CS314: Algorithms Homework 1, due Monday, Feb. 2 at the beginning of class

This homework will be submitted in written format. Remember, you can submit homework in pairs; just be sure both names are written on all pages submitted.

Also recall that when asked to design an algorithm, you must also include a proof of correctness and running time for that algorithm. In particular, if the problems asks you to design an algorithm with a particular run time, you must still analyze your algorithm to prove that it meets that running time.

Required Problems

1. Consider the following sorting algorithm:
```
STUPIDSORT(A[0..n - 1]):
    if }n=2\mathrm{ and }A[0]>A[1
        swap A[0] and A[1]
    else if }n>
        m\leftarrow\lfloor2n/3\rfloor
        STUPIDSORT(A[0..m-1])
        STUPIDSORT(A[n-m..n-1])
        STUPIDSORT(A[0..m-1])
```

(a) Prove that STUPIDSORT actually sorts its input.
(b) State a recurrence (including the base cases - there are two of them!) for the number of comparisons executed by STUPIDSORT.
(c) Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the ceiling.] Does the algorithm deserve its name?
2. A subsequence of a sequence A consists of a (not necessarily contiguous) collection of elements of A, arranged in the same order as they appear in A.

Describe and analyze a simple recursive algorithm to compute, given two sequences A and B, the length of the longest common subsequence of A and B. For example, given the strings ALGORITHM and ALTRUISTIC, your algorithm would return 5 , the length of the longest common subsequence ALRIT.
3. Chapter 5, Exercise 2 from the textbook:

Recall the problem of finding the number of inversions. As in the text, we are given a sequence of numbers a_{1}, \ldots, a_{n}, which we assume are all distinct, and we define an inversion to be a pair $i<j$ such that $a_{i}>a_{j}$.

We motivated the problem of counting inversions as a good measure of how different two orderings are. However, one might feel that this measure is two sensitive. Let's call a pair a significant inversion if $i<j$ and $a_{i}>2 a_{j}$. Give an $O(n \log n)$ time algorithm to count the number of significant inversions.
4. Chapter 5, Exercise 6 from the textbook:

Consider an n-node complete binary tree T, where $n=2^{d}-1$ for some d. Each node v of T is labeled with a real number x_{v}. You may assume that the real numbers labeling the roots are all distinct. A node v of T is a local minimum if the label x_{v} is less than the label x_{w} for all nodes w that are joined to v by an edge.

You are given such a complete binary tree T, but the labeling is only specified in the following implicit way: for each node v, you can determine the value x_{v} by probing the node v. Show how to find a local minimum of T using $O(\log n)$ probes to the nodes of T.
5. Extra Credit problem: Chapter 5, Exercise 7 from teh textbook:

Now suppose you're given an $n \times n$ grid graph G. (An $n \times n$ grid graph is just the adjacency graph of an $n \times n$ chessboard. To be completely precise, it is a graph whose node set is the set of all ordered pairs of natural number (i, j) where $1 \leq i \leq n$ and $1 \leq j \leq n$; the nodes (i, j) and (k, l) are joined by an edge if and only if $|i-k|+|j-l|=1 .$.

We use some of the terminology of the previous question. Again, each node v is labeled by a real number x_{v}; you may assume that all these labels are distinct. Show how to find a local minimum of G using only $O(n)$ probes to the nodes of G. (Note that G has n^{2} nodes.)

