
CS314: Algorithms Homework 0 (due 1/16/2005) Spring 2009

CS314: Algorithms
Homework 0, due Friday, January 16 at the beginning of class

This homework tests your familiarity with the prerequisite material from Data Structures and
Discrete Math, primarily to help you identify gaps in your knowledge. You are responsible for
filling those gaps on your own.

Before you do anything else, read the Course Policies on the webpage. This web page gives instruc-
tions on how to write and submit homeworks—staple your solutions together in order, write your
name on every page, don’t turn in source code, analyze everything, use good English and good
logic, and so forth.

Required Problems

1. Recurrences (20 points)

Solve the following recurrences. State tight asymptotic bounds for each function in the
form Θ(f(n)) for some recognizable function f(n). You do not need to turn in proofs (in
fact, please don’t turn in proofs), but you should do them anyway just for practice. Assume
reasonable but nontrivial base cases if none are supplied. More exact solutions are better.

(a) A(n) = 2A(n/2) + lg n

(b) B(n) = 3B(n/2) + n

(c) C(n) = 2C(n/2) + n2

(d) D(n) = 2D(n− 1) + 1

(e) E(n) = max1≤k≤n/2(E(k) + E(n− k) + n)

(f) F (n) = 2F (bn/3c+ 9) + n2

(g) G(n) = 2G(n− 1)/G(n− 2)

(h) H(n) = log(H(n− 1)) + 1

(i) I(n) = 2I(
√

(n)) + 1

(j) J(n) = J(n/2) + 1

1



CS314: Algorithms Homework 0 (due 1/16/2005) Spring 2009

2. Sorting functions (20 points)

Sort the following 25 functions from asymptotically smallest to asymptotically largest,
indicating ties if there are any. You do not need to turn in proofs (in fact, please don’t turn
in proofs), but you should do them anyway just for practice.

1 n n2 lg n 1 + lg lg n

cosn + 2 nlg n (lg n)! (lg n)lg n Fn

lg1000 n 2lg n n lg n
n∑

i=1
i

n∑
i=1

i2

n! lg(n10000) blg lg(n)c 22 log n 15n2 − 12n + 8 lg n + 4

To simplify notation, write f(n) ¿ g(n) to mean f(n) = o(g(n)) and f(n) ≡ g(n) to mean
f(n) = Θ(g(n)). For example, the functions n2, n,

(
n
2

)
, n3 could be sorted either as n ¿

n2 ≡ (
n
2

) ¿ n3 or as n ¿ (
n
2

) ≡ n2 ¿ n3. [Hint: When considering two functions f(·) and
g(·) it is sometime useful to consider the functions ln f(·) and ln g(·).]

3. Trees, Fibonacci numbers, and Induction (20 points)

The nth Fibonacci binary tree Fn is defined recursively as follows:

• F1 is a single root node with no children.

• For all n ≥ 2, Fn is obtained from Fn−1 by adding a right child to every leaf node and
adding a left child to every node that has only one child.

(a) Prove that the number of leaves in Fn is precisely the nth Fibonacci number: F0 =
0, F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2.

(b) How many nodes does Fn have? For full credit, give an exact closed form answer in
terms of the Fibonacci numbers and prove that your answer is correct.

(c) Prove that for n ≥ 2, the left subtree of Fn is a copy of Fn−2. (Hint: This is easier than
it sounds!)

4. Fractions and Pigeonholes (20 points)

The fractional part of x is the amount by which x exceeds its floor, bxc. For x ∈ IR and
n ∈ IN, let S = {x, 2x, . . . , (n− 1)x}.

(a) Prove that if some pair of numbers in S have fractional parts that differ by at most 1/n,
then some number in S is within 1/n of an integer.

(b) Use part (a) to prove that some number in S is within 1/n of an integer.

2


