
Algorithms Lecture 1: Recursion

Our life is frittered away by detail.
Simplify, simplify.

— Henry David Thoreau

When you come to a fork in the road, take it.

— Yogi Berra

Ha ha! Cookies on dowels!

— Phil Ken Sebben [played by Stephen Colbert]
“Harvey Birdman, Attorney at Law”

1 Recursion

Reduction is the single most common technique used in designing algorithms. Reducing one prob-
lem X to another problem (or set of problems) Y means to write an algorithm for X, using an
algorithm or Y as a subroutine or black box. For example, the congressional apportionment al-
gorithm described in the previous lecture reduces the problem of apportioning Congress to the
problem of maintaining a priority queue under the operations INSERT and EXTRACTMAX. In this
class, we’ll generally treat primitive data structures like arrays, linked lists, stacks, queues, hash
tables, binary search trees, and priority queues as black boxes, adding them to the basic vocabulary
of our model of computation. When we design algorithms, we may not know—and we should not
care—how these basic building blocks will actually be implemented.

In some sense, every algorithm is simply a reduction to some underlying model of computation.
Whenever you write a C program, you’re really just reducing some problem to the “simpler” prob-
lems of compiling C, allocating memory, formatting output, scheduling jobs, and so forth. Even ma-
chine language programs are just reductions to the hardware-implemented problems of retrieving
and storing memory and performing basic arithmetic. The underlying hardware implementation
reduces those problems to timed Boolean logic; low-level hardware design reduces Boolean logic
to basic physical devices such as wires and transistors; and the laws of physics reduce wires and
transistors to underlying mathematical principles. At least, that’s what the people who actually
build hardware have to assume.1

A particularly powerful kind of reduction is recursion, which can be defined loosely as a reduc-
ing a problem to one or more simpler instances of the same problem. If the self-reference is
confusing, it’s useful to imagine that someone else is going to solve the simpler problems, just as
you would assume for other types of reductions. Your only task is to simplify the original problem,
or to solve it directly when simplification is either unnecessary or impossible; the Recursion Fairy
will magically take care of the rest.2

There is one mild technical condition that must be satisfied in order for any recursive method
to work correctly, namely, that there is no infinite sequence of reductions to ‘simpler’ and ‘simpler’

1The situation is exactly analogous to that of mathematical proof. Normally, when we prove a theorem, we implicitly
rely on a several earlier results. These eventually trace back to axioms, definitions, and the rules of logic, but it is
extremely rare for any proof to be expanded to pure symbol manipulation. Even when proofs are written in excruciating
Bourbakian formal detail, the accuracy of the proof depends on the consistency of the formal system in which the proof
is written. This consistency is simply taken for granted. In some cases (for example, first-order logic and the first-order
theory of the reals) it is possible to prove consistency, but this consistency proof necessarily (thanks be to Gödel) relies
on some different formal system (usually some extension of Zermelo-Fraenkel set theory), which is itself assumed to be
consistent. Yes, it’s turtles all the way down.

2I used to refer to ‘elves’ instead of the Recursion Fairy, referring to the traditional fairy tale in which an old shoemaker
repeatedly leaves his work half-finished when he goes to bed, only to discover upon waking that elves have finished his
work while he slept.

1

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n − 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ≥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ≥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n − 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n − 1) + 1 for any n ≥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n − 1 . In particular, moving a tower of 64 disks requires 264 − 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3

Algorithms Lecture 1: Recursion

and suppose the problem is to move n disks from needle 0 to needle 2 (as shown on the previous
page). The non-recursive algorithm can be described with four simple rules. The proof that these
rules force the same behavior as the recursive algorithm is a straightforward exercise in induction.
(Hint, hint.)5

• If n is even, always move the smallest disk forward (· · · → 0→ 1→ 2→ 0→ · · ·).

• If n is odd, always move the smallest disk backward (· · · → 0→ 2→ 1→ 0→ · · ·).

• Never move the same disk twice in a row.

• When there is no legal move, the puzzle is solved.

An even shorter formulation ties the algorithm more closely with its analysis. Let ρ(n) denote
the smallest integer k such that n/2k is not an integer. For example, ρ(42) = 2, because 42/21 is an
integer but 42/22 is not. (Equivalently, ρ(n) is one more than the position of the least significant
1 bit in the binary representation of n.) The function ρ(n) is sometimes called the ‘ruler’ function,
because its behavior resembles the marks on a ruler:

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1

The Hanoi algorithm can now be described in one line:

In step i, move disk ρ(i) forward if n − i is even, backward if n − i is odd.

On move 2n, this rule requires us to move disk n + 1, which doesn’t exist, so the algorithm ends. At
this point, the puzzle is solved. Again, the proof that this algorithm is equivalent to our recursive
formulation is a simple exercise in induction. (Hint, hint.)

1.2 Subset Sum

Let’s start with a concrete example, the subset sum problem: Given a set X of positive integers
and target integer T , is there a subset of element sin X that add up to T? Notice that there
can be more than one such subset. For example, if X = {8, 6, 7, 5, 3, 10, 9} and T = 15, the
answer is TRUE, thanks to the subset {8, 7} or {7, 5, 3} or {6, 9} or {5, 10}.6 On the other hand, if
X = {11, 6, 5, 1, 7, 13, 12} and T = 15, the answer is FALSE.

There are two trivial cases. If the target value T is zero, then we can immediately return TRUE,
since the elements of the empty set add up to zero.7 On the other hand, if T < 0, or if T 6= 0 but
the set X is empty, then we can immediately return FALSE.

For the general case, consider an arbitrary element x ∈ X. (We’ve already handled the case
where X is empty.) There are two possibilities to consider.

• There is a subset of X that includes x and sums to T . Equivalently, there must be a subset of
X \ {x} that sums to T − x.

• There is a subset of X that excludes x and sums to T . Equivalently, there must be a subset of
X \ {x} that sums to T .

5This means Pay attention! This might show up on an exam! You might want to do this!
6See http://www.cribbage.org/rules/ for more possibilities.
7The empty set is always the best base case!

4

Algorithms Lecture 1: Recursion

So we can solve SUBSETSUM(X, T) by reducing it to two simpler instances: SUBSETSUM(X \ {x},
T − x) and SUBSETSUM(X \ {x}, T). Here’s how the resulting recusive algorithm might look if X
is stored in an array.

SUBSETSUM(X[1 .. n], T):
if T = 0

return TRUE

else if T < 0 or n = 0
return FALSE

else
return SUBSETSUM(X[2 .. n], T) ∨ SUBSETSUM(X[2 .. n], T −X[1])

Proving this algorithm correct is a straightforward exercise in induction. If T = 0, then the
elements of the empty subset sum to T . Otherwise, if T is negative or the set X is empty, then no
subset of X sums to T . Otherwise, if there is a subset that sums to T , then either it contains X[1]
or it doesn’t, and the Recursion Fairy correctly checks for each of those possibilities. Done.

The running time T (n) clearly satisfies the recurrence T (n) ≤ 2T (n− 1) + O(1), so the running
time is T (n) = O(2n) by the annihilator method.

Along similar lines, here’s a recursive algorithm for actually constructing a subset of X that sums
to T , if one exists. This algorithm also runs in O(2n) time.

CONSTRUCTSUBSET(X[1 .. n], T):
if T = 0

return ∅
if T < 0 or n = 0

return NONE

Y ← CONSTRUCTSUBSET(X[2 .. n], T)
if Y 6= NONE

return Y

Y ← CONSTRUCTSUBSET(X[2 .. n], T −X[1])
if Y 6= NONE

return Y ∪ {X[1]}
return NONE

These two algorithms are examples of a general algorithmic technique called backtracking. You
can imagine the algorithm searching through a binary tree of recursive possibilities like a maze,
trying to find a hidden treasure (T = 0), and backtracking whenever it reaches a dead end (T < 0
or n = 0). For some problems, there are tricks that allow the recursive algorithm to recognize some
branches dead ends without exploring them directly, thereby speeding up the algorithm; two such
problems are described later in these notes. Alas, SUBSETSUM is not one of the those problems; in
the worst case, our algorithm explicitly considers every subset of X.

1.3 Longest Increasing Subsequence

Suppose we want to find the longest increasing subsequence of a sequence of n integers. That is,
we are given an array A[1 .. n] of integers, and we want to find the longest sequence of indices
1 ≤ i1 < i2 < · · · ik ≤ n such that A[ij] < A[ij+1] for all j.

To derive a recursive algorithm for this problem, we start with a recursive definition of the kinds
of objects we’re playing with: sequences and subsequences.

5

Algorithms Lecture 1: Recursion

A sequence of integers is either empty
or an integer followed by a sequence of integers.

This definition suggests the following strategy for devising a recursive algorithm. If the input
sequence is empty, there’s nothing to do. Otherwise, we should figure out what to do with the
first element of the input sequence, and let the Recursion Fairy take care of everything else. We
can formalize this strategy somewhat by giving a recursive definition of subsequence (using array
notation to represent sequences):

The only subsequence of the empty sequence is the empty sequence.
A subsequence of A[1 .. n] is either a subsequence of A[2 .. n]

or A[1] followed by a subsequence of A[2 .. n].

We’re not just looking for just any subsequence, but a longest subsequence with the property
that elements are in increasing order. So let’s try to add those two conditions to our definition. (I’ll
omit the familiar vacuous base case.)

The LIS of A[1 .. n] is either the LIS of A[2 .. n]
or A[1] followed by the LIS of A[2 .. n] with elements larger than A[1],

whichever is longer.

This definition is correct, but it’s not quite recursive—we’re defining ‘longest increasing sub-
sequence’ in terms of the different ‘longest increasing subsequence with elements larger than x’,
which we haven’t properly defined yet. Fortunately, this second object has a very similar recursive
definition. (Again, I’m omitting the vacuous base case.)

If A[1] ≤ x, the LIS of A[1 .. n] with elements larger than x must be
the LIS of A[2 .. n] with elements larger than x.

Otherwise, the LIS of A[1 .. n] with elements larger than x is
either the LIS of A[2 .. n] with elements larger than x

or A[1] followed by the LIS of A[2 .. n] with elements larger than A[1],
whichever is longer.

The longest increasing subsequence without restrictions can now be redefined as the longest
increasing subsequence with elements larger than −∞. Rewriting this recursive definition into
pseudocode gives us the following recursive algorithm.

LIS(A[1 .. n]):
return LISBIGGER(−∞, A[1 .. n])

LISBIGGER(prev, A[1 .. n]):
if n = 0

return 0
else

max← LISBIGGER(prev, A[2 .. n])
if A[1] > prev

L← 1 + LISBIGGER(A[1], A[2 .. n])
if L > max

max← L
return max

6

Algorithms Lecture 1: Recursion

The running time of this algorithm satisfies the recurrence

T (n) ≤ O(1) + 2T (n− 1),

which implies that T (n) = O(2n) by the annihilator method. We really shouldn’t be surprised by
this running time; in the worst case, the algorithm examines each of the 2n subsequences of the
input array.

In lecture, a student suggested the following alternate strategy, which avoids defining a new
object with the ‘larger than x’ constraint. We still only have to decide whether to include or exclude
the first element A[1]. We consider the case where A[1] is excluded exactly the same way, but to
consider the case where A[1] is included, we remove any elements of A[2 .. n] that are larger than
A[1] before we recurse. This modified strategy gives us the following algorithm:

FILTER(A[1 .. n], x):
j ← 1
for i← 1 to n

if A[i] > x
B[j]← A[i]; j ← j + 1

return B[1 .. j]

LIS(A[1 .. n]):
if n = 0

return 0
else

max← LIS(prev, A[2 .. n])
L← 1 + LIS(A[1], FILTER(A[2 .. n], A[1]))
if L > max

max← L
return max

The FILTER subroutine clearly runs in O(n) time, so the running time of LIS satisfies the recur-
rence T (n) ≤ 2T (n − 1) + O(n), which solves to T (n) ≤ O(2n) by the annihilator method. This
upper bound pessimistically assumes that FILTER never actually removes any elements, but this can
actually happen in the worst case, when the input sequence is sorted.

*1.4 3SAT

This section assumes you are already familiar with NP-completeness.

Now let’s consider the mother of all NP-hard problems, 3SAT. Given a boolean formula in conjunc-
tive normal form, with at most three literals in each clause, our task is to determine whether any
assignment of values of the variables makes the formula true. Yes, this problem is NP-hard, which
means that a polynomial algorithm is almost certainly impossible. Too bad; we have to solve the
problem anyway.

The trivial solution is to try every possible assignment. We’ll evaluate the running time of our
3SAT algorithms in terms of the number of variables in the formula, so let’s call that n. Provided
any clause appears in our input formula at most once—a condition that we can easily enforce in
polynomial time—the overall input size is O(n3). There are 2n possible assignments, and we can
evaluate each assignment in O(n3) time, so the overall running time is O(2nn3).

Since polynomial factors like n3 are essentially noise when the overall running time is expo-
nential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other words,
poly(n) = nO(1). For example, the trivial algorithm for 3SAT runs in time O(2n poly(n)).

We can make this algorithm smarter by exploiting the special recursive structure of 3CNF for-
mulas:

A 3CNF formula is either nothing
or a clause with three literals ∧ a 3CNF formula

7

Algorithms Lecture 1: Recursion

Suppose we want to decide whether some 3CNF formula Φ with n variables is satisfiable. Of course
this is trivial if Φ is the empty formula, so suppose

Φ = (x ∨ y ∨ z) ∧ Φ′

for some literals x, y, z and some 3CNF formula Φ′. By distributing the ∧ across the ∨s, we can
rewrite Φ as follows:

Φ = (x ∧ Φ′) ∨ (y ∧ Φ′) ∨ (z ∧ Φ′)

For any boolean formula Ψ and any literal x, let Ψ|x (pronounced “sigh given eks”) denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ∧Ψ = x ∧Ψ|x, which implies that

Φ = (x ∧ Φ′|x) ∨ (y ∧ Φ′|y) ∨ (z ∧ Φ′|z).

Thus, in any satisfying assignment for Φ, either x is true and Φ′|x is satisfiable, or y is true and
Φ′|y is satisfiable, or z is true and Φ′|z is satisfiable. Each of the smaller formulas has at most n− 1
variables. If we recursively check all three possibilities, we get the running time recurrence

T (n) ≤ 3T (n− 1) + poly(n),

whose solution is O(3n poly(n)). So we’ve actually done worse!
But these three recursive cases are not mutually exclusive! If Φ′|x is not satisfiable, then x must

be false in any satisfying assignment for Φ. So instead of recursively checking Φ′|y in the second
step, we can check the even simpler formula Φ′|x̄y. Similarly, if Φ′|x̄y is not satisfiable, then we
know that y must be false in any satisfying assignment, so we can recursively check Φ′|x̄ȳz in the
third step.

3SAT(Φ):
if Φ = ∅

return TRUE

(x ∨ y ∨ z) ∧ Φ′ ← Φ
if 3SAT(Φ|x)

return TRUE

if 3SAT(Φ|x̄y)
return TRUE

return 3SAT(Φ|x̄ȳz)

The running time off this algorithm obeys the recurrence

T (n) = T (n− 1) + T (n− 2) + T (n− 3) + poly(n),

where poly(n) denotes the polynomial time required to simplify boolean formulas, handle control
flow, move stuff into and out of the recursion stack, and so on. The annihilator method gives us the
solution

T (n) = O(λn poly(n)) = O(1.83928675522n)

where λ ≈ 1.83928675521 . . . is the largest root of the characteristic polynomial r3 − r2 − r − 1.
(Notice that we cleverly eliminated the polynomial noise by increasing the base of the exponent
ever so slightly.)

We can improve this algorithm further by eliminating pure literals from the formula before
recursing. A literal x is pure in if it appears in the formula Φ but its negation x̄ does not. It’s not

8

Algorithms Lecture 1: Recursion

hard to prove (hint, hint) that if Φ has a satisfying assignment, then it has a satisfying assignment
where every pure literal is true. If Φ = (x∨ y ∨ z)∧Φ′ has no pure literals, then some in Φ contains
the literal x̄, so we can write

Φ = (x ∨ y ∨ z) ∧ (x̄ ∨ u ∨ v) ∧ Φ′

for some literals u and v (each of which might be y, ȳ, z, or z̄). It follows that the first recursive
formula Φ|x has contains the clause (u∨ v). We can recursively eliminate the variables u and v just
as we tested the variables y and x in the second and third cases of our previous algorithm:

Φ|x = (u ∨ v) ∧ Φ′|x = (u ∧ Φ′|xu) ∨ (v ∧ Φ′|xūv).

Here is our new faster algorithm:

3SAT(Φ):
if Φ = ∅

return TRUE

if Φ has a pure literal x
return 3SAT(Φ|x)

(x ∨ y ∨ z) ∧ (x̄ ∨ u ∨ v) ∧ Φ′ ← Φ
if 3SAT(Φ|xu)

return TRUE

if 3SAT(Φ|xūv)
return TRUE

if 3SAT(Φ|x̄y)
return TRUE

return 3SAT(Φ|x̄ȳz)

The running time T (n) of this new algorithm satisfies the recurrence

T (n) = 2T (n− 2) + 2T (n− 3) + poly(n),

and the annihilator method implies that

T (n) = O(µn poly(n)) = O(1.76929235425n)

where µ ≈ 1.76929235424 . . . is the largest root of the characteristic polynomial r3 − 2r − 2.
Naturally, this approach can be extended much further. As of 2004, the fastest (deterministic)

algorithm for 3SAT runs in O(1.473n) time8, but there is absolutely no reason to believe that this is
the best possible.

*1.5 Maximum Independent Set

This section assumes you are already familiar with graphs and NP-completeness.

Finally, suppose we are asked to find the largest independent set in an undirected graph G. Once
again, we have an obvious, trivial algorithm: Try every subset of nodes, and return the largest
subset with no edges. Expressed recursively, the algorithm might look like this.

8Tobias Brueggemann and Walter Kern. An improved deterministic local search algorithm for 3-SAT. Theoretical
Computer Science 329(1–3):303–313, 2004.

9

Algorithms Lecture 1: Recursion

MAXIMUMINDSETSIZE(G):
if G = ∅

return 0
else

v ← any node in G
withv ← 1 + MAXIMUMINDSETSIZE(G \N(v))
withoutv ← MAXIMUMINDSETSIZE(G \ {v})
return max{withv ,withoutv}.

Here, N(v) denotes the neighborhood of v: the set containing v and all of its neighbors. Our
algorithm is exploiting the fact that if an independent set contains v, then by definition it contains
none of v’s neighbors. In the worst case, v has no neighbors, so G \ {v} = G \ N(v). Thus, the
running time of this algorithm satisfies the recurrence T (n) = 2T (n−1)+poly(n) = O(2n poly(n)).
Surprise, surprise.

This algorithm is mirroring a crude recursive upper bound for the number of maximal indepen-
dent sets in a graph. If the graph is non-empty, then every maximal independent set either includes
or excludes each vertex. Thus, the number of maximal independent sets satisfies the recurrence
M(n) ≤ 2M(n − 1), with base case M(1) = 1. The annihilator method gives us M(n) ≤ 2n − 1.
The only subset that we aren’t counting with this upper bound is the empty set!

We can improve this upper bound by more carefully examining the worst case of the recurrence.
If v has no neighbors, then N(v) = {v}, and both recursive calls consider a graph with n− 1 nodes.
But in this case, v is in every maximal independent set, so one of the recursive calls is redundant.
On the other hand, if v has at least one neighbor, then G \N(v) has at most n − 2 nodes. So now
we have the following recurrence.

M(n) ≤ max
{

M(n− 1)
M(n− 1) + M(n− 2)

}
= O(1.61803398875n)

The upper bound is derived by solving each case separately using the annihilator method and taking
the worst of the two cases. The first case gives us M(n) = O(1); the second case yields our old
friends the Fibonacci numbers.

We can improve this bound even more by examining the new worst case: v has exactly one
neighbor w. In this case, either v or w appears in any maximal independent set. Thus, instead of
recursively searching in G \ {v}, we should recursively search in G \N(w), which has at most n− 1
nodes. On the other hand, if G has no nodes with degree 1, then G \N(v) has at most n− 3 nodes.

M(n) ≤ max

M(n− 1)
2M(n− 2)
M(n− 1) + M(n− 3)

 = O(1.46557123188n)

The base of the exponent is the largest root of the characteristic polynomial r3− r2−1. The second
case implies a bound of O(

√
2

n
) = O(1.41421356237n), which is smaller.

We can apply this improvement technique one more time. If G has a node v with degree 3 or
more, then G \N(v) has at most n− 4 nodes. Otherwise (since we have already considered nodes
of degree 0 and 1), every node in the graph has degree 2. Let u, v, w be a path of three nodes in G
(possibly with u adjacent to w). In any maximal independent set, either v is present and u, w are
absent, or u is present and its two neighbors are absent, or w is present and its two neighbors are
absent. In all three cases, we recursively count maximal independent sets in a graph with n − 3

10

Algorithms Lecture 1: Recursion

nodes.

M(n) ≤ max

M(n− 1)
2M(n− 2)
M(n− 1) + M(n− 4)
3M(n− 3)

 = O(3n/3) = O(1.44224957031n)

The third case implies a bound of O(1.3802775691n), where the base is the largest root of r4−r3−1.
Unfortunately, we cannot apply the same improvement trick again. A graph consisting of n/3

triangles (cycles of length three) has exactly 3n/3 maximal independent sets, so our upper bound is
tight in the worst case.

Now from this recurrence, we can derive an efficient algorithm to compute the largest indepen-
dent set in G in O(3n/3 poly(n)) = O(1.44224957032n) time.

MAXIMUMINDSETSIZE(G):
if G = ∅

return 0

else if G has a node v with degree 0
return 1 + MAXIMUMINDSETSIZE(G \ {v}) 〈〈n− 1〉〉

else if G has a node v with degree 1
w ← v’s neighbor
withv ← 1 + MAXIMUMINDSETSIZE(G \N(v)) 〈〈n− 2〉〉
withw ← 1 + MAXIMUMINDSETSIZE(G \N(w)) 〈〈≤ n− 2〉〉
return max{withv ,withw}

else if G has a node v with degree greater than 2
withv ← 1 + MAXIMUMINDSETSIZE(G \N(v)) 〈〈≤ n− 4〉〉
withoutv ← MAXIMUMINDSETSIZE(G \ {v}) 〈〈≤ n− 1〉〉
return max{withv ,withoutv}

else 〈〈every node in G has degree 2〉〉
v ← any node; u, w ← v’s neighbors
withu ← 1 + MAXIMUMINDSETSIZE(G \N(u)) 〈〈≤ n− 3〉〉
withv ← 1 + MAXIMUMINDSETSIZE(G \N(v)) 〈〈≤ n− 3〉〉
withw ← 1 + MAXIMUMINDSETSIZE(G \N(w)) 〈〈≤ n− 3〉〉
return max{withu,withv ,withw}

1.6 Generalities

Recursion is reduction from a problem to one or more simpler instances of the same problem.
Almost every recursive algorithm (and inductive proof) closely follows a recursive definition for
the object being computed. Here are a few simple recursive definitions that can be used to derive
recursive algorithms:

• A natural number is either 0, or the successor of a natural number.

• A sequence is either empty, or an atom followed by a sequence.

• A sequence is either empty, an atom, or the concatenation of two shorter sequences.

• A set is either empty, or the union of a set and an atom.

• A nonempty set either is a singleton, or the union of two nonempty sets.

• A rooted tree is either nothing, or a node pointing to zero or more rooted trees.

11

Algorithms Lecture 1: Recursion

• A binary tree is either nothing, or a node pointing to two binary trees.

• A triangulated polygon is nothing, or a triangle glued to a triangulated polygon [not obvious!]

•
n∑

i=1
ai =

0 if n = 0
n−1∑
i=1

ai + an otherwise

•
n∑

i=1
ai =

0 if n = 0
a1 if n = 1
k∑

i=1
ai +

n∑
i=k+1

ai otherwise, for some 1 ≤ k ≤ n− 1

12

