai − bi〉

1It really doesn’t matter whether we start a sequence with a0 or a1 or a5 or even a
−17. Zero is often a convenient

starting point for many recursively defined sequences, so we’ll usually start there.

2

Algorithms Pre-lecture R: Solving Recurrences

• We can multiply any sequence by a constant:

c · 〈ai〉 = c · 〈a0, a1, a2, . . .〉 = 〈c · a0, c · a1, c · a2, . . .〉 = 〈c · ai〉

• We can shift any sequence to the left by removing its initial element:

E〈ai〉 = E〈a0, a1, a2, a3, . . .〉 = 〈a1, a2, a3, a4, . . .〉 = 〈ai+1〉

Example: We can understand these operators better by looking at some specific examples, using

the sequence T of powers of two.

T = 〈20, 21, 22, 23, . . .〉 = 〈2i〉
ET = 〈21, 22, 23, 24, . . .〉 = 〈2i+1〉
2T = 〈2 · 20, 2 · 21, 2 · 22, 2 · 23, . . .〉 = 〈21, 22, 23, 24, . . .〉 = 〈2i+1〉

2T − ET = 〈21 − 21, 22 − 22, 23 − 23, 24 − 24, . . .〉 = 〈0, 0, 0, 0, . . .〉 = 〈0〉

R.2.1 Properties of operators

It turns out that the distributive property holds for these operators, so we can rewrite ET − 2T as

(E − 2)T . Since (E − 2)T = 〈0, 0, 0, 0, . . .〉, we say that the operator (E − 2) annihilates T , and we

call (E− 2) an annihilator of T . Obviously, we can trivially annihilate any sequence by multiplying

it by zero, so as a technical matter, we do not consider multiplication by 0 to be an annihilator.

What happens when we apply the operator (E − 3) to our sequence T?

(E − 3)T = ET − 3T = 〈2i+1〉 − 3〈2i〉 = 〈2i+1 − 3 · 2i〉 = 〈−2i〉 = −T

The operator (E − 3) did very little to our sequence T ; it just flipped the sign of each number in

the sequence. In fact, we will soon see that only (E − 2) will annihilate T , and all other simple

operators will affect T in very minor ways. Thus, if we know how to annihilate the sequence, we

know what the sequence must look like.

In general, (E − c) annihilates any geometric sequence A = 〈a0, a0c, a0c
2, a0c

3, . . .〉 = 〈a0c
i〉:

(E − c)〈a0c
i〉 = E〈a0c

i〉 − c〈a0ci〉 = 〈a0c
i+1〉 − 〈c · a0ci〉 = 〈a0c

i+1 − a0c
i+1〉 = 〈0〉

To see that this is the only operator of this form that annihilates A, let’s see the effect of operator

(E − d) for some d 6= c:

(E − d)〈a0c
i〉 = E〈a0c

i〉 − d〈a0ci〉 = 〈a0c
i+1 − da0ci〉 = 〈(c − d)a0c

i〉 = (c − d)〈a0c
i〉

So we have a more rigorous confirmation that an annihilator annihilates exactly one type of se-

quence, but multiplies other similar sequences by a constant.

We can use this fact about annihilators of geometric sequences to solve certain recurrences. For

example, consider the sequence R = 〈r0, r1, r2, . . .〉 defined recursively as follows:

r0 = 3

ri+1 = 5ri

We can easily prove that the operator (E − 5) annihilates R:

(E − 5)〈ri〉 = E〈ri〉 − 5〈ri〉 = 〈ri+1〉 − 〈5ri〉 = 〈ri+1 − 5ri〉 = 〈0〉

3

Algorithms Pre-lecture R: Solving Recurrences

Since (E − 5) is an annihilator for R, we must have the closed form solution ri = r05
i = 3 · 5i. We

can easily verify this by induction, as follows:

r0 = 3 · 50 = 3 X [definition]

ri = 5ri−1 [definition]

= 5 · (3 · 5i−1) [induction hypothesis]

= 5i · 3 X [algebra]

R.2.2 Multiple operators

An operator is a function that transforms one sequence into another. Like any other function,

we can apply operators one after another to the same sequence. For example, we can multiply

a sequence 〈ai〉 by a constant d and then by a constant c, resulting in the sequence c(d〈ai〉) =
〈c · d · ai〉 = (cd)〈ai〉. Alternatively, we may multiply the sequence by a constant c and then shift it

to the left to get E(c〈ai〉) = E〈c · ai〉 = 〈c · ai+1〉. This is exactly the same as applying the operators

in the reverse order: c(E〈ai〉) = c〈ai+1〉 = 〈c · ai+1〉. We can also shift the sequence twice to the

left: E(E〈ai〉) = E〈ai+1〉 = 〈ai+2〉. We will write this in shorthand as E2〈ai〉. More generally, the

operator Ek shifts a sequence k steps to the left: Ek〈ai〉 = 〈ai+k〉.
We now have the tools to solve a whole host of recurrence problems. For example, what an-

nihilates C = 〈2i + 3i〉? Well, we know that (E − 2) annihilates 〈2i〉 while leaving 〈3i〉 essentially

unscathed. Similarly, (E − 3) annihilates 〈3i〉 while leaving 〈2i〉 essentially unscathed. Thus, if we

apply both operators one after the other, we see that (E − 2)(E − 3) annihilates our sequence C.

In general, for any integers a 6= b, the operator (E − a)(E − b) annihilates any sequence of the

form 〈c1a
i + c2b

i〉 but nothing else. We will often ‘multiply out’ the operators into the shorthand

notation E2 − (a + b)E + ab. It is left as an exhilarating exercise to the student to verify that this

shorthand actually makes sense—the operators (E − a)(E − b) and E2 − (a + b)E + ab have the

same effect on every sequence.

We now know finally enough to solve the recurrence for Fibonacci numbers. Specifically, notice

that the recurrence Fi = Fi−1 + Fi−2 is annihilated by E2 − E − 1:

(E2 −E − 1)〈Fi〉 = E2〈Fi〉 − E〈Fi〉 − 〈Fi〉
= 〈Fi+2〉 − 〈Fi+1〉 − 〈Fi〉
= 〈Fi−2 − Fi−1 − Fi〉
= 〈0〉

Factoring E2 − E− 1 using the quadratic formula, we obtain

E2 − E − 1 = (E − φ)(E − φ̂)

where φ = (1 +
√

5)/2 ≈ 1.618034 is the golden ratio and φ̂ = (1 −
√

5)/2 = 1 − φ = −1/φ. Thus,

the operator (E − φ)(E − φ̂) annihilates the Fibonacci sequence, so Fi must have the form

Fi = cφi + ĉφ̂i

for some constants c and ĉ. We call this the generic solution to the recurrence, since it doesn’t

depend at all on the base cases. To compute the constants c and ĉ, we use the base cases F0 = 0
and F1 = 1 to obtain a pair of linear equations:

F0 = 0 = c + ĉ

F1 = 1 = cφ + ĉφ̂

4

Algorithms Pre-lecture R: Solving Recurrences

Solving this system of equations gives us c = 1/(2φ − 1) = 1/
√

5 and ĉ = −1/
√

5.

We now have a closed-form expression for the ith Fibonacci number:

Fi =
φi − φ̂i

√
5

=
1√
5

(

1 +
√

5

2

)i

− 1√
5

(

1 −
√

5

2

)i

With all the square roots in this formula, it’s quite amazing that Fibonacci numbers are integers.

However, if we do all the math correctly, all the square roots cancel out when i is an integer. (In

fact, this is pretty easy to prove using the binomial theorem.)

R.2.3 Degenerate cases

We can’t quite solve every recurrence yet. In our above formulation of (E − a)(E − b), we assumed

that a 6= b. What about the operator (E − a)(E − a) = (E − a)2? It turns out that this operator

annihilates sequences such as 〈iai〉:

(E − a)〈iai〉 = 〈(i + 1)ai+1 − (a)iai〉
= 〈(i + 1)ai+1 − iai+1〉
= 〈ai+1〉

(E − a)2〈iai〉 = (E − a)〈ai+1〉 = 〈0〉

More generally, the operator (E − a)k annihilates any sequence 〈p(i) · ai〉, where p(i) is any

polynomial in i of degree k − 1. As an example, (E− 1)3 annihilates the sequence 〈i2 · 1i〉 = 〈i2〉 =
〈1, 4, 9, 16, 25, . . .〉, since p(i) = i2 is a polynomial of degree n − 1 = 2.

As a review, try to explain the following statements:

• (E − 1) annihilates any constant sequence 〈α〉.

• (E − 1)2 annihilates any arithmetic sequence 〈α + βi〉.

• (E − 1)3 annihilates any quadratic sequence 〈α + βi + γi2〉.

• (E − 3)(E − 2)(E − 1) annihilates any sequence 〈α + β2i + γ3i〉.

• (E − 3)2(E − 2)(E − 1) annihilates any sequence 〈α + β2i + γ3i + δi3i〉.

R.2.4 Summary

In summary, we have learned several operators that act on sequences, as well as a few ways of

combining operators.

Operator Definition

Addition 〈ai〉 + 〈bi〉 = 〈ai + bi〉
Subtraction 〈ai〉 + 〈bi〉 = 〈ai + bi〉

Scalar multiplication c〈ai〉 = 〈cai〉
Shift E〈ai〉 = 〈ai+1〉

Composition of operators (X + Y)〈ai〉 = X〈ai〉 + Y〈ai〉
(X− Y)〈ai〉 = X〈ai〉 − Y〈ai〉
XY〈ai〉 = X(Y〈ai〉) = Y(X〈ai〉)

k-fold shift Ek〈ai〉 = 〈ai+k〉

5

Algorithms Pre-lecture R: Solving Recurrences

Notice that we have not defined a multiplication operator for two sequences. This is usually ac-

complished by convolution:

〈ai〉 ∗ 〈bi〉 =

〈

i
∑

j=0

ajbi−j

〉

.

Fortunately, convolution is unnecessary for solving the recurrences we will see in this course.

We have also learned some things about annihilators, which can be summarized as follows:

Sequence Annihilator

〈α〉 E − 1
〈

αai
〉

E − a
〈

αai + βbi
〉

(E − a)(E − b)
〈

α0a
i
0 + α1a

i
1 + · · · + αnai

n

〉

(E − a0)(E − a1) · · · (E − an)
〈αi + β〉 (E − 1)2

〈

(αi + β)ai
〉

(E − a)2
〈

(αi + β)ai + γbi
〉

(E − a)2(E − b)
〈

(α0 + α1i + · · ·αn−1i
n−1)ai

〉

(E − a)n

If X annihilates 〈ai〉, then X also annihilates c〈ai〉 for any constant c.

If X annihilates 〈ai〉 and Y annihilates 〈bi〉, then XY annihilates 〈ai〉 ± 〈bi〉.

R.3 Solving Linear Recurrences

R.3.1 Homogeneous Recurrences

The general expressions in the annihilator box above are really the most important things to re-

member about annihilators because they help you to solve any recurrence for which you can write

down an annihilator. The general method is:

1. Write down the annihilator for the recurrence

2. Factor the annihilator

3. Determine the sequence annihilated by each factor

4. Add these sequences together to form the generic solution

5. Solve for constants of the solution by using initial conditions

Example: Let’s show the steps required to solve the following recurrence:

r0 = 1

r1 = 5

r2 = 17

ri = 7ri−1 − 16ri−2 + 12ri−3

1. Write down the annihilator. Since ri+3 − 7ri+2 + 16ri+1 − 12ri = 0, the annihilator is E3 −
7E2 + 16E − 12.

2. Factor the annihilator. E3 − 7E2 + 16E − 12 = (E − 2)2(E − 3).

3. Determine sequences annihilated by each factor. (E − 2)2 annihilates 〈(αi + β)2i〉 for any

constants α and β, and (E − 3) annihilates 〈γ3i〉 for any constant γ.

6

Algorithms Pre-lecture R: Solving Recurrences

4. Combine the sequences. (E−2)2(E−3) annihilates 〈(αi+β)2i+γ3i〉 for any constants α, β, γ.

5. Solve for the constants. The base cases give us three equations in the three unknowns α, β, γ:

r0 = 1 = (α · 0 + β)20 + γ · 30 = β + γ

r1 = 5 = (α · 1 + β)21 + γ · 31 = 2α + 2β + 3γ

r2 = 17 = (α · 2 + β)22 + γ · 32 = 8α + 4β + 9γ

We can solve these equations to get α = 1, β = 0, γ = 1. Thus, our final solution is

ri = i2i + 3i , which we can verify by induction.

R.3.2 Non-homogeneous Recurrences

A height balanced tree is a binary tree, where the heights of the two subtrees of the root differ by

at most one, and both subtrees are also height balanced. To ground the recursive definition, the

empty set is considered a height balanced tree of height −1, and a single node is a height balanced

tree of height 0.

Let Tn be the smallest height-balanced tree of height n—how many nodes does Tn have? Well,

one of the subtrees of Tn has height n − 1 (since Tn has height n) and the other has height either

n − 1 or n − 2 (since Tn is height-balanced and as small as possible). Since both subtrees are

themselves height-balanced, the two subtrees must be Tn−1 and Tn−2.

We have just derived the following recurrence for tn, the number of nodes in the tree Tn:

t−1 = 0 [the empty set]

t0 = 1 [a single node]

tn = tn−1 + tn−2 + 1

The final ‘+1’ is for the root of Tn.

We refer to the terms in the equation involving ti’s as the homogeneous terms and the rest as

the non-homogeneous terms. (If there were no non-homogeneous terms, we would say that the

recurrence itself is homogeneous.) We know that E2 − E − 1 annihilates the homogeneous part

tn = tn−1 + tn−2. Let us try applying this annihilator to the entire equation:

(E2 −E − 1)〈ti〉 = E2〈ti〉 − E〈ai〉 − 1〈ai〉
= 〈ti+2〉 − 〈ti+1〉 − 〈ti〉
= 〈ti+2 − ti+1 − ti〉
= 〈1〉

The leftover sequence 〈1, 1, 1, . . .〉 is called the residue. To obtain the annihilator for the entire

recurrence, we compose the annihilator for its homogeneous part with the annihilator of its residue.

Since E − 1 annihilates 〈1〉, it follows that (E2 − E − 1)(E − 1) annihilates 〈tn〉. We can factor the

annihilator into

(E − φ)(E − φ̂)(E − 1),

so our annihilator rules tell us that

tn = αφn + βφ̂n + γ

for some constants α, β, γ. We call this the generic solution to the recurrence. Different recurrences

can have the same generic solution.

7

Algorithms Pre-lecture R: Solving Recurrences

To solve for the unknown constants, we need three equations in three unknowns. Our base

cases give us two equations, and we can get a third by examining the next nontrivial case t1 = 2:

t−1 = 0 = αφ−1 + βφ̂−1 + γ = α/φ + β/φ̂ + γ

t0 = 1 = αφ0 + βφ̂0 + γ = α + β + γ

t1 = 2 = αφ1 + βφ̂1 + γ = αφ + βφ̂ + γ

Solving these equations, we find that α =
√

5+2√
5

, β =
√

5−2√
5

, and γ = −1. Thus,

tn =

√
5 + 2√

5

(

1 +
√

5

2

)n

+

√
5 − 2√

5

(

1 −
√

5

2

)n

− 1

Here is the general method for non-homogeneous recurrences:

1. Write down the homogeneous annihilator, directly from the recurrence

11
2
. ‘Multiply’ by the annihilator for the residue

2. Factor the annihilator

3. Determine what sequence each factor annihilates

4. Add these sequences together to form the generic solution

5. Solve for constants of the solution by using initial conditions

R.3.3 Some more examples

In each example below, we use the base cases a0 = 0 and a1 = 1.

• an = an−1 + an−2 + 2

– The homogeneous annihilator is E2 − E − 1.

– The residue is the constant sequence 〈2, 2, 2, . . .〉, which is annihilated by E− 1.

– Thus, the annihilator is (E2 − E − 1)(E − 1).

– The annihilator factors into (E − φ)(E − φ̂)(E − 1).

– Thus, the generic solution is an = αφn + βφ̂n + γ.

– The constants α, β, γ satisfy the equations

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + γ

a2 = 3 = αφ2 + βφ̂2 + γ

– Solving the equations gives us α =
√

5+2√
5

, β =
√

5−2√
5

, and γ = −2

– So the final solution is an =

√
5 + 2√

5

(

1 +
√

5

2

)n

+

√
5 − 2√

5

(

1 −
√

5

2

)n

− 2

(In the remaining examples, I won’t explicitly enumerate the steps like this.)

8

Algorithms Pre-lecture R: Solving Recurrences

• an = an−1 + an−2 + 3

The homogeneous annihilator (E2 − E − 1) leaves a constant residue 〈3, 3, 3, . . .〉, so the

annihilator is (E2 − E − 1)(E − 1), and the generic solution is an = αφn + βφ̂n + γ. Solving

the equations

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + γ

a2 = 4 = αφ2 + βφ̂2 + γ

gives us the final solution an =

√
5 + 3√

5

(

1 +
√

5

2

)n

+

√
5 − 3√

5

(

1 −
√

5

2

)n

− 3

• an = an−1 + an−2 + 2n

The homogeneous annihilator (E2 − E − 1) leaves an exponential residue 〈4, 8, 16, 32, . . .〉 =
〈2i+2〉, which is annihilated by E − 2. Thus, the annihilator is (E2 − E − 1)(E − 2), and

the generic solution is an = αφn + βφ̂n + γ2n. The constants α, β, γ satisfy the following

equations:

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + 2γ

a2 = 5 = αφ2 + βφ̂2 + 4γ

• an = an−1 + an−2 + n

The homogeneous annihilator (E2 − E − 1) leaves a linear residue 〈2, 3, 4, 5 . . .〉 = 〈i + 2〉,
which is annihilated by (E−1)2. Thus, the annihilator is (E2−E−1)(E−1)2, and the generic

solution is an = αφn + βφ̂n + γ + δn. The constants α, β, γ, δ satisfy the following equations:

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + γ + δ

a2 = 3 = αφ2 + βφ̂2 + γ + 2δ

a3 = 7 = αφ3 + βφ̂3 + γ + 3δ

• an = an−1 + an−2 + n2

The homogeneous annihilator (E2 − E − 1) leaves a quadratic residue 〈4, 9, 16, 25 . . .〉 =
〈(i + 2)2〉, which is annihilated by (E − 1)3. Thus, the annihilator is (E2 − E − 1)(E − 1)3,

and the generic solution is an = αφn + βφ̂n + γ + δn + εn2. The constants α, β, γ, δ, ε satisfy

the following equations:

a0 = 0 = α + β + γ

a1 = 1 = αφ + βφ̂ + γ + δ + ε

a2 = 5 = αφ2 + βφ̂2 + γ + 2δ + 4ε

a3 = 15 = αφ3 + βφ̂3 + γ + 3δ + 9ε

a4 = 36 = αφ4 + βφ̂4 + γ + 4δ + 16ε

9

Algorithms Pre-lecture R: Solving Recurrences

• an = an−1 + an−2 + n2 − 2n

The homogeneous annihilator (E2 −E− 1) leaves the residue 〈(i+2)2 − 2i−2〉. The quadratic

part of the residue is annihilated by (E − 1)3, and the exponential part is annihilated by

(E − 2). Thus, the annihilator for the whole recurrence is (E2 − E − 1)(E − 1)3(E − 2), and

so the generic solution is an = αφn + βφ̂n + γ + δn + εn2 + η2i. The constants α, β, γ, δ, ε, η
satisfy a system of six equations in six unknowns determined by a0, a1, . . . , a5.

• an = an−1 + an−2 + φn

The annihilator is (E2 − E − 1)(E − φ) = (E − φ)2(E − φ̂), so the generic solution is an =
αφn + βnφn + γφ̂n. (Other recurrence solving methods will have a “interference” problem

with this equation, while the operator method does not.)

Our method does not work on recurrences like an = an−1 + 1
n or an = an−1 + lg n, because the

functions 1
n and lg n do not have annihilators. Our tool, as it stands, is limited to linear recurrences.

R.4 Divide and Conquer Recurrences

Divide and conquer algorithms often give us running-time recurrences of the form

T (n) = aT (n/b) + f(n) (1)

where a and b are constants and f(n) is some other function. The so-called ‘Master Theorem’ gives

us a general method for solving such recurrences when f(n) is a simple polynomial.

Unfortunately, the Master Theorem doesn’t work for all functions f(n), and many useful re-

currences don’t look like (??) at all. Fortunately, there’s a more general technique to solve most

divide-and-conquer recurrences, even if they don’t have this form. This technique is used to prove

the Master Theorem, so if you remember this technique, you can forget the Master Theorem entirely

(which is what I did). Throw off your chains!

I’ll illustrate the technique using the generic recurrence (??). We start by drawing a recursion

tree. The root of the recursion tree is a box containing the value f(n), it has a children, each of

which is the root of a recursion tree for T (n/b). Equivalently, a recursion tree is a complete a-

ary tree where each node at depth i contains the value aif(n/bi). The recursion stops when we

get to the base case(s) of the recurrence. Since we’re looking for asymptotic bounds, it turns out

not to matter much what we use for the base case; for purposes of illustration, I’ll assume that

T (1) = f(1).

a

f(n/b)

f(n/b)2 f(n/b)2 f(n/b)2f(n/b)2

f(n)

a
f(n/b) f(n/b) f(n/b)

f(n/b)3

f()1

f(n)

a f(n/b)

a f(n/b)2 2

a f(n/b)33

a f(1)L

A recursion tree for the recurrence T (n) = aT (n/b) + f(n)

10

Algorithms Pre-lecture R: Solving Recurrences

Now T (n) is just the sum of all values stored in the tree. Assuming that each level of the tree is

full, we have

T (n) = f(n) + a f(n/b) + a2 f(n/b2) + · · · + ai f(n/bi) + · · · + aL f(n/bL)

where L is the depth of the recursion tree. We easily see that L = logb n, since n/bL = 1. Since

f(1) = Θ(1), the last non-zero term in the summation is Θ(aL) = Θ(alogb n) = Θ(nlogb a).
Now we can easily state and prove the Master Theorem, in a slightly different form than it’s

usually stated.

The Master Theorem. The recurrence T (n) = aT (n/b) + f(n) can be solved as follows.

• If a f(n/b) = κ f(n) for some constant κ < 1, then T (n) = Θ(f(n)).
• If a f(n/b) = K f(n) for some constant K > 1, then T (n) = Θ(nlogb a).
• If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).
• If none of these three cases apply, you’re on your own.

Proof: If f(n) is a constant factor larger than a f(b/n), then by induction, the sum is a descending

geometric series. The sum of any geometric series is a constant times its largest term. In this case,

the largest term is the first term f(n).
If f(n) is a constant factor smaller than a f(b/n), then by induction, the sum is an ascending

geometric series. The sum of any geometric series is a constant times its largest term. In this case,

this is the last term, which by our earlier argument is Θ(nlogb a).
Finally, if a f(b/n) = f(n), then by induction, each of the L+1 terms in the summation is equal

to f(n). �

Here are a few canonical examples of the Master Theorem in action:

• Randomized selection: T (n) = T (3n/4) + n

Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of 4/3, so T (n) = Θ(n)

• Karatsuba’s multiplication algorithm: T (n) = 3T (n/2) + n

Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of 3/2, so T (n) = Θ(nlog2 3)

• Mergesort: T (n) = 2T (n/2) + n

Here a f(n/b) = f(n), so T (n) = Θ(n log n)

• T (n) = 4T (n/2) + n lg n

In this case, we have a f(n/b) = 2n lg n−2n, which is not quite twice f(n) = n lg n. However,

for sufficiently large n (which is all we care about with asymptotic bounds) we have 2f(n) >
af(n/b) > 1.9f(n). Since the level sums are bounded both above and below by ascending

geometric series, the solution is T (n) = Θ(nlog2 4) = Θ(n2) . (This trick will not work in the

second or third cases of the Master Theorem!)

Using the same recursion-tree technique, we can also solve recurrences where the Master The-

orem doesn’t apply.

11

Algorithms Pre-lecture R: Solving Recurrences

• T (n) = 2T (n/2) + n/ lg n

We can’t apply the Master Theorem here, because a f(n/b) = n/(lg n − 1) isn’t equal to

f(n) = n/ lg n, but the difference isn’t a constant factor. So we need to compute each of the

level sums and compute their total in some other way. It’s not hard to see that the sum of all

the nodes in the ith level is n/(lg n − i). In particular, this means the depth of the tree is at

most lg n − 1.

T (n) =

lg n−1
∑

i=0

n

lg n − i
=

lg n
∑

j=1

n

j
= nHlg n = Θ(n lg lg n)

• Randomized quicksort: T (n) = T (3n/4) + T (n/4) + n

In this case, nodes in the same level of the recursion tree have different values. This makes

the tree lopsided; different leaves are at different levels. However, it’s not to hard to see that

the nodes in any complete level (i.e., above any of the leaves) sum to n, so this is like the

last case of the Master Theorem, and that every leaf has depth between log4 n and log4/3 n.

To derive an upper bound, we overestimate T (n) by ignoring the base cases and extending

the tree downward to the level of the deepest leaf. Similarly, to derive a lower bound, we

overestimate T (n) by counting only nodes in the tree up to the level of the shallowest leaf.

These observations give us the upper and lower bounds n log4 n ≤ T (n) ≤ n log4/3 n. Since

these bound differ by only a constant factor, we have T (n) = Θ(n log n) .

• Deterministic selection: T (n) = T (n/5) + T (7n/10) + n

Again, we have a lopsided recursion tree. If we look only at complete levels of the tree, we

find that the level sums form a descending geometric series T (n) = n+9n/10+81n/100+ · · · ,
so this is like the first case of the master theorem. We can get an upper bound by ignoring

the base cases entirely and growing the tree out to infinity, and we can get a lower bound by

only counting nodes in complete levels. Either way, the geometric series is dominated by its

largest term, so T (n) = Θ(n) .

• T (n) =
√

n · T (
√

n) + n

In this case, we have a complete recursion tree, but the degree of the nodes is no longer

constant, so we have to be a bit more careful. It’s not hard to see that the nodes in any

level sum to n, so this is like the third case of the Master Theorem. The depth L satisfies the

identity n2−L

= 2 (we can’t get all the way down to 1 by taking square roots), so L = lg lg n

and T (n) = Θ(n lg lg n) .

• T (n) = 4
√

n · T (
√

n) + n

We still have at most lg lg n levels, but now the nodes in level i sum to 4in. We have an

increasing geometric series of level sums, like the second Master case, so T (n) is dominated

by the sum over the deepest level: T (n) = Θ(4lg lg nn) = Θ(n log2 n)

R.5 Transforming Recurrences

R.5.1 An analysis of mergesort: domain transformation

Previously we gave the recurrence for mergesort as T (n) = 2T (n/2) + n, and obtained the solution

T (n) = Θ(n log n) using the Master Theorem (or the recursion tree method if you, like me, can’t

12

Algorithms Pre-lecture R: Solving Recurrences

remember the Master Theorem). This is fine is n is a power of two, but for other values values of

n, this recurrence is incorrect. When n is odd, then the recurrence calls for us to sort a fractional

number of elements! Worse yet, if n is not a power of two, we will never reach the base case

T (1) = 0.

To get a recurrence that’s valid for all integers n, we need to carefully add ceilings and floors:

T (n) = T (⌈n/2⌉) + T (⌊n/2⌋) + n.

We have almost no hope of getting an exact solution here; the floors and ceilings will eventually

kill us. So instead, let’s just try to get a tight asymptotic upper bound for T (n) using a technique

called domain transformation. A domain transformation rewrites a function T (n) with a difficult

recurrence as a nested function S(f(n)), where f(n) is a simple function and S() has an easier

recurrence.

First we overestimate the time bound, once by pretending that the two subproblem sizes are

equal, and again to eliminate the ceiling:

T (n) ≤ 2T
(

⌈n/2⌉
)

+ n ≤ 2T (n/2 + 1) + n.

Now we define a new function S(n) = T (n + α), where α is a unknown constant, chosen so that

S(n) satisfies the Master-ready recurrence S(n) ≤ 2S(n/2) + O(n). To figure out the correct value

of α, we compare two versions of the recurrence for the function T (n + α):

S(n) ≤ 2S(n/2) + O(n) =⇒ T (n + α) ≤ 2T (n/2 + α) + O(n)

T (n) ≤ 2T (n/2 + 1) + n =⇒ T (n + α) ≤ 2T ((n + α)/2 + 1) + n + α

For these two recurrences to be equal, we need n/2 + α = (n + α)/2 + 1, which implies that α = 2.

The Master Theorem now tells us that S(n) = O(n log n), so

T (n) = S(n − 2) = O((n − 2) log(n − 2)) = O(n log n).

A similar argument gives a matching lower bound T (n) = Ω(n log n). So T (n) = Θ(n log n) after

all, just as though we had ignored the floors and ceilings from the beginning!

Domain transformations are useful for removing floors, ceilings, and lower order terms from

the arguments of any recurrence that otherwise looks like it ought to fit either the Master Theorem

or the recursion tree method. But now that we know this, we don’t need to bother grinding through

the actual gory details!

R.5.2 A less trivial example

There is a data structure in computational geometry called ham-sandwich trees, where the cost of

doing a certain search operation obeys the recurrence T (n) = T (n/2)+T (n/4)+1. This doesn’t

fit the Master theorem, because the two subproblems have different sizes, and using the recursion

tree method only gives us the loose bounds
√

n ≪ T (n) ≪ n.

Domain transformations save the day. If we define the new function t(k) = T (2k), we have a

new recurrence

t(k) = t(k − 1) + t(k − 2) + 1

which should immediately remind you of Fibonacci numbers. Sure enough, after a bit of work, the

annihilator method gives us the solution t(k) = Θ(φk), where φ = (1 +
√

5)/2 is the golden ratio.

This implies that

T (n) = t(lg n) = Θ(φlg n) = Θ(nlg φ) ≈ Θ(n0.69424).

It’s possible to solve this recurrence without domain transformations and annihilators—in fact,

the inventors of ham-sandwich trees did so—but it’s much more difficult.

13

Algorithms Pre-lecture R: Solving Recurrences

R.5.3 Secondary recurrences

Consider the recurrence T (n) = 2T (n

3
− 1) + n with the base case T (1) = 1. We already know

how to use domain transformations to get the tight asymptotic bound T (n) = Θ(n), but how would

we we obtain an exact solution?

First we need to figure out how the parameter n changes as we get deeper and deeper into the

recurrence. For this we use a secondary recurrence. We define a sequence ni so that

T (ni) = 2T (ni−1) + ni,

So ni is the argument of T () when we are i recursion steps away from the base case n0 = 1. The

original recurrence gives us the following secondary recurrence for ni:

ni−1 =
ni

3
− 1 =⇒ ni = 3ni−3 + 3.

The annihilator for this recurrence is (E−1)(E−3), so the generic solution is ni = α3i+β. Plugging

in the base cases n0 = 1 and n1 = 6, we get the exact solution

ni =
5

2
· 3i − 3

2
.

Notice that our original function T (n) is only well-defined if n = ni for some integer i ≥ 0.

Now to solve the original recurrence, we do a range transformation. If we set ti = T (ni), we

have the recurrence ti = 2ti−1 + 5
2
·3i− 3

2
, which by now we can solve using the annihilator method.

The annihilator of the recurrence is (E−2)(E−3)(E−1), so the generic solution is α′3i +β′2i +γ′.

Plugging in the base cases t0 = 1, t1 = 8, t2 = 37, we get the exact solution

ti =
15

2
· 3i − 8 · 2i +

3

2

Finally, we need to substitute to get a solution for the original recurrence in terms of n, by

inverting the solution of the secondary recurrence. If n = ni = 5
2
·3i− 3

2
, then (after a little algebra)

we have

i = log3

(

2

5
n +

3

5

)

.

Substituting this into the expression for ti, we get our exact, closed-form solution.

T (n) =
15

2
· 3i − 8 · 2i +

3

2

=
15

2
· 3(2

5
n+ 3

5
) − 8 · 2log3(2

5
n+ 3

5
) +

3

2

=
15

2

(

2

5
n +

3

5

)

− 8 ·
(

2

5
n +

3

5

)log3 2

+
3

2

= 3n − 8 ·
(

2

5
n +

3

5

)log3 2

+ 6

Isn’t that special? Now you know why we stick to asymptotic bounds for most recurrences.

14

Algorithms Pre-lecture R: Solving Recurrences

R.6 The Ultimate Method: Guess and Confirm

Ultimately, there is one failsafe method to solve any recurrence:

Guess the answer, and then prove it correct by induction.

The annihilator method, the recursion-tree method, and transformations are good ways to generate

guesses that are guaranteed to be correct, provided you use them correctly. But if you’re faced

with a recurrence that doesn’t seem to fit any of these methods, or if you’ve forgotten how those

techniques work, don’t despair! If you guess a closed-form solution and then try to verify your

guess inductively, usually either the proof succeeds and you’re done, or the proof fails in a way that

lets you refine your guess. Where you get your initial guess is utterly irrelevant2—from a classmate,

from a textbook, on the web, from the answer to a different problem, scrawled on a bathroom wall

in Siebel, dictated by the machine elves, whatever. If you can prove that the answer is correct, then

it’s correct!

R.6.1 Tower of Hanoi

The classical Tower of Hanoi problem gives us the recurrence T (n) = 2T (n − 1) + 1 with base

case T (0) = 0. Just looking at the recurrence we can guess that T (n) is something like 2n. If we

write out the first few values of T (n) all the values are one less than a power of two.

T (0) = 0, T (1) = 1, T (2) = 3, T (3) = 7, T (4) = 15, T (5) = 31, T (6) = 63, . . . ,

It looks like T (n) = 2n − 1 might be the right answer. Let’s check.

T (0) = 0 = 20 − 1 X

T (n) = 2T (n − 1) + 1

= 2(2n−1 − 1) + 1 [induction hypothesis]

= 2n − 1 X [algebra]

We were right!

R.6.2 Fibonacci numbers

Let’s try a less trivial example: the Fibonacci numbers Fn = Fn−1 +Fn−2 with base cases F0 = 0
and F1 = 1. There is no obvious pattern (besides the obvious one) in the first several values, but

we can reasonably guess that Fn is exponential in n. Let’s try to prove that Fn ≤ a · cn for some

constants a > 0 and c > 1 and see how far we get.

Fn = Fn−1 + Fn−2 ≤ a · cn−1 + a · cn−2 ≤ a · cn ???

The last inequality is satisfied if cn ≥ cn−1 + cn−2, or more simply, if c2 − c − 1 ≥ 0. The smallest

value of c that works is φ = (1 +
√

5)/2 ≈ 1.618034; the other root of the quadratic equation is

negative, so we can ignore it.

2. . . except of course during exams, where you aren’t supposed to use any outside sources

15

Algorithms Pre-lecture R: Solving Recurrences

So we have most of an inductive proof that Fn ≤ a ·φn for any constant a. All that we’re missing

are the base cases, which (we can easily guess) must determine the value of the coefficient a. We

quickly compute
F0

φ0
= 0 and

F1

φ1
=

1

φ
≈ 0.618034 > 0,

so the base cases of our induction proof are correct as long as a ≥ 1/φ. It follows that Fn ≤ φn−1

for all n ≥ 0.

What about a matching lower bound? Well, the same inductive proof implies that Fn ≥ b · φn

for some constant b, but the only value of b that works for all n is the trivial b = 0. We could try

to find some lower-order term that makes the base case non-trivial, but an easier approach is to

recall that Ω() bounds only have to work for sufficiently large n. So let’s ignore the trivial base case

F0 = 0 and assume that F2 = 1 is a base case instead. Some more calculation gives us

F2

φ2
=

1

φ2
≈ 0.381966 <

1

φ
.

Thus, the new base cases of our induction proof are correct as long as b ≤ 1/φ2, which implies that

Fn ≥ φn−2 for all n ≥ 1.

Putting the upper and lower bounds together, we correctly conclude that Fn = Θ(φn) . It is

possible to get a more exact solution by speculatively refining and conforming our current bounds,

but it’s not easy; you’re better off just using annihilators.

R.6.3 A divide-and-conquer example

Consider the divide-and-conquer recurrence T (n) =
√

n · T (
√

n)+ n. It doesn’t fit into the form

required by the Master Theorem, but it still sort of resembles the Mergesort recurrence—the total

size of the subproblems at the first level of recursion is n—so let’s guess that T (n) = O(n log n), and

then try to prove that our guess is correct. Specifically, let’s conjecture that T (n) ≤ an lg n for all

sufficiently large n and some constant a to be determined later:

T (n) =
√

n · T (
√

n) + n

≤
√

n · a
√

n lg
√

n + n [induction hypothesis]

= (a/2)n lg n + n [algebra]

≤ an lg n X

The last inequality assumes only that 1 ≤ (a/2) log n,or equivalently, that n ≥ 22/a. In other words,

the induction proof is correct if n is sufficiently large. So we were right!

But before you break out the champaign, what about the multiplicative constant a? The proof

worked for any constant a, no matter how small. This strongly suggests that our upper bound

T (n) = O(n log n) is not tight. Indeed, if we try to prove a matching lower bound T (n) ≥ b n log n
for sufficiently large n, we run into trouble.

T (n) =
√

n · T (
√

n) + n

≥
√

n · b
√

n log
√

n + n [induction hypothesis]

= (b/2)n log n + n

6≥ bn log n

16

Algorithms Pre-lecture R: Solving Recurrences

The last inequality would be correct only if 1 > (b/2) log n, but that inequality is false for large

values of n, no matter which constant b we choose. Okay, so Θ(n log n) is too big. How about

Θ(n)? The lower bound is easy to prove directly:

T (n) =
√

n · T (
√

n) + n ≥ n X

But an inductive proof of the lower bound fails.

T (n) =
√

n · T (
√

n) + n

≤
√

n · a
√

n + n [induction hypothesis]

= (a + 1)n [algebra]

6≤ an

Hmmm. So what’s bigger than n and smaller than n lg n? How about n
√

lg n?

T (n) =
√

n · T (
√

n) + n ≤
√

n · a
√

n

√

lg
√

n + n [induction hypothesis]

= (a/
√

2)n
√

lg n + n [algebra]

≤ an
√

lg n for large enough n X

Okay, the upper bound checks out; how about the lower bound?

T (n) =
√

n · T (
√

n) + n ≥
√

n · b
√

n

√

lg
√

n + n [induction hypothesis]

= (b/
√

2)n
√

lg n + n [algebra]

6≥ b n
√

lg n

No, the last step doesn’t work. So Θ(n
√

lg n) doesn’t work. Hmmm. . . what else is between n and

n lg n? How about n lg lg n?

T (n) =
√

n · T (
√

n) + n ≤
√

n · a
√

n lg lg
√

n + n [induction hypothesis]

= an lg lg n − an + n [algebra]

≤ an lg lg n if a ≥ 1 X

Hey look at that! For once, our upper bound proof requires a constraint on the hidden constant a.

This is an good indication that we’ve found the right answer. Let’s try the lower bound:

T (n) =
√

n · T (
√

n) + n ≥
√

n · b
√

n lg lg
√

n + n [induction hypothesis]

= b n lg lg n − b n + n [algebra]

≥ b n lg lg n if b ≤ 1 X

Hey, it worked! We have most of an inductive proof that T (n) ≤ an lg lg n for any a ≥ 1 and most

of an inductive proof that T (n) ≥ bn lg lg n for any b ≤ 1. Technically, we’re still missing the base

cases in both proofs, but we can be fairly confident at this point that T (n) = Θ(n log log n) .

R.7 References

Methods for solving recurrences by annihilators, domain transformations, and secondary recur-

rences are nicely described in George Lueker’s paper “Some techniques for solving recurrences”

(ACM Computing Surveys 12(4):419-436, 1980). The Master Theorem is presented in Chapters

4.3 and 4.4 of CLR. Sections 1–3 and 5 of this handout were initially written by Ed Reingold and Ari

Trachtenberg and substantially revised by Jeff Erickson. Sections 4 and 6 are entirely Jeff’s fault.

17

