
Algorithms Lecture 4: Dynamic Programming

Those who cannot remember the past are doomed to repeat it.

— George Santayana, The Life of Reason, Book I: Introduction and Reason in Common Sense (1905)

The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington
named Wilson. He was secretary of Defense, and he actually had a pathological fear and hatred of the word
‘research’. I’m not using the term lightly; I’m using it precisely. His face would suffuse, he would turn red,
and he would get violent if people used the term ‘research’ in his presence. You can imagine how he felt,
then, about the term ‘mathematical’. The RAND Corporation was employed by the Air Force, and the Air
Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson and the Air
Force from the fact that I was really doing mathematics inside the RAND Corporation. What title, what
name, could I choose?

— Richard Bellman, on the origin of his term ‘dynamic programming’ (1984)

If we all listened to the professor, we may be all looking for professor jobs.

— Pittsburgh Steeler’s head coach Bill Cowher, responding to
David Romer’s dynamic-programming analysis of football strategy (2003)

4 Dynamic Programming

4.1 Fibonacci Numbers

The Fibonacci numbers Fn, named after Leonardo Fibonacci Pisano1, the mathematician who pop-
ularized ‘algorism’ in Europe in the 13th century, are defined as follows: F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for all n ≥ 2. The recursive definition of Fibonacci numbers immediately gives
us a recursive algorithm for computing them:

RECFIBO(n):
if (n < 2)

return n
else

return RECFIBO(n− 1) + RECFIBO(n− 2)

How long does this algorithm take? Except for the recursive calls, the entire algorithm requires
only a constant number of steps: one comparison and possibly one addition. If T (n) represents the
number of recursive calls to RECFIBO, we have the recurrence

T (0) = 1, T (1) = 1, T (n) = T (n− 1) + T (n− 2) + 1.

This looks an awful lot like the recurrence for Fibonacci numbers! The annihilator method gives us
an asymptotic bound of Θ(φn), where φ = (

√
5 + 1)/2 ≈ 1.61803398875, the so-called golden ratio,

is the largest root of the polynomial r2 − r − 1. But it’s fairly easy to prove (hint, hint) the exact
solution T (n) = 2Fn+1 − 1 . In other words, computing Fn using this algorithm takes more than
twice as many steps as just counting to Fn!

Another way to see this is that the RECFIBO is building a big binary tree of additions, with
nothing but zeros and ones at the leaves. Since the eventual output is Fn, our algorithm must
call RECRIBO(1) (which returns 1) exactly Fn times. A quick inductive argument implies that
RECFIBO(0) is called exactly Fn−1 times. Thus, the recursion tree has Fn + Fn−1 = Fn+1 leaves,
and therefore, because it’s a full binary tree, it must have 2Fn+1 − 1 nodes.

1literally, “Leonardo, son of Bonacci, of Pisa”

1

Algorithms Lecture 4: Dynamic Programming

4.2 Memo(r)ization and Dynamic Programming

The obvious reason for the recursive algorithm’s lack of speed is that it computes the same Fibonacci
numbers over and over and over. A single call to RECURSIVEFIBO(n) results in one recursive call
to RECURSIVEFIBO(n − 1), two recursive calls to RECURSIVEFIBO(n − 2), three recursive calls to
RECURSIVEFIBO(n−3), five recursive calls to RECURSIVEFIBO(n−4), and in general, Fk−1 recursive
calls to RECURSIVEFIBO(n−k), for any 0 ≤ k < n. For each call, we’re recomputing some Fibonacci
number from scratch.

We can speed up the algorithm considerably just by writing down the results of our recursive
calls and looking them up again if we need them later. This process is called memoization.2

MEMFIBO(n):
if (n < 2)

return n
else

if F [n] is undefined
F [n]← MEMFIBO(n− 1) + MEMFIBO(n− 2)

return F [n]

If we actually trace through the recursive calls made by MEMFIBO, we find that the array F []
gets filled from the bottom up: first F [2], then F [3], and so on, up to F [n]. Once we realize this,
we can replace the recursion with a simple for-loop that just fills up the array in that order, instead
of relying on the complicated recursion to do it for us. This gives us our first explicit dynamic
programming algorithm.

ITERFIBO(n):
F [0]← 0
F [1]← 1
for i← 2 to n

F [i]← F [i− 1] + F [i− 2]
return F [n]

ITERFIBO clearly takes only O(n) time and O(n) space to compute Fn, an exponential speedup
over our original recursive algorithm. We can reduce the space to O(1) by noticing that we never
need more than the last two elements of the array:

ITERFIBO2(n):
prev← 1
curr← 0
for i← 1 to n

next← curr + prev
prev← curr
curr← next

return curr

(This algorithm uses the non-standard but perfectly consistent base case F−1 = 1.)
But even this isn’t the fastest algorithm for computing Fibonacci numbers. There’s a faster

algorithm defined in terms of matrix multiplication, using the following wonderful fact:[
0 1
1 1

] [
x
y

]
=

[
y

x + y

]
2“My name is Elmer J. Fudd, millionaire. I own a mansion and a yacht.”

2

Algorithms Lecture 4: Dynamic Programming

In other words, multiplying a two-dimensional vector by the matrix [0 1
1 1] does exactly the same

thing as one iteration of the inner loop of ITERFIBO2. This might lead us to believe that multiplying
by the matrix n times is the same as iterating the loop n times:[

0 1
1 1

]n [
1
0

]
=

[
Fn−1

Fn

]
.

A quick inductive argument proves this. So if we want to compute the nth Fibonacci number, all
we have to do is compute the nth power of the matrix [0 1

1 1].
If we use repeated squaring, computing the nth power of something requires only O(log n)

multiplications. In this case, that means O(log n) 2 × 2 matrix multiplications, but one matrix
multiplications can be done with only a constant number of integer multiplications and additions.
Thus, we can compute Fn in only O(log n) integer arithmetic operations.

This is an exponential speedup over the standard iterative algorithm, which was already an
exponential speedup over our original recursive algorithm. Right?

4.3 Uh. . . wait a minute.

Well, not exactly. Fibonacci numbers grow exponentially fast. The nth Fibonacci number is approx-
imately n log10 φ ≈ n/5 decimal digits long, or n log2 φ ≈ 2n/3 bits. So we can’t possibly compute
Fn in logarithmic time — we need Ω(n) time just to write down the answer!

I’ve been cheating by assuming we can do arbitrary-precision arithmetic in constant time. As
we discussed last time, multiplying two n-digit numbers takes O(n log n) time. That means that the
matrix-based algorithm’s actual running time is given by the recurrence

T (n) = T (bn/2c) + O(n log n),

which solves to T (n) = O(n log n) by the Master Theorem.
Is this slower than our “linear-time” iterative algorithm? No! Addition isn’t free, either. Adding

two n-digit numbers takes O(n) time, so the running time of the iterative algorithm is O(n2).
(Do you see why?) So our matrix algorithm really is faster than our iterative algorithm, but not
exponentially faster.

Incidentally, in the original recursive algorithm, the extra cost of arbitrary-precision arithmetic
is overwhelmed by the huge number of recursive calls. The correct recurrence is

T (n) = T (n− 1) + T (n− 2) + O(n),

which still has the solution O(φn) by the annihilator method.

4.4 The Pattern: Smart Recursion

In a nutshell, dynamic programming is recursion without repetition. Developing a dynamic pro-
gramming algorithm almost always requires two distinct steps.

1. Formulate the problem recursively. Write down a formula for the whole problem as a
simple combination of the answers to smaller subproblems.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts with
the base cases of your recurrence and works its way up to the final solution by considering
the intermediate subproblems in the correct order. This is usually easier than the first step.

3

Algorithms Lecture 4: Dynamic Programming

Of course, you have to prove that each of these steps is correct. If your recurrence is wrong, or if
you try to build up answers in the wrong order, your algorithm won’t work!

Dynamic programming algorithms store the solutions of intermediate subproblems, often but
not always done with some kind of array or table. One common mistake that lots of students make
is to be distracted by the table (because tables are easy and familiar) and miss the much more
important (and difficult) task of finding a correct recurrence. Dynamic programming isn’t about
filling in tables; it’s about smart recursion. As long as we memoize the correct recurrence, an
explicit table isn’t necessary, but if the recursion is incorrect, nothing works.

4.5 The Warning: Greed is Stupid

If we’re very very very very lucky, we can bypass all the recurrences and tables and so forth, and
solve the problem using a greedy algorithm. The general greedy strategy is look for the best first
step, take it, and then continue. For example, a greedy algorithm for the edit distance problem
might look for the longest common substring of the two strings, match up those substrings (since
those substitutions dont cost anything), and then recursively look for the edit distances between
the left halves and right halves of the strings. If there is no common substring—that is, if the two
strings have no characters in common—the edit distance is clearly the length of the larger string.

If this sounds like a stupid hack to you, pat yourself on the back. It isn’t even close to the correct
solution. Nevertheless, for many problems involving dynamic programming, many student’s first
intuition is to apply a greedy strategy. This almost never works; problems that can be solved
correctly by a greedy algorithm are very rare. Everyone should tattoo the following sentence on the
back of their hands, right under all the rules about logarithms and big-Oh notation:

Greedy algorithms never work!
Use dynamic programming instead!

What, never? No, never! What, never? Well. . . hardly ever.3

A different lecture note describes the effort required to prove that greedy algorithms are correct,
in the rare instances when they are. You will not receive any credit for any greedy algorithm for
any problem in this class without a formal proof of correctness. We’ll push through the formal
proofs for two specific problems—minimum spanning trees and shortest paths—but those will be
the only greedy algorithms we will consider this semester.

4.6 Edit Distance

The edit distance between two words—sometimes also called the Levenshtein distance—is the min-
imum number of letter insertions, letter deletions, and letter substitutions required to transform
one word into another. For example, the edit distance between FOOD and MONEY is at most four:

FOOD → MOOD → MON∧D → MONED → MONEY

A better way to display this editing process is to place the words one above the other, with a gap in
the first word for every insertion, and a gap in the second word for every deletion. Columns with
two different characters correspond to substitutions. Thus, the number of editing steps is just the
number of columns that don’t contain the same character twice.

3He’s hardly ever sick at sea! Then give three cheers, and one cheer more, for the hardy Captain of the Pinafore! Then
give three cheers, and one cheer more, for the Captain of the Pinafore!

4

Algorithms Lecture 4: Dynamic Programming

F O O D
M O N E Y

It’s fairly obvious that you can’t get from FOOD to MONEY in three steps, so their edit distance is
exactly four. Unfortunately, this is not so easy in general. Here’s a longer example, showing that
the distance between ALGORITHM and ALTRUISTIC is at most six. Is this optimal?

A L G O R I T H M
A L T R U I S T I C

To develop a dynamic programming algorithm to compute the edit distance between two strings,
we first need to develop a recursive definition. Let’s say we have an m-character string A and an
n-character string B. Then define E(i, j) to be the edit distance between the first i characters of A
and the first j characters of B. The edit distance between the entire strings A and B is E(m,n).

This gap representation for edit sequences has a crucial “optimal substructure” property. Sup-
pose we have the gap representation for the shortest edit sequence for two strings. If we remove
the last column, the remaining columns must represent the shortest edit sequence for the
remaining substrings. We can easily prove this by contradiction. If the substrings had a shorter
edit sequence, we could just glue the last column back on and get a shorter edit sequence for the
original strings. Once we figure out what should go in the last column, the Recursion Fairy will
magically give us the rest of the optimal gap representation.

There are a couple of obvious base cases. The only way to convert the empty string into a string
of j characters is by performing j insertions, and the only way to convert a string of i characters
into the empty string is with i deletions:

E(i, 0) = i, E(0, j) = j.

If neither string is empty, there are three possibilities for the last column in the shortest edit
sequence:

• Insertion: The last entry in the bottom row is empty. In this case, E(i, j) = E(i− 1, j) + 1.

• Deletion: The last entry in the top row is empty. In this case, E(i, j) = E(i, j − 1) + 1.

• Substitution: Both rows have characters in the last column. If the characters are the same,
we don’t actually have to pay for the substitution, so E(i, j) = E(i−1, j−1). If the characters
are different, then E(i, j) = E(i− 1, j − 1) + 1.

To summarize, the edit distance E(i, j) is the smallest of these three possibilities:4

E(i, j) = min


E(i− 1, j) + 1
E(i, j − 1) + 1
E(i− 1, j − 1) +

[
A[i] 6= B[j]

]


If we turned this recurrence directly into a recursive algorithm, we would have the following
double recurrence for the running time:

T (m,n) =

{
O(1) if n = 0 or m = 0,
T (m,n− 1) + T (m− 1, n) + T (n− 1,m− 1) + O(1) otherwise.

4Once again, I’m using Iverson’s bracket notation
ˆ
P

˜
to denote the indicator variable for the logical proposition P ,

which has value 1 if P is true and 0 if P is false.

5

Algorithms Lecture 4: Dynamic Programming

I don’t know of a general closed-form solution for this mess, but we can derive an upper bound by
defining a new function

T ′(N) = max
n+m=N

T (n, m) =

{
O(1) if N = 0,
2T (N − 1) + T (N − 2) + O(1) otherwise.

The annihilator method implies that T ′(N) = O((1+
√

2)N). Thus, the running time of our recursive
edit-distance algorithm is at most T ′(n + m) = O((1 +

√
2)n+m).

We can bring the running time of this algorithm down to a polynomial by building an m × n
table of all possible values of E(i, j). We begin by filling in the base cases, the entries in the 0th
row and 0th column, each in constant time. To fill in any other entry, we need to know the values
directly above it, directly to the left, and both above and to the left. If we fill in our table in the
standard way—row by row from top down, each row from left to right—then whenever we reach
an entry in the matrix, the entries it depends on are already available.

EDITDISTANCE(A[1 ..m], B[1 .. n]):
for i← 1 to m

Edit[i, 0]← i
for j ← 1 to n

Edit[0, j]← j

for i← 1 to m
for j ← 1 to n

if A[i] = B[j]
Edit[i, j]← min

{
Edit[i− 1, j] + 1,
Edit[i, j − 1] + 1,
Edit[i− 1, j − 1]

}
else

Edit[i, j]← min
{

Edit[i− 1, j] + 1,
Edit[i, j − 1] + 1,
Edit[i− 1, j − 1] + 1

}
return Edit[m,n]

Since there are Θ(mn) entries in the table, and each entry takes Θ(1) time once we know its
predecessors, the total running time is Θ(mn). The algorithm uses O(mn) space.

Here’s the resulting table for ALGORITHM → ALTRUISTIC. Bold numbers indicate places where
characters in the two strings are equal. The arrows represent the predecessor(s) that actually define
each entry. Each direction of arrow corresponds to a different edit operation: horizontal=deletion,
vertical=insertion, and diagonal=substitution. Bold diagonal arrows indicate “free” substitutions
of a letter for itself. Any path of arrows from the top left corner to the bottom right corner of
this table represents an optimal edit sequence between the two strings. (There can be many such
paths.) Moreover, since we can compute these arrows in a postprocessing phase from the values
stored in the table, we can reconstruct the actual optimal editing sequence in O(n + m) additional
time.

6

Algorithms Lecture 4: Dynamic Programming

A L G O R I T H M
0→1→2→3→4→5→6→7→8→9
↓↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4→4→5→6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→6
↓ ↓ ↓↘↓↘↓↘↓↘↘↘↘↘↘↘↘↘↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→6
↓ ↓ ↓↘↓↘↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

The edit distance between ALGORITHM and ALTRUISTIC is indeed six. There are three paths
through this table from the top left to the bottom right, so there are three optimal edit sequences:

A L G O R I T H M
A L T R U I S T I C

A L G O R I T H M
A L T R U I S T I C

A L G O R I T H M
A L T R U I S T I C

*4.7 Saving Space: Divide and Conquer

Just as we did for the Fibonacci recurrence, we can reduce the space complexity of our algorithm
to O(m) by only storing the current and previous rows of the memoization table. However, if we
throw away most of the rows in the table, we no longer have enough information to reconstruct
the actual editing sequence. Now what?

Fortunately for memory-misers, in 1975 Dan Hirshberg discovered a simple divide-and-conquer
strategy that allows us to compute the optimal editing sequence in O(mn) time, using just O(m)
space. The trick is to record not just the edit distance for each pair of prefixes, but also a single
position in the middle of the editing sequence for that prefix. Specifically, the optimal editing
sequence that transforms A[1 ..m] into B[1 .. n] can be split into two smaller editing sequences, one
transforming A[1 ..m/2] into B[1 .. h] for some integer h, the other transforming A[m/2 + 1 ..m]
into B[h + 1 .. n]. To compute this breakpoint h, we define a second function Half(i, j) as follows:

Half(i, j) =



∞ if i < m/2
j if i = m/2
Half(i− 1, j) if i > m/2 and Edit(i, j) = Edit(i− 1, j) + 1
Half(i, j − 1) if i > m/2 and Edit(i, j) = Edit(i, j − 1) + 1
Half(i− 1, j − 1) otherwise

7

Algorithms Lecture 4: Dynamic Programming

A simple inductive argument implies that Half(m,n) is the correct value of h. We can easily modify
our earlier algorithm so that it computes Half(m,n) at the same time as the edit distance Edit(m,n),
all in O(mn) time, using only O(m) space.

Now, to compute the optimal editing sequence that transforms A into B, we recursively compute
the optimal subsequences. The recursion bottoms out when one string has only constant length,
in which case we can determine the optimal editing sequence by our old dynamic programming
algorithm. Overall the running time of our recursive algorithm satisfies the following recurrence:

T (m,n) =


O(n) if m ≤ 1
O(m) if n ≤ 1
O(mn) + T (m/2, h) + T (m/2, n− h) otherwise

It’s easy to prove inductively that T (m,n) = O(mn), no matter what the value of h is. Specifically,
the entire algorithm’s running time is at most twice the time for the initial dynamic programming
phase.

T (m,n) ≤ αmn + T (m/2, h) + T (m/2, n− h)
≤ αmn + 2αmh/2 + 2αm(n− h)/2 [inductive hypothesis]

= 2αmn

A similar inductive argument implies that the algorithm uses only O(n + m) space.

4.8 Optimal Binary Search Trees

A few lectures ago we developed a recursive algorithm for the optimal binary search tree problem.
We are given a sorted array A[1 .. n] of search keys and an array f [1 .. n] of frequency counts, where
f [i] is the number of searches to A[i]. Our task is to construct a binary search tree for that set such
that the total cost of all the searches is as small as possible. We developed the following recurrence
for this problem:

OptCost(f [1 .. n]) = min
1≤r≤n

{
OptCost(f [1 .. r − 1]) +

n∑
i=1

f [i] + OptCost(f [r + 1 .. n])

}

To put this recurrence in more standard form, fix the frequency array f , and let S(i, j) denote the
total search time in the optimal search tree for the subarray A[i .. j]. To simplify notation a bit, let
F (i, j) denote the total frequency count for all the keys in the interval A[i .. j]:

F (i, j) =
j∑

k=i

f [k]

We can now write

S(i, j) =

0 if j < i

F (i, j) + min
i≤r≤j

(
S(i, r − 1) + S(r + 1, j)

)
otherwise

The base case might look a little weird, but all it means is that the total cost for searching an empty
set of keys is zero.

8

Algorithms Lecture 4: Dynamic Programming

The algorithm will be somewhat simpler and more efficient if we precompute all possible values
of F (i, j) and store them in an array. Computing each value F (i, j) using a separate for-loop would
O(n3) time. A better approach is to turn the recurrence

F (i, j) =

{
f [i] if i = j

F (i, j − 1) + f [j] otherwise

into the following O(n2)-time dynamic programming algorithm:

INITF(f [1 .. n]):
for i← 1 to n

F [i, i− 1]← 0
for j ← i to n

F [i, j]← F [i, j − 1] + f [i]

This will be used as an initialization subroutine in our final algorithm.
So now let’s compute the optimal search tree cost S(1, n) from the bottom up. We can store all

intermediate results in a table S[1 .. n, 0 .. n]. Only the entries S[i, j] with j ≥ i− 1 will actually be
used. The base case of the recurrence tells us that any entry of the form S[i, i− 1] can immediately
be set to 0. For any other entry S[i, j], we can use the following algorithm fragment, which comes
directly from the recurrence:

COMPUTES(i, j):
S[i, j]←∞
for r ← i to j

tmp← S[i, r − 1] + S[r + 1, j]
if S[i, j] > tmp

S[i, j]← tmp
S[i, j]← S[i, j] + F [i, j]

The only question left is what order to fill in the table.
Each entry S[i, j] depends on all entries S[i, r−1] and S[r+1, j] with i ≤ k ≤ j. In other words,

every entry in the table depends on all the entries directly to the left or directly below. In order
to fill the table efficiently, we must choose an order that computes all those entries before S[i, j].
There are at least three different orders that satisfy this constraint. The one that occurs to most
people first is to scan through the table one diagonal at a time, starting with the trivial base cases
S[i, i− 1]. The complete algorithm looks like this:

OPTIMALSEARCHTREE(f [1 .. n]):
INITF(f [1 .. n])
for i← 1 to n

S[i, i− 1]← 0
for d← 0 to n− 1

for i← 1 to n− d
COMPUTES(i, i + d)

return S[1, n]

We could also traverse the array row by row from the bottom up, traversing each row from
left to right, or column by column from left to right, traversing each columns from the bottom up.
These two orders give us the following algorithms:

9

Algorithms Lecture 4: Dynamic Programming

OPTIMALSEARCHTREE2(f [1 .. n]):
INITF(f [1 .. n])
for i← n downto 1

S[i, i− 1]← 0
for j ← i to n

COMPUTES(i, j)
return S[1, n]

OPTIMALSEARCHTREE3(f [1 .. n]):
INITF(f [1 .. n])
for j ← 0 to n

S[j + 1, j]← 0
for i← j downto 1

COMPUTES(i, j)
return S[1, n]

Three different orders to fill in the table S[i, j].

No matter which of these three orders we actually use, the resulting algorithm runs in Θ(n3) time

and uses Θ(n2) space .
We could have predicted this from the original recursive formulation.

S(i, j) =

0 if j = i− i

F (i, j) + min
i≤r≤j

(
S(i, r − 1) + S(r + 1, j)

)
otherwise

First, the function has two arguments, each of which can take on any value between 1 and n, so we
probably need a table of size O(n2). Next, there are three variables in the recurrence (i, j, and r),
each of which can take any value between 1 and n, so it should take us O(n3) time to fill the table.

In general, you can get an easy estimate of the time and space bounds for any dynamic program-
ming algorithm by looking at the recurrence. The time bound is determined by how many values
all the variables can have, and the space bound is determined by how many values the parameters
of the function can have. For example, the (completely made up) recurrence

F (i, j, k, l,m) = min
0≤p≤i

max
0≤q≤j

k−m∑
r=1

F (i− p, j − q, r, l − 1,m− r)

should immediately suggest a dynamic programming algorithm to compute F (n, n, n, n, n) in O(n8)
time and O(n5) space. This simple rule of thumb usually gives us the right time bound to shoot for.

*4.9 Montonicity Helps

But not always! In fact, the algorithm I’ve described is not the most efficient algorithm for comput-
ing optimal binary search trees. Let R[i, j] denote the root of the optimal search tree for A[i .. j].
Donald Knuth proved the following nice monotonicity property for optimal subtrees: if we move
either end of the subarray, the optimal root moves in the same direction or not at all, or more
formally:

R[i, j − 1] ≤ R[i, j] ≤ R[i + 1, j] for all i and j.

This (nontrivial!) observation leads to the following more efficient algorithm:

10

Algorithms Lecture 4: Dynamic Programming

FASTEROPTIMALSEARCHTREE(f [1 .. n]):
INITF(f [1 .. n])
for i← n downto 1

S[i, i− 1]← 0
R[i, i− 1]← i
for j ← i to n

COMPUTESANDR(i, j)
return S[1, n]

COMPUTESANDR(f [1 .. n]):
S[i, j]←∞
for r ← R[i, j − 1] to j

tmp← S[i, r − 1] + S[r + 1, j]
if S[i, j] > tmp

S[i, j]← tmp
R[i, j]← r

S[i, j]← S[i, j] + F [i, j]

It’s not hard to see the r increases monotonically from i to n during each iteration of the out-
ermost for loop. Consequently, the innermost for loop iterates at most n times during a single
iteration of the outermost loop, so the total running time of the algorithm is O(n2).

If we formulate the problem slightly differently, this algorithm can be improved even further.
Suppose we require the optimum external binary tree, where the keys A[1 .. n] are all stored at the
leaves, and intermediate pivot values are stored at the internal nodes. An algorithm due to Te Ching
Hu and Alan Tucker5 computes the optimal binary search tree in this setting in only O(n log n) time!

4.10 Optimal Triangulations of Convex Polygons

A convex polygon is a circular chain of line segments, arranged so none of the corners point
inwards—imagine a rubber band stretched around a bunch of nails. (This is technically not the
best definition, but it’ll do for now.) A diagonal is a line segment that cuts across the interior of
the polygon from one corner to another. A simple induction argument (hint, hint) implies that any
n-sided convex polygon can be split into n− 2 triangles by cutting along n− 3 different diagonals.
This collection of triangles is called a triangulation of the polygon. Triangulations are incredibly
useful in computer graphics—most graphics hardware is built to draw triangles incredibly quickly,
but to draw anything more complicated, you usually have to break it into triangles first.

A convex polygon and two of its many possible triangulations.

There are several different ways to triangulate any convex polygon. Suppose we want to find
the triangulation that requires the least amount of ink to draw, or in other words, the triangulation
where the total perimeter of the triangles is as small as possible. To make things concrete, let’s label
the corners of the polygon from 1 to n, starting at the bottom of the polygon and going clockwise.
We’ll need the following subroutines to compute the perimeter of a triangle joining three corners
using their x- and y-coordinates:

∆(i, j, k) :
return DIST(i, j) + DIST(j, k) + DIST(i, k)

DIST(i, j) :
return

√
(x[i]− x[j])2 + (y[i]− y[j])2

5T. C. Hu and A. C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM J. Applied Math.
21:514–532, 1971. For a slightly simpler algorithm with the same running time, see A. M. Garsia and M. L. Wachs, A
new algorithms for minimal binary search trees, SIAM J. Comput. 6:622–642, 1977. The original correctness proofs for
both algorithms are rather intricate; for simpler proofs, see Marek Karpinski, Lawrence L. Larmore, and Wojciech Rytter,
Correctness of constructing optimal alphabetic trees revisited, Theoretical Computer Science, 180:309-324, 1997.

11

Algorithms Lecture 4: Dynamic Programming

In order to get a dynamic programming algorithm, we first need a recursive formulation of
the minimum-length triangulation. To do that, we really need some kind of recursive definition
of a triangulation! Notice that in any triangulation, exactly one triangle uses both the first corner
and the last corner of the polygon. If we remove that triangle, what’s left over is two smaller
triangulations. The base case of this recursive definition is a ‘polygon’ with just two corners. Notice
that at any point in the recursion, we have a polygon joining a contiguous subset of the original
corners.

5

1

5

1
1 1

5

18

7

6

4

3

2 2

3

4
4

4

6

7

8
8 8

7

6

5
4

3

2
2

3

4

6

7
7

7

8
81

Two examples of the recursive definition of a triangulation.

Building on this recursive definition, we can now recursively define the total length of the
minimum-length triangulation. In the best triangulation, if we remove the ‘base’ triangle, what
remains must be the optimal triangulation of the two smaller polygons. So we just have choose the
best triangle to attach to the first and last corners, and let the recursion fairy take care of the rest:

M(i, j) =

0 if j = i + 1
min

i<k<j

(
∆(i, j, k) + M(i, k) + M(k, j)

)
otherwise

What we’re looking for is M(1, n).
If you think this looks similar to the recurrence for S(i, j), the cost of an optimal binary search

tree, you’re absolutely right. We can build up intermediate results in a two-dimensional table,
starting with the base cases M [i, i + 1] = 0 and working our way up. We can use the following
algorithm fragment to compute a generic entry M [i, j]:

COMPUTEM(i, j):
M [i, j]←∞
for k ← i + 1 to j − 1

tmp← ∆(i, j, k) + M [i, k] + M [k, j]
if M [i, j] > tmp

M [i, j]← tmp

As in the optimal search tree problem, each table entry M [i, j] depends on all the entries directly
to the left or directly below, so we can use any of the orders described earlier to fill the table.

MINTRIANGULATION:
for i← 1 to n− 1

M [i, i + 1]← 0
for d← 2 to n− 1

for i← 1 to n− d
COMPUTEM(i, i + d)

return M [1, n]

MINTRIANGULATION2:
for i← n downto 1

M [i, i + 1]← 0
for j ← i + 2 to n

COMPUTEM(i, j)
return M [1, n]

MINTRIANGULATION3:
for j ← 2 to n

M [j − 1, j]← 0
for i← j − 1 downto 1

COMPUTEM(i, j)
return M [1, n]

In all three cases, the algorithm runs in Θ(n3) time and uses Θ(n2) space, just as we should have
guessed from the recurrence.

12

Algorithms Lecture 4: Dynamic Programming

4.11 It’s the same problem!

Actually, the last two problems are both special cases of the same meta-problem: computing opti-
mal Catalan structures. There is a straightforward one-to-one correspondence between the set of
triangulations of a convex n-gon and the set of binary trees with n − 2 nodes. In effect, these two
problems differ only in the cost function for a single node/triangle.

A polygon triangulation and the corresponding binary tree. (Squares represent null pointers.)

A third problem that fits into the same mold is the infamous matrix chain multiplication prob-
lem. Using the standard algorithm, we can multiply a p × q matrix by a q × r matrix using O(pqr)
arithmetic operations; the result is a p × r matrix. If we have three matrices to multiply, the cost
depends on which pair we multiply first. For example, suppose A and C are 1000× 2 matrices and
B is a 2× 1000 matrix. There are two different ways to compute the threefold product ABC:

• (AB)C: Computing AB takes 1000·2·1000 = 2 000 000 operations and produces a 1000×1000
matrix. Multiplying this matrix by C takes 1000 · 1000 · 2 = 2 000 000 additional operations.
So the total cost of (AB)C is 4 000 000 operations.

• A(BC): Computing BC takes 2 · 1000 · 2 = 4000 operations and produces a 2 × 2 matrix.
Multiplying A by this matrix takes 1000 · 2 · 2 = 4 000 additional operations. So the total cost
of A(BC) is only 8000 operations.

Now suppose we are given an array D[0 .. n] as input, indicating that each matrix Mi has D[i−1]
rows and D[i] columns. We have an exponential number of possible ways to compute the n-
fold product

∏n
i=1 Mi. The following dynamic programming algorithm computes the number of

arithmetic operations for the best possible parenthesization:

MATRIXCHAINMULT:
for i← n downto 1

M [i, i + 1]← 0
for j ← i + 2 to n

COMPUTEM(i, j)
return M [1, n]

COMPUTEM(i, j):
M [i, j]←∞
for k ← i + 1 to j − 1

tmp← (D[i] ·D[j] ·D[k]) + M [i, k] + M [k, j]
if M [i, j] > tmp

M [i, j]← tmp

The derivation of this algorithm is left as a simple exercise.

4.12 More Examples

We’ve already seen two other examples of recursive algorithms that we can significantly speed up
via dynamic programming.

13

Algorithms Lecture 4: Dynamic Programming

4.12.1 Subset Sum

Recall from the very first lecture that the Subset Sum problem asks, given a set X of positive integers
(represented as an array X[1 .. n] and an integer T , whether any subset of X sums to T . In that
lecture, we developed a recursive algorithm which can be reformulated as follows. Fix the original
input array X[1 .. n] and the original target sum T , and define the boolean function

S(i, t) = some subset of X[i .. n] sums to t.

Our goal is to compute S(1, T), using the recurrence

S(i, t) =


TRUE if t = 0,
FALSE if t < 0 or i > n,
S(i + 1, t) ∨ S(i + 1, t−X[i]) otherwise.

Observe that there are only nT possible values for the input parameters that lead to the interesting
case of this recurrence, so storing the results of all such subproblems requires O(mn) space . If
S(i + 1, t) and S(i + 1, t − X[i]) are already known, we can compute S(i, t) in constant time, so
memoizing this recurrence gives us and algorithm that runs in O(nT) time .6 To turn this into an
explicit dynamic programming algorithm, we only need to consider the subproblems S(i, t) in the
proper order:

SUBSETSUM(X[1 .. n], T):
S[n + 1, 0]← TRUE

for t← 1 to T
S[n + 1, t]← FALSE

for i← n downto 1
S[i, 0] = TRUE

for t← 1 to X[i]− 1
S[i, t]← S[i + 1, t] 〈〈Avoid the case t < 0〉〉

for t← X[i] to T
S[i, t]← S[i + 1, t] ∨ S[i + 1, t−X[i]]

return S[1, T]

This direct algorithm clearly always uses O(nT) time and space . In particular, if T is significantly
larger than 2n, this algorithm is actually slower than our näıve recursive algorithm. Dynamic
programming isn’t always an improvement!

4.12.2 Longest Increasing Subsequence

We also developed a recurrence for the longest increasing subsequence problem. Fix the original
input array A[1 .. n] with a sentinel value A[0] = −∞. Let L(i, j) denote the length of the longest
increasing subsequence of A[j .. n] with all elements larger than A[i]. Our goal is to compute
L(0, 1) − 1. (The −1 removes the sentinel −∞.) For any i < j, our recurrence can be stated as
follows:

L(i, j) =


0 if j > n

L(i, j + 1) if A[i] ≥ A[j]
max{L(i, j + 1), 1 + L(j, j + 1)} otherwise

6This does not contradict our earlier upper bound of O(2n). Both upper bounds are correct. Which bound is actually
better depends on the size of T .

14

Algorithms Lecture 4: Dynamic Programming

The recurrence suggests that our algorithm should use O(n2) time and space, since the input param-
eters i and j each can take n different values. To get an explicit dynamic programming algorithm,
we only need to ensure that both L(i, j + 1) and L(j, j + 1) are considered before L(i, j), for all i
and j.

LIS(A[1 .. n]):
A[0]← −∞ 〈〈Add a sentinel〉〉
for i← 0 to n 〈〈Base cases〉〉

L[i, n + 1]← 0

for j ← n downto 1
for i← 0 to j − 1

if A[i] ≥ A[j]
L[i, j]← L[i, j + 1]

else
L[i, j]← max{L[i, j + 1], 1 + L[j, j + 1]}

return L[0, 1]− 1 〈〈Don’t count the sentinel〉〉

As predicted, this algorithm clearly uses O(n2) time and space . We can reduce the space to O(n)
by only maintaining the two most recent columns of the table, L[·, j] and L[·, j + 1].

This is not the only recursive strategy we could use for computing longest increasing subse-
quences. Here is another recurrence that gives us the O(n) space bound for free. Let L′(i) denote
the length of the longest increasing subsequence of A[i .. n] that starts with A[i]. Our goal is to
compute L′(0)− 1. To define L′(i) recursively, we only need to specify the second element in subse-
quence; the Recursion Fairy will do the rest.

L′(i) = 1 + max
{
L′(j) | j > i and A[j] > A[i]

}
Here, I’m assuming that max ∅ = 0, so that the base case is L′(n) = 1 falls out of the recurrence
automatically. Memoizing this recurrence requires O(n) space, and the resulting algorithm runs in
O(n2) time. To transform this into a dynamic programming algorithm, we only need to guarantee
that L′(j) is computed before L′(i) whenever i < j.

LIS2(A[1 .. n]):
A[0] = −∞ 〈〈Add a sentinel〉〉
for i← n downto 0

L′[i]← 1
for j ← i + 1 to n

if A[j] > A[i] and 1 + L′[j] > L′[i]
L′[i]← 1 + L′[j]

return L′[0]− 1 〈〈Don’t count the sentinel〉〉

15

