
c© 2008 Erin Wolf Chambers

COMPUTING INTERESTING TOPOLOGICAL FEATURES

BY

ERIN WOLF CHAMBERS

B.S., University of Illinois at Urbana-Champaign, 2002
M.S., University of Illinois at Urbana-Champaign, 2006

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Associate Professor Jeff Erickson, Chair
Professor Robert Ghrist
Associate Professor Steven Lavalle
Professor John Hart
Professor Nina Amenta, University of California at Davis

Abstract

Many questions about homotopy are provably hard or even unsolvable in gen-
eral. However, in specific settings, it is possible to efficiently test homotopy-
equivalence or compute shortest cycles with prescribed homotopy. We focus
on computing such “interesting” topological features in three settings. The first
two results are about cycles on surfaces; the third is about classes of homotopies
in IR2 minus a set of obstacles; and the final result is about paths and cycles in
Rips complexes.

First, we examine two problems in the combinatorial surface model. Combi-
natorial surfaces combine properties of graphs and manifolds, making a rich set
of techniques available for analysis and algorithm design. We give algorithms to
find the shortest noncontractible and nonseparating cycles in a combinatorial
surface in O(g3n log n) time. Our main tool is a data structure that kinetically
maintains the shortest path tree as the root of the tree moves around the ver-
tices of a single face. The total running time is O(g2n log n). By maintaining
the data structure persistently, we can answer shortest path queries in O(log n)
time.

Next we consider finding the shortest splitting cycle in a combinatorial sur-
face, or simple cycle which is both separating and noncontractible; such cycles
divide the topology of the surface as well as the underlying graph. We prove
that finding the shortest splitting cycle is NP-Hard. We then give an algorithm
that runs gO(g)n log n time, which is polynomial if the surface is fixed.

We then examine a very different setting, namely similarity between curves
in some underlying metric space. If we imagine a homotopy between the curves
as a way to morph one curve into the other, we can optimize the morphing
so that the maximum distance any point must travel is minimized. This is
a generalization of the more well known Fréchet distance, with the additional
requirement that the leash to move continuously in the ambient space. We
call this distance the homotopic Fréchet distance. We give a polynomial time
algorithm to compute the homotopic Fréchet distance between two curves in the
plane minus a set of polygonal obstacles. We also extend our characterization
of optimal morphings to surfaces of nonpositive curvature.

Finally, we examine a more fundamental homotopy problem in a different
setting. A Rips complex is a simplicial complex defined by a set of points from

ii

some metric space where every pair of points within distance 1 is connected
by an edge, and every (k + 1)-clique in that graph forms a k-simplex. We
prove that the projection map which takes each k-simplex in the Rips complex
to the convex hull of the original points in the plane induces an isomorphism
between the fundamental groups of both spaces. Since the union of these convex
hulls is a polygonal region in the plane, possibly with holes, our result implies
that the fundamental group of a planar Rips complex is a free group, allowing
us to design efficient algorithms to answer homotopy questions in planar Rips
complexes.

iii

For my husband, who got me through it all,
and for my parents, who got me here in the first place.

iv

Acknowledgements

This thesis would not have happened without help from countless people. First
and foremost, thanks to Jeff Erickson, who has been both advisor and mentor.
Without his guidance, advice, and the occasional kick in the pants, I would not
have finished. I owe much of my ability as a researcher and an educator to
his example and his teaching, and cannot imagine a better guide through grad
school.

The work presented in this thesis is due to collaboration with various in-
dividuals, including Sergio Cabello, Éric Colin de Verdière, Vin de Silva, Jeff
Erickson, Robert Ghrist, Sylvain Lazard, Francis Lazarus, Shripad Thite, and
Kim Whittlesey. My other collaborators include Douglas West, Tanya Cren-
shaw, Dan Cranston, Kevin Milans, David Bunde, Heather Metcalf, Umesh
Thakkar, Pratik Worah, Bill Kinnersley, Noah Prince, and Piotr Adamcyzk.
Working with such outstanding people has made the journey a pleasure, and I
am grateful for the opportunity to work with each of them.

Thanks to my fellow students in the theory group. In particular, I would
never have even made it through quals without the guys from my year: Matthew
Belcher, Dan Cranston, John Fischer, and Kevin Milans. Thanks for all the
years of studying and working together; wherever we wind up, I’m glad we
all started together. David Bunde, Bardia Sadri, and Shripad Thite were the
senior grad students who provided both examples and advice on how to make
it through. Later on, Nitish Korula and Mike Rosulek were always willing to
give help with teaching, writing, and LATEX. They, along with Tracy Grauman,
Feidha Zhu, Ke Chen, Pratik Worah, and Hemanta Maji, were the reason I had
to avoid the office to get work done; I will miss our discussions and debates.

All of the faculty in the theory group have helped me improve numerous
presentations and papers, and they have always been ready to listen to a problem
or answer a question when I needed it. In particular, Edgar Ramos, Sariel Har-
Peled, and Chandra Chekuri have been the extra advisors who were always
available. Thanks also to Brian Bailey and David Forsythe for mock interviews
and helpful advice, and to Steve Lavalle, John Hart, Rob Ghrist, and Nina
Amenta for serving on my committee.

Many other friends provided advice, reviews, and sometimes a shoulder to
cry on when needed. In particular, Tanya Crenshaw and Kim Belcher are the

v

reason this thesis was actually written. Jodie Boyer, Eric Owiesny, Shamsi Iqbal,
Anna Yershova, and Jacob Biehl have also been there to commiserate, motivate,
and advise. I will miss them all as we leave for greener pastures. Outside of this
program, my many wonderful friends, particularly Lizzie Codie, Kavitha Sagi,
Mel White, Ray Reskusich, Julie Snyder, Meghan Meharry, Darren Hron, Tim
Skirvin, and Rebecca McNulty, have helped keep me grounded and sane for my
entire time here.

I’ve also learned that no journey is possible without people to help you
through the details. Barb Cicone, Mary Beth Kelly, and Kay Tomlin have all
helped with both academic advising and life advice. Thanks also to the admin-
istrative assistants who talked me through all the paperwork and difficulties:
Elaine Wilson, Holly Bagwell, Angie Bingham, Ellen Corcoran, and Kim Os-
mond. They are what keeps this department going, and they are appreciated
more than they will ever know.

Thanks to the many other mentors who have helped me throughout the
years. Even if they didn’t realize it at the time, they are much of the reason
I had the courage to take this path and see it through. In particular, I would
like to thank Tanya Berger-Wolf, Klara Nahrstedt, Robin Kravets, and Nina
Amenta, who have all provided words of encouragement when they were most
needed.

And finally, my family has been my greatest support throughout this whole
process. My husband Jeff is the most amazing husband and father, and is the
reason that it all could happen. I cannot imagine going through life with a
better partner. My daughter Grace provided the smile at the end of a long day
which made everything better; some day, I hope she will be as proud of me as I
already am of her. My guinea pig Boca was also there to help out by nibbling
on any math homework that was stressing me out. My brother Erik is the one
who started me in computer science years ago; thanks for the encouragement
and for believing in me. Thanks to my sisters, Kristin and Kara, who put up
with all the whining about how I would never be able to do this and somehow
managed to make it all seem possible by the end of the conversation. Thanks
also to my parents, who gave me the example and the courage to follow my
dreams.

vi

Table of Contents

Chapter 1 Introduction . 1
1.1 Computational Topology . 1
1.2 Our Contributions . 4

Chapter 2 Definitions and Background 6
2.1 Topological Definitions . 6
2.2 Combinatorial Surfaces . 8

Chapter 3 Shortest Noncontractible or Nonseparating Cycles 10
3.1 Definitions and Tools . 11

3.1.1 Shortest Path Trees . 11
3.1.2 Dynamic Forests . 12

3.2 The Data Structure . 15
3.2.1 Preliminaries . 15
3.2.2 Tensions of Dual Trees in Orientable Surfaces 16

3.3 Planar Graphs . 18
3.3.1 Algorithm for Planar Graphs 18
3.3.2 Analysis for Planar Graphs 20

3.4 Higher Genus Graphs . 21
3.4.1 Algorithm for Orientable Surfaces 21
3.4.2 Analysis for Higher Genus Graphs 24

3.5 Computing Shortest Nonseparating and Noncontractible Cycles . 26
3.5.1 Shortest Nonseparating Cycle 26
3.5.2 Shortest Noncontractible Cycle 27

Chapter 4 Shortest Splitting Cycles 31
4.1 Preliminaries . 32

4.1.1 Preliminary Lemma . 32
4.1.2 Finding a Splitting Cycle 33

4.2 NP-Hardness . 33
4.3 Structural Properties . 35

4.3.1 Multiplicity Bound . 35
4.3.2 Shortest-Path Crossing Bound 36
4.3.3 Crossing Lower Bound . 39

4.4 Algorithm . 41
4.4.1 Greedy System of Loops or Arcs 42
4.4.2 Simple Crossing Sequences 43
4.4.3 Testing Weighted Triangulations 44
4.4.4 From Crossing Sequence to Cycle 45
4.4.5 Removing Self-Intersections 45

4.5 Splitting Surfaces into Two Surfaces of Prescribed Topology . . . 47
4.6 Decomposition into Punctured Tori 47

vii

4.7 Conclusions . 48

Chapter 5 Homotopic Fréchet Distance 51
5.1 Definitions . 52
5.2 Preliminaries . 53

5.2.1 Geodesic Leash Maps . 54
5.2.2 Homotopic Shortest Paths 55

5.3 Optimal Homotopy Classes . 56
5.3.1 Minimality . 56
5.3.2 Point Obstacles . 57
5.3.3 Polygonal Obstacles . 60
5.3.4 Non-Polygonal Obstacles 61

5.4 Fréchet Distance in One Homotopy Class 63
5.4.1 Geodesic Distance Is Convex 64
5.4.2 Preprocessing for Distance Queries 65
5.4.3 Decision Procedure . 67
5.4.4 Computing Fréchet Distance 68
5.4.5 Summary . 69

5.5 Spaces of Non-positive Curvature 69
5.6 Open Problems . 70

Chapter 6 Rips Complexes of Planar Point Sets 72
6.1 Introduction . 72
6.2 Planar Rips Complexes and Their Shadows 74

6.2.1 The Shadow Complex . 74
6.2.2 Technical Lemmas . 75
6.2.3 Lifting Paths via Chaining 78

6.3 1-Connectivity on R2 . 80
6.4 Quasi Rips Complexes and Shadows 81
6.5 k-Connectivity in Rn . 82
6.6 Algorithmic Results . 86

6.6.1 Structural Results . 86
6.6.2 Algorithmic Results . 88

6.7 Conclusion . 89

References . 90

Author’s Biography . 98

viii

Chapter 1

Introduction

1.1 Computational Topology

Computational topology is an exciting and interesting area at the intersection of
mathematics and computer science. Historically, algorithmic techniques abound
in topology, extending back to the algorithmic proof by Dehn and Heegaard of
the surface classification theorem in 1907 [74] and the algorithm by Dehn in
1911 to test if a cycle on a surface is contractible [40]. Perhaps the first analysis
of a topological algorithm was in 1961, when Haken proved that testing if a
knot is trivial takes at most quadruply exponential time [71]. Until recently,
however, relatively little thought was given to the efficiency of such algorithms
or the applicability of the techniques.

Topological questions occur in many areas of computer science. In graphics,
objects are modeled as meshes formed from scanned point set surfaces. Config-
uration spaces are a type of topological space used for robot motion planning.
Data mining techniques rely on the assumption that the distribution of points
lies on some low dimensional manifold embedded in high dimensional spaces.
Computational topology thus combines tools and techniques from computer
science disciplines, including computational geometry, robotics, graphics, and
networking, with mathematical tools from geometry, algebraic topology, differ-
ential topology, combinatorics, and many other areas.

Many applications from computer science require information about the
topological structure of an object. Before we examine topological features in
a particular setting, it is necessary to discuss what type of topological space
we will work in. One type of topological space which we will focus on in this
thesis is a manifold. An n-dimensional manifold is a topological space where ev-
ery point has a neighborhood homeomorphic to n-dimensional Euclidean space.
(See Chapter 2 for precise definitions.) Surfaces, or 2-manifolds, are particularly
useful for modeling 3-dimensional shapes. A fundamental result in topology,
called the classification theorem, states that a surface is uniquely characterized
by its genus, number of boundaries, and orientability; for a standard reference,
see Stillwell [112]. For example, the disk is the only orientable genus one 2-
manifold with one boundary; the sphere is the only orientable 2-manifold with
genus zero and no boundary; and the Möbius strip is the only nonorientable

1

genus one surface with one boundary.
Surfaces can be represented in many ways. Surfaces can be represented

implicitly as the zero set of a function. From a computational perspective, how-
ever, implicit surfaces are difficult to deal with, in part because geodesics do not
have closed forms, so we are forced to use numerical approximation techniques
[100, 30, 23]. Polyhedral surfaces are formed by gluing together simple, closed
polygons along their edges. A polyhedral surface is piecewise linear if the local
metric within each such polygon is Euclidean. Computationally, even comput-
ing shortest paths in a piecewise linear surface can be difficult; it is possible for
a shortest path in a size O(1) piecewise linear surface to intersect the edges of
the 1-skeleton an unbounded number of times; see [57] for details.

Even more coarsely, surfaces can be represented by specifying a graph of
the edges and vertices, along with face information, without specifying any
areas or distances inside of the faces. This model is called the combinatorial
surface model, and it is the basis for many of the results in this thesis. This
model reduces questions about surface topology to computations in a graph.
In particular, shortest paths on a combinatorial surface can be computed using
Dijkstra’s algorithm [46]. In addition, in many graphics algorithms that cut
surfaces along paths or cycles, paths are restricted to the edges of the mesh
rather than crossing faces (see e.g. [68, 108, 109, 111]), so algorithms on a
combinatorial surface mirror the current techniques quite accurately.

There are many ways to transform input data into a combinatorial surface
representation. In graphics, the given data is often a set of points which are
sampled (possibly with noise) from some underlying object. Algorithms typi-
cally transform these points into a mesh that represents the underlying surface;
we may then use the edges of the mesh as the graph for the combinatorial sur-
face. To compute meshes, some algorithms explicitly compute a surface from
the input points, often by extracting a subcomplex of the Delaunay triangula-
tion or Voronoi diagram [51, 4]. Given appropriate sampling constraints on the
points, based on local feature size of the underlying surface, the output will be
homotopy equivalent to the underlying surface.

One of the first works in the combinatorial surface model was the Dey and
Schipper’s implementation of Dehn’s algorithm to test contractibility of a cycle
[45], although edge weights are irrelevant in this result. Erickson and Har-
Peled [58] prove that computing the shortest graph whose removal cuts a surface
into a topological disk is NP-hard. Colin de Verdière and Lazarus consider the
problem of finding the shortest simple loop [35] or cycle [34] within a given
homotopy class in a combinatorial surface. A polynomial-time algorithm for
the generalization of this problem to non-simple curves was recently obtained
by Colin de Verdière and Erickson [33]. Erickson and Whittlesey [59] provide
simple polynomial-time algorithms to compute the shortest homology basis and
the shortest fundamental system of loops on a given surface.

Several authors have considered problem of computing a shortest noncon-

2

tractible or nonseparating cycle [58, 19, 15, 86], which we will discuss in Chapter
3. Algorithms to find shortest noncontractible or nonseparating cycles are used
as subroutines in other algorithms on combinatorial surfaces [58, 33, 59] and in
applications such as mesh simplification [124, 70], computing crossing numbers
in graphs [81], low distortion probabilistic embeddings of graphs [79], and ap-
proximating TSP on high genus graphs [41]. Shortest noncontractible and non-
separating cycles are also examples of short tunnel and handle loops [43, 44],
which are useful in topology repair, model editing, surface parameterization,
and feature recognition.

The combinatorial surface model also has deep connections to results in
graph theory. Kuratowski’s theorem provides a characterization of planar graphs
in terms of forbidden subdivisions [85]. Generalizations of this result show that
graphs embedded on a surface of fixed genus have a finite forbidden minor char-
acterization [103, 105]. In fact, for any fixed genus, we can test if a graph
can be embedded on a surface of that genus in O(n) time using this forbidden
minor characterization [94]. In general, graphs embedded on surfaces of genus
g require Ω(

√
g) colors; however, if the smallest concontractible cycle is large,

Thomassen showed that the graph can be colored with a constant number of
colors [118]. Robertson and Seymour defined the face width, or representivity,
of a graph embedded on a surface as the minimum number of times a noncon-
tractible cycle intersects the graph [105]; in a combinatorial surface, this value
is closely related to the length of the shortest noncontractible cycle. Large rep-
resentivity in a graph leads to many other useful structural results; for example,
large representivity means that a graph can be divided into small planar pieces
[104].

The family of problems that we focus on in this thesis involve homotopy,
which is a coarser form of classification that homeomorphism. Two maps f :
X → Y and g : X → Y are homotopic if there is a continuous map H :
[0, 1] × X → Y such that H(0, x) = f(x) and H(1, x) = g(x); we view H

as a continuous deformation between f and g over the time interval [0, 1]. In
this thesis, we focus on homotopy of paths or cycles. For curves on surfaces,
homotopy is equivalent to isotopy, or homotopy where every section H(t, ·) is
a homeomorphism; two simple curves are homotopic if and only if they are
isotopic [5]. Homotopy is an equivalence relation on cycles based at a point; the
fundamental group is the set of cycles based at a point under this equivalence
relation where the group operation is concatenation, inverses are obtained by
reversal, and the identity element is the class of contractible cycles. Deciding if
a curve is contractible is thus equivalent to the word problem in a representation
of the fundamental group. Conversely, for any finitely presented group G, one
can construct a space whose fundamental group is G. Since the word problem
for arbitrary groups is undecidable [98, 13], any algorithms to test contractibility
or homotopy between curves must be in specific limited settings.

However, combinatorial surfaces are not an option when the underlying ob-

3

ject is not a manifold. Another type of topological space which we will discuss
is a simplicial complex, or collection of simplices which are identified along
common faces. Many algorithmic questions about manifolds are undecidable.
Markov proved that determining if two 4-manifolds with a simplicial complex
structure are homeomorphic is undecidable [90]; this work is based on the clas-
sical result that the word problem in groups is undecidable. On the other hand,
Whittlesey showed that classifying finite 2-complexes up to homeomorphism is
possible [121, 123, 122]; this was later shown to be equivalent to graph isomor-
phism, which is in NP but is not known to be NP-Complete or polynomially
solvable [99]. The complexity of deciding if two 3-manifolds are homeomorphic
is unknown; see [72] for a detailed discussion of results in this area. Markov’s
result [90] implies that even deciding if two paths are homotopic in a simplicial
complex is undecidable.

For the sake of completeness, we briefly mention some results on the compu-
tation of homology groups, although the focus of this thesis is on homotopy. As
previously mentioned, even simple homotopy questions are undecidable in gen-
eral. As a result, many topological algorithms are based on homology, which pro-
vides a cruder classification of topological features than homotopy. For example,
two cycles can be homologous on a surface but not homotopic; a noncontractible
separating cycle is nullhomologous, even though it is not nullhomotopic.

Even in classical topology, determining homology groups is an algorithmic
process. Tools such as exact sequences and Mayer-Viteoris sequences (see, e.g.,
[73]) are used to compute homology groups for many topological spaces and are
very computational in nature. Homology groups are widely used in different
application settings to gain information about the topological structure of an
object [49, 22, 64, 50, 52, 63, 65, 125, 7, 8].

1.2 Our Contributions

In chapter 3, we describe an algorithm to compute the shortest noncontractible
or nonseparating cycle in a combinatorial surface. The data structure which
makes this algorithm possible computes the shortest path tree for every vertex
along a single face of a combinatorial surface, generalizing a result of Philip
Klein for planar graphs [82]. Our data structure maintains the shortest path
tree kinetically [69] while the root of the tree moves along each edge of the
face. Since shortest path trees are a commonly used algorithmic tool on graphs,
potential applications for this results are numerous. This work is joint with
Sergio Cabello, and a preliminary version appeared in SODA 2007 [16].

In chapter 4, we examine one generalization of planar separators [88] to
graphs with higher genus. We show that computing the shortest splitting cycle,
or noncontractible separating cycle, is NP-Hard, via a reduction from the Trav-
eling Salesman Problem (TSP) in rectilinear graphs. We then give an algorithm
to find the shortest splitting cycle in gO(g)n log n time, where g is the genus of

4

graph and n is the size of the input. Our algorithm works by enumerating all
possible crossing sequences of the shortest splitting cycle with a special family
of shortest paths. This work is joint with Éric Colin de Verdière, Jeff Erickson,
Francis Lazarus, and Kim Whittlesey; it was first published at SoCG 2006 [26]
and later appeared in CGTA [25].

In chapter 5, we look at a different measure of similarity between curves.
Instead of considering the homotopy type of a cycle, as in [33], we wish to
consider two curves which are known to be homotopic and find the “smallest”
homotopy between them, which we call the homotopic Fréchet distance. When
the curves are on surfaces with positive curvature, such as is the case with many
combinatorial surfaces, algorithms to compute this value seem to be quite diffi-
cult. We examine this problem for the Euclidean plane minus obstacles, giving
a polynomial-time algorithm, and characterize the type of relative homotopy
classes which are possible in surfaces with non-positive curvature. Our result
is closely related to other algorithms which look for shortest paths in specified
homotopy classes of the plane minus obstacles [55, 9, 76] and finding shortest
paths on surfaces of positive curvature such as convex polyhedra [93]. This
work is joint with Éric Colin de Verdière, Jeff Erickson, Sylvain Lazard, Francis
Lazarus, and Shripad Thite, and a preliminary version appeared in SoCG 2008
[24].

In chapter 6, we look at homotopy questions in a type of simplicial complex
called the Viteoris-Rips complex, or Rips complex. We characterize the funda-
mental group of such a complex when the point set is a subset of the plane,
and briefly describe related results on algorithms to test contractibility of cy-
cles and compute the shortest noncontractible cycle in such complexes [27]. We
also examine the fundamental group of quasi-Rips complexes, a generalization
of standard Rips complexes that model noisy data or uncertainty. This work is
joint with Jeff Erickson, Rob Grist, and Vin de Silva.

5

Chapter 2

Definitions and Background

2.1 Topological Definitions

A surface (or 2-manifold with boundary) M is a topological Hausdorff space
where each point has a neighborhood homeomorphic either to the plane or
to the closed half-plane. The points with neighborhood homeomorphic to the
closed half-plane comprise the boundary of M. All the surfaces considered
here are compact and connected. A surface is nonorientable if it contains a
topological Möbius-strip, and otherwise it is orientable. Any orientable surface
is homeomorphic to a sphere with g handles attached and b open disks removed,
while any nonorientable surface is homeomorphic to the connected sum of g

projective planes with b open disks removed. In both cases, we refer to g as the
genus of the surface, and to b as the number of boundaries.

Let Σ be a surface. A path on Σ is a continuous map p : [0, 1] → Σ. A
cycle is a continuous map γ : S1 → Σ, where S1 denotes the unit circle. A loop
with basepoint x is a path p with x = p(0) = p(1). An arc α is a path whose
endpoints are in the boundary. (We will use curve as a generic term for paths,
loops, cycles, and arcs.) Any curve is simple if it is one-to-one, except at the
basepoint in the case of loops. Two curves are disjoint if they do not intersect.
The notation α + β is used for the concatenation of curves α and β, assuming
that endpoints or basepoints match accordingly.

If S is a set of pairwise disjoint simple curves, M \ S denotes the surface
with boundary obtained by cutting M along the loops or arcs in S. A simple
cycle γ is separating ifM\ γ has two components.

A homotopy between two paths p and q is a continuous map H : [0, 1] ×
[0, 1] → Σ such that H(0, ·) = p(·) and H(1, ·) = q(·). Note that endpoints
remain fixed during a homotopy. A (free) homotopy between two cycles γ and
δ is a continuous map H : [0, 1]×S1 → Σ such that H(0, ·) = γ and H(1, ·) = δ.
Two curves β and γ are homotopic when there is some homotopy between them,
and we denote it by β ∼ γ.

Up to homotopy, each boundary component of Σ admits two parameteriza-
tions as simple cycles, one being the reverse of the other. We say that a cycle
is homotopic to a boundary component of Σ when it is homotopic to either of
these two parameterizations. If γ is a simple cycle homotopic to a boundary

6

δ of Σ, then Σ \ γ has two connected components, one of them a topological
annulus with γ and δ as boundaries.

A cycle is contractible if it is homotopic to a constant cycle, or point. An arc
whose endpoints are in the same boundary component δ is noncontractible if it is
not homotopic to a subpath of δ. Every contractible simple cycle is separating,
since it bounds a disk, but not all simple separating cycles are contractible. We
say a cycle is splitting if it is simple, noncontractible, and separating.

It is not hard to verify that homotopy is an equivalence relation on paths
and loops. The fundamental group π1(X, x0) for a topological space X and
point x0 ∈ X is the group consisting of homotopy classes of loops based at x0

with concatenation of loops as its group operation. Any set of 2g loops which
generate π1(M,m) are called a homotopy basis; we frequently refer to a loop in
such a basis as a generator.

LetM be a surface with genus g and with b boundary components. If b = 0,
a system of loops on M is a set of pairwise disjoint simple loops L with a
common basepoint such that M\ L is a topological disk. Any system of loops
contains exactly 2g loops. M\ L is a 4g-gon where each loop appears as two
boundary edges; this 4g-gon is called the polygonal schema associated with L.

If b ≥ 1, a system of arcs on M is a set of pairwise disjoint simple arcs
A such that M\ A is a topological disk. Any system of arcs contains exactly
2g + b − 1 arcs, by Euler’s formula and standard double-counting argument.
M \ A is a (8g + 4b − 4)-gon where each arc appears as two boundary edges,
the remaining 4g +2b− 2 edges of the (8g +4b− 4)-gon corresponding to pieces
of the boundaries of M; this (8g + 4b − 4)-gon is called the polygonal schema
associated with A.

For any topological space X, a covering space is a topological space X̂ to-
gether with a surjective map p : X̂ → X, such that for every point x ∈ X there
is an open neighborhood x ∈ U ⊆ X such that p−1(U) is a disjoint union of
sets in X̂ which are homeomorphic to U under p. The universal cover is the
unique covering space that is simply connected, meaning the fundamental group
is trivial.

Two cycles are homologous (with Z2 coefficients) if one can be continuously
deformed into the other via a deformation that may include splitting cycles at
self-intersection points, merging intersecting pairs of cycles, or adding or deleting
contractible cycles. Thus, if two cycles are homotopic, they are also homologous,
but the converse is not necessarily true. A cycle or loop is null-homologous if
it is homologous to a constant loop. A simple cycle γ is null-homologous if and
only if it is separating, that is, ifM\γ has two components. Every contractible
simple cycle is separating (in fact, it bounds a disk), but not all simple cycles
are contractible.

Let M be a simplicial complex. Given an artibrary ring R, a k-chain is a
linear combination of oriented k-simplices with coefficients from R. The kth

chain group Ck is the free abelian group of k-chains. The boundary operator

7

Figure 2.1. The leftmost cycle is nonseparating and noncontractible, the center cycle is separating
and noncontractible, and the rightmost cycle is separating contractible.

∂k : Ck → Ck−1 is a linear map which takes each (oriented) k-simplex to the
sum of its (oriented) (k − 1)-facets. A k-cycle is a k-chain whose boundary is
empty; the set of k-cycles is the kernel of ∂k, and so forms a subgroup of Ck. A
k-boundary is a k-chain which is the boundary of some (k + 1)-cycle; the set of
k-boundaries is the image of ∂k+1 and so also forms a subgroup of Ck. The kth

homology group Hk(M,R) is the abelian group consisting of k-cycles quotiented
out by the k-boundaries. The kth Betti number is defined to be the rank of Hk.

2.2 Combinatorial Surfaces

A combinatorial surface is a undirected, weighted graph G(M) embedded on a
surface of genus g so that each face of the graph is a topological disk on M.
Curves on this surface are required to be walks on G(M), and edges of G(M)
have positive weights, allowing one to measure the length of a curve. Note that
we allow edges to be used multiple times on a simple path or cycle as long as
the path or cycle does not actually cross itself; in other words, a curve is simple
if it can be infinitesimally perturbed to a simple curve inM. This is a notable
difference from the standard graph theoretical definition of a simple path, where
no edge can appear more than once. We use |α| to denote the length of a curve
α. The multiplicity of a path is the maximum number of times that an edge
appears in it.

We use n for the number of vertices plus the number of edges in the graph,
and the weight of an edge uv is denoted w(uv). We use V = V (G), E = E(G),
and F = F (G) to denote the set of vertices, edges, and faces of G, respectively.
The dual (multi)graph of G, written G∗, is a graph formed by making every
face of G a vertex and adding edges between adjacent faces. G∗ has a natural
embedding in Σ: for e ∈ E(G), we use e∗ to denote the edge in the dual graph
which goes between the two faces that e borders. For a set of edges D ⊆ E we
use D∗ = {e∗ | e ∈ D}.

8

Euler’s formula asserts that

|V | − |E|+ |F | = χ(Σ)

where χ(Σ) is the Euler characteristic of Σ, which is 2−2g for orientable surfaces
and 2− g for nonorientable. Since we assume a simple graph, each face has at
least 3 edges, and therefore 2|E| ≤ 3|F |. It follows then from Euler’s formula
that G has O(|V |+ g) edges.

It is often more convenient to work in an equivalent dual formulation of
this model introduced by Colin de Verdière and Erickson [33]. A cross-metric
surface is also an abstract surface M together with an undirected weighted
graph G∗ = G∗(M), embedded so that every open face is a disk. However, now
we consider only regular paths and cycles onM, which intersect the edges of G∗

only transversely and away from the vertices. The length of a regular curve p is
defined to be the sum of the weights of the dual edges that p crosses, counted
with multiplicity. See [33] for further discussion of these two models.

Many types of cycles can be computing using Thomassen’s 3-path condition
[95]. A set of cycles C satisfies the 3-path condition if for any pair of vertices
u and v and disjoint paths p1, p2, and p3 with endpoints u and v, if two of the
three cycles formed by concatenating the paths are not in C, then the third
cycle cannot be in C. This condition leads to an polynomial time algorithm to
find the smallest cycle of the set C, assuming that we can test membership in
C in polynomial time.

To simplify many of our proofs and algorithms, we will assume that the
lengths of shortest paths are unique. To enforce this, we add random infinitesi-
mal weights to each edge; the Isolation Lemma [97] then implies that the lengths
of all shortest paths are unique with high probability.

9

Chapter 3

Shortest Noncontractible or
Nonseparating Cycles

In this chapter, we develop an algorithm to find a shortest noncontractible cycle
in a combinatorial surface in O((b + g3)n log n) time, and a shortest nonsepa-
rating cycle in O(g3n log n) time. Several authors have previously considered
problem of computing a shortest noncontractible or nonseparating cycle. The
first algorithm to compute these cycles relied upon the so-called 3-path condi-
tion [95]; this algorithm finds a shortest noncontractible or nonseparating cycle
in O(n3) time [95, Sect. 4.3], regardless of the genus of the graph. Erickson
and Har-Peled describe a faster algorithm to compute nonseparating and non-
contractible cycles time in O(n2 log n) time, again regardless of the genus of
the graph [58]. Cabello and Mohar [19] gave an algorithm which runs in time
gO(g)n3/2 log n, the first algorithm for this problem to have a running time which
was bounded by a function of the genus. Cabello [15] later improved the run-
ning time using separators to gO(g)n4/3. Kutz [86] developed an algorithm with
a running time of gO(g)n log n which computed a finite portion of the universal
cover and then did standard shortest path computations in the resulting planar
graph.

The main tool we use for finding shortest noncontractible or nonseparating
cycles is a data structure that quickly computes shortest paths from all vertices
on a single face of an embedded graph. A shortest path tree in a graph is a tree
containing shortest paths from a specified vertex to all other vertices. Shortest
path trees are a fundamental tool on graphs, and have applications for flows,
distance queries, connectivity, and many other problems.

In the planar graph setting, there are many results for multiple source short-
est paths. The result of primary interest is by Klein [82], who addressed the
problem of maintaining the shortest path tree in a planar graph as the source
of the tree moves along some face in the graph. He gave an algorithm that
computed an implicit representation of the shortest path tree for all vertices on
a common face in the graph in O(n log n) time; shortest path queries to any ver-
tex on the face then take O(log n) time. Other noteworthy results on multiple
source shortest paths for planar graphs include Frederickson’s all-pairs shortest
paths representation [61], Lipton and Tarjan’s planar separator theorem [88],
and Schmidt’s O(n log n) algorithm that supports distance queries for specific
subsets of vertices on a grid [106].

10

In this chapter, we develop an algorithm to maintain the shortest path tree
as the source of the tree moves around a face of a graph embedded on a surface
of genus g ≥ 1. The running time to compute the shortest path tree for every
vertex on a given face is O(g2n log n). If we make the underlying kinetic data
structure persistent [47], shortest path queries take O(log n) time. To contrast
this with previously known results, note that a graph with n vertices embedded
in a surface of genus g has O(g + n) edges by Euler’s formula, and therefore
we can solve the all-pairs shortest path problem in O(n(n log n + g + n)) =
O(gn+n2 log n) time using Dijkstra’s algorithm with Fibonacci heaps [62]. Our
result improves this running time when g = o(

√
n). We can thus restrict our

attention to the case g ≤ n, in which case G has O(n) edges.
Klein’s algorithm begins with a shortest path tree rooted at a vertex on

the specified face. It declares the root of the tree to be at a neighbor of the
original root. The tree is no longer necessarily a shortest path tree, so edges are
iteratively added and removed from the tree from on a set of candidate edges
which could belong to the shortest path tree. The next edge chosen is what
Klein calls the leafmost unrelaxed edge; this characterization is based on the
fact that the set of edges not present in the tree form a tree in the dual graph,
called a co-tree. Klein shows how to find these edges quickly and proves that no
edge will be added or removed from a shortest path tree more than a constant
number of times.

The main obstacle to extend Klein’s algorithm to genus g graphs is that the
complement of a tree is no longer a co-tree, so there is no ”leafmost unrelaxed
edge”. After moving the root to a neighboring vertex, it is difficult to quickly
determine which edges to add and remove from the original shortest path tree
and in what order they should be added.

Our approach instead maintains a kinetic shortest path tree. For more
background on kinetic data structures in general, see [69]. Conceptually, we
move the root of the tree continuously along the edges of the specified face. As
the root moves, edges will appear and disappear from the shortest path tree at
discrete events; our algorithm efficiently computes these events and updates the
tree. The key fact for our analysis is that the time used to move the source along
an edge depends on the symmetric difference of the starting and final shortest
path trees. We show that the total number of times an edge can enter or leave
the shortest path tree as the root moves around a face is a function of the genus
of the underlying surface.

3.1 Definitions and Tools

3.1.1 Shortest Path Trees

Consider a rooted tree T spanning a graph G with weighted edges, and let
sdenote its root (or source). We define a function dT : V (T) → IR as the

11

distance from sto a given vertex. We omit the subscript T when it is clear from
context. Consider an edge uv from G. The tension of the directed edge −→uv is
defined as t(−→uv) = d(v) − w(−→uv) − d(u). We say that the edge −→uv ∈ A(

−→
G) is

tense if t(−→uv) > 0. In other words, if −→uv is tense, there is a shorter path from
sto v which uses the path in T to u plus the edge uv, rather than the (unique)
path from sto v contained in T . We say that an (undirected) edge uv ∈ E(G) is
tense whenever either −→uv or −→uv is tense. It is a simple exercise to verify that if T

leaves no tense edges in G, then T is a shortest path tree. For more background
on this topic, see [114].

Although the graph G is undirected, we actually maintain a shortest path
tree in the directed graph

←→
G , where each edge of G appears twice. Shortest

path tree edges are directed towards from the root s. The running time of some
results will be expressed as a function of |T \ T ′| for shortest path trees T and
T ′. Assuming the roots of T and T ′ are distinct, this quantity is at least 1, since
T \ T ′ must contain a directed edge connecting the roots.

3.1.2 Dynamic Forests

Our algorithms require dynamic forest data structures that implicitly maintain
edge or vertex values under edge insertions, edge deletions, and updates to the
values in certain subtrees. We use two known data structures, whose interface
we describe next.

Vertex Values

The first data structure maintains vertex-values in a dynamic rooted directed
forest under the following operations:

• Create(val) adds a tree with a single vertex of value val to the forest.

• Cut(e) removes the edge e from the forest. The subtree that contains the
original root skeeps sas it root, while the other subtree takes as root the
tail of e.

• Join(u, v) adds the edge uv to the forest and sets the root of the sub-
tree containing u as root of the tree containing the new edge. Note that
Join(u, v) and Join(v, u) give rise to the same tree but with different
roots. This operation assumes that u and v are initially in different trees.

• GetValue(v) returns the value stored at the vertex v.

• AddSubtree(∆, v) adds the value ∆ to every vertex in the subtree rooted
at v.

• SameSubtree(u, v) returns true if u is in the subtree rooted at v.

Using Euler-Tour trees [75], each operation takes O(log n) amortized time.
See Tarjan [115] for a precise discussion.

12

Edge Values

The second data structure maintains Val(e) for each edge e in a dynamic forest.
Each value is an ordered pair (t1, t2). The following operations will be necessary
in our algorithm.

• Create() adds a tree with with a single vertex to the forest.

• Cut(e) removes the edge e from the tree T that contains it. The subtree
that contains the original root sof T keeps sas it root, while the other
subtree takes as root the endpoint of e that it contains.

• Join(u, v,Val1,Val2) adds the edge uv to the forest, sets the root of
the old tree containing u as the root of the tree containing uv, and sets
t1(uv) = Val1 and t2(uv) = Val2. Note that Join(u, v, val1, val2) and
Join(v, u, val1, val2) give rise to the same tree but with different roots.
(This operation assumes that u and v are initially in different trees.)

• Lca(u, v) finds the lowest common ancestor of vertices u and v. (This
operation assumes that u and v are in the same tree.)

• GetValue(e, i) returns the value ti(e).

• AddPath(∆, u, v, i) adds ∆ to ti(e) for each edge e in the (unique) path
from vertex u to vertex v. (This operation assumes that u and v are in
the same tree.)

• MaxPath(u, v, i) finds the edge e with largest value Vali(e) in the (unique)
path from vertex u to vertex v. (This operation assumes that u and v are
in the same tree.)

• Swap(u, v) swaps the values Val1(e) and Val2(e) for each edge e in the
(unique) path from vertex u to vertex v. (This operation assumes that u

and v are in the same tree.)

To perform these operations, we use self-adjusting top trees [116], which can
perform each of the operations in O(log n) amortized time. Each operation is a
standard operation for self adjusting top trees. We briefly describe self adjusting
top trees below, and then describe how the operations above are implemented.

Self-adjusting top trees [116] maintain an n-vertex forest that can add or
remove edges between the vertices and stores data associated with each edge or
vertex. Updates to the stored data can happen to entire paths or subtrees. The
ability to update paths (as well as subtrees) quickly is key to our algorithm.
The amortized running time for any of these operations - join, cut, or update
- is O(log n).

Self-adjusting top trees decompose any tree on a graph with two operations:
rake and compress. These operations were originally proposed by Miller and
Reif [92]. A rake takes a degree one vertex and removes it, essentially collapsing

13

that edge onto a neighboring edge. A compress takes a degree two vertex and
removes it, replacing it with a single edge. See Figure 3.1.

u

v w v w u

v

w

u

w

uv vw

vw

uv vw

uw

Figure 3.1. Left: A rake operation and the resulting tree created. Right: A compress operation
and the resulting tree.

In top trees [1], a series of rake and compress operations are used to reduce
the input forest to a single edge. To form a tree based on this decomposition,
make each edge of the tree a leaf in the data structure, and create a parent node
above any two edges in a rake or compress operation. For each rake operation
taking an edge uv and raking it onto vw, promote vw to be the name of the
parent node. For each compress operation with the edges uv and vw, label the
parent node uw to represent the new edge created. See Figure 3.1. This gives
an O(n) size tree data structure which records the decomposition of the input
tree. Insertions, deletions, and updates to subtrees can be performed in O(log n)
time.

In order to allow path updates, self-adjusting top trees [116] decompose the
tree into paths before doing rake or compress operations. All edges are oriented
towards a root vertex. Then a path from some leaf to the root is chosen as
the top level path; this path is processed using compress operations. All other
components of the tree, which are subtrees rooted at vertices along the top level
path, are recursively processed using rake and compress operations. Then these
single edges can be raked onto edges in the top level path.

In self-adjusting top trees, the key new operation is expose. The expose

operation changes this decomposition so that the specified vertices are the end-
points of the top level path in the tree. This operation is executed by alternating
splay and splice operations, which run in amortized O(log n) time. As a result,
expose and updates or queries to both subtrees and paths in the forest take
amortized O(log n) time.

For our algorithm, the operations Create,Cut,Join, and GetValue are
identical to those operations in the self-adjusting top tree. AddPath and
MaxPath can be implemented using expose along with the standard data
manipulation operations. Lca can be accomplished by calling expose on the
two endspoints and then finding their least common ancestor on that path.
Swap can be implemented by calling GetValue for each of the two values,

14

cutting the edge, and then calling join with the two values swapped.

3.2 The Data Structure

3.2.1 Preliminaries

Suppose that we are given the shortest path tree T rooted at some vertex u.
We wish to modify the tree so that it becomes the shortest path rooted at v, a
neighbor of u. View the shortest path tree as a kinetic data structure, in which
the root sslides continuously from u to v along the edge e = uv. Any vertex in
the subtree of T rooted at u is called a blue vertex. All other vertices are colored
red. Note that we are labeling each vertex red or blue depending on whether its
distance to sis increasing (red) or decreasing (blue). The vertices of each color
form a subtree of T , since any vertex’s shortest path to smust go through either
u or v. The blue subtree of T is a subtree of the shortest path tree rooted at
v, because blue shortest paths do not change as smoves closer to v. Eventually,
when sarrives at v, the shortest path tree rooted at v is obtained.

Suppose sslides a distance of ∆ across the edge e. The distance from sto
every red vertex increases by ∆, and the distance from sto every blue vertex
decreases by ∆. As long as no edge in G \ T is tense, T is still the shortest
path tree. Consider the tension of any edge. Any edge with monochromatic
endpoints (including edges in T) has constant tension, since the distance from
its endpoints to the root are changing at the same rate. Therefore, any edge
whose tension is changing must have one blue endpoint and one red endpoint.
Call this set of edges green.

When a directed edge −→xy is about to become tense (i.e. when t(−→xy) is
increasing and t(−→xy) = 0), then d(y) = d(x) + w(−→xy) for some red vertex y

and blue vertex x. This means that as scontinues to move along e, the path
from sto sthat goes through x is about to become shorter than the current path
in the shortest path tree. When an edge e = xy is about to become tense, we
have an event in the shortest path tree. At each such event, the edge directed
out from y to sis deleted, and the edge −→xy is added to the shortest path tree
instead. Additionally, y and all the vertices in its subtree are recolored to blue,
since the shortest path to snow passes through v last. The set of green edges
also changes and needs to be updated.

In our data structure, the search for events reduces to finding the (green)
edge which will become tense first. Each time such an event occurs, we perform
one Cut and one Join in the shortest path tree in O(log n) amortized time.
The main remaining issue is detecting which green edges become tense.

Our algorithm uses two data structures, one for the shortest path tree T

and the other for the complementary dual graph (G \ T)∗. The main difference
between the algorithms for the planar case and the higher genus case is the dual
structure. In a planar graph, (G\T)∗ is a spanning tree of the dual graph, called

15

f ∗

2

f ∗

1

π∗(C∗, f ∗

1
, f ∗

2
)

Figure 3.2. A planar graph drawn with solid (black) segments. A tree in the dual C∗ is with
dashed (blue) segments. The path π(C, f∗, g∗), whose orientation is indicated with two arrows,
is depicted with thick dashed (blue) segments, while the black thick arcs correspond to the arcs
−→
LR(C, f∗, g∗).

a cotree. However, in a genus g graph, (G \ T)∗ is a cotree plus 2g additional
edges.

We maintain the shortest path tree T is stored using a vertex-valued dynamic
forest structure as described in 3.1.2; the value at each node is its distance in
T from the root. We maintain (G \ T)∗ using the edge-labeled dynamic forest
data structure described in 3.1.2; the value stored for each edge is the tensions
of −→xy and −→yx. In the next section, we describe the dual data structure in more
detail.

3.2.2 Tensions of Dual Trees in Orientable Surfaces

We restrict our attention to orientable surfaces. Let C be a subtree of G∗. For
simplicity, we assume C is undirected. For any two nodes f∗ and g∗ of C (dual
to faces f and g in G), let π(C, f∗, g∗) be the unique directed path in C from
f∗ to g∗. Let

−→
LR(C, f∗, g∗) be the (directed) edges of

←→
G that cross π(C, f∗, g∗)

from left to right, that is,

−→
LR(C, f∗, g∗) = (π(C, f∗, g∗))∗

and similarly define

←−
RL(C, f∗, g∗) = (π(C, f∗, g∗))∗

See Figure 3.2. Note that
−→
LR(C, f∗, g∗) =

←−
RL(C, g∗, f∗).

We dynamically maintain a collection of dual trees C1, C2, . . . whose union
is (G \T)∗. Each tree Ci stores the tensions t(−→xy) and t(−→yx) for every dual edge
(xy)∗ in Ci. The structure supports the following operations:

• Cut(e) removes the edge e from the tree that contains it. (This operation

16

assumes that e is an existing edge in some tree.)

• Join(u, v, t1, t2) takes two primal vertices u and v and adds the edge uv∗,
and then sets tensions t(−→uv) = t1 and t(−→vu) = t2 (This operation assumes
that uv∗ connects two distinct dual trees.)

• MaxTension
−→
LR(f∗, g∗) returns an edge xy ∈ E(G) maximizing the value

t(−→xy) among the arcs −→xy ∈
−→
LR(C, f∗, g∗), where C is the tree containing

nodes f∗ and g∗. (This operation assumes that f∗, g∗ are nodes of a single
tree.)

• MaxTension
←−
RL(f∗, g∗) returns an edge xy ∈ E(G) maximizing the value

t(−→xy) among the arcs −→xy ∈
←−
RL(C, f∗, g∗), where C is the tree containing

nodes f∗ and g∗. (This operation assumes that f∗, g∗ are nodes of a single
tree.)

• AddTension
−→
LR(f∗, g∗,∆) adds the value +∆ to the tension t(−→xy) for all

−→xy ∈
−→
LR(C, f∗, g∗), where C is the tree containing nodes f∗ and g∗. (This

operation assumes that f∗ and g∗ are nodes of a single tree.)

• AddTension
←−
RL(f∗, g∗,∆) adds the value +∆ to the tension t(−→xy) for all

−→xy ∈
←−
RL(C, f∗, g∗), where C is the tree containing nodes f∗ and g∗. (This

operation assumes that f∗ and g∗ are nodes of a single tree.)

• Junction(f∗, g∗, h∗) returns π(f∗, g∗)∩ π(g∗, h∗)∩ π(f∗, h∗), the unique
node common to the 3 paths connecting any pair from {f∗, g∗, h∗}.

Lemma 3.2.1. There is a data structure to store a dynamic collection of dual

trees where the operations Cut, Join, MaxTension
−→
LR, MaxTension

←−
RL,

AddTension
−→
LR, AddTension

−→
LR, and Junction each take O(log n) time.

Proof: For each dual tree Ci, choose one of its nodes and set it as the root.
Each rooted tree Ci is then stored in an edge valued dynamic forest structure,
as described in Section 3.1.2. For convenience, we direct each tree towards its
root, although the underlying tree is still undirected. The two values of a dual
edge are the two associated tensions t(−→xy) and t(−→yx), according to the following
correspondence:

(1) if xy∗ points towards the root of its tree and −→xy crosses xy∗ from left to
right, then Val1(xy∗) = t(−→xy) and Val2(xy∗) = t(−→yx). See Figure 3.3.

We will be careful to keep this correspondence through the operations of the
data structure.

The operation Cut(e∗) is implemented by calling Cut(e∗) in the underlying
self adjusting top tree. Correspondence (1) is maintained in the two new trees,
because the new tree’s root is the remaining endpoint of e∗.

Now consider Join(u, v, t1, t2). Let f` and fr be the faces to the left and
the right of −→uv, respectively, and let root(f∗`) and root(f∗r) be the roots of

17

x y

f∗

r

f∗

ℓ

root
. . .

root(f∗

r)

f∗

ℓ f∗

r

uv∗

root(f∗

ℓ
)

Figure 3.3. Figures for Lemma 3.2.1. Left: Notation for correspondence (1). Right: Schematic
description of the operation Join.

the dual trees containing f∗` and f∗r , respectively. See Figure 3.3, right. We
call Join(f∗` f∗r , t1, t2) in the self-adjusting top tree. The resulting cotree has
root(f∗r) as its root. Correspondence (1) holds for all edges except those in the
path from root(f∗r) to f∗` . We fix this inconsistency by calling Swap(root(f∗r), f∗`).

We now consider MaxTension
−→
LR(f∗1 , f∗2). Let C be the tree containing the

nodes f∗ and g∗, and let a∗ be the lowest common ancestor in C of f∗ and g∗,
found by calling Lca(f∗, g∗). The path π(C, f∗, g∗) consists of an “ascending”
path πup from f∗ to a∗, followed by a “descending” path πdown from a∗ to g∗.
Because of correspondence (1), an edge along the path πup store the relevant
tension as Val1(·), while along πdown this tension is stored as Val2(·). To find
the edge with maximum tension, we call Lca(f∗, g∗) the self adjusting top tree
to find a∗ and then call MaxPath(f∗, a∗, 1) and MaxPath(a∗, g∗, 2) and return
the maximum of the two values returned.. Note that MaxTension

←−
RL(f∗, g∗)

is an equivalent operation.
For AddTension

−→
LR(f∗, g∗,∆), we again first find a∗ = Lca(f∗, g∗) the

self adjusting top tree containing f∗ and g∗. We then update the tensions in
each monotone subpath separately by performing AddPath(∆, f∗, a∗, 1) and
AddPath(∆, a∗, g∗, 2). Note that AddTension

←−
RL(f∗, g∗,∆) is an equivalent

operation.
Finally, the operation Junction(f∗, g∗, h∗) can be performed with a con-

stant number of Lca queries, since the junction must be the lowest common
ancestor of two of the three input nodes.

Since each operation requires a constant number of calls to the self adjusting
top tree, each operation takes O(log n) amortized time.

�

3.3 Planar Graphs

3.3.1 Algorithm for Planar Graphs

Our algorithm for planar graphsis similar to Klein’s algorithm [82] in that we
relax edges and use a tree/cotree decomposition. However, we relax edges in a
difference order than Klein’s algorithm; our kinetic data structure relaxes edges
one by one as the source moves, instead of changing the root and then relaxing

18

Figure 3.4. The thick lines in the graph are the shortest path tree rooted at s, shown moving
along the edge e. As smoves closer to the target, an edge along the green path in the dual (shown
in dotted lines) becomes tense and is inserted.

edges iteratively from a set of tense edges as Klein does.
Let T be a shortest path tree rooted at a point salong the edge e = uv, and

let fr, f` denote the faces to the left and to the right of −→uv, respectively. Recall
that vertices in the subtree rooted at u are red, and vertices in the subtree
rooted at v are blue. Any edge between red and blue vertices is called green;
this is the set of edges whose tension is changing.

Initially, if the edge e is not in the shortest path tree, all vertices are red.
At some stage e becomes tense, since the distance from sto v along e is going to
zero as sslides along e. At this stage, the edge e enters the shortest path tree,
and the subtree rooted at v is immediately colored blue.

Once e is in T , we are sliding the root sof the shortest path tree T across
uv; we must maintain a shortest path tree as the root moves. The dual edges
(G \ T)∗ form a tree C of the dual graph, and the green edges are those dual
to the edges in π(C, f∗r , f∗`). The blue vertices lie in the region to the left of
the cycle π(C, f∗r , f∗`) concatenated with uv∗, while the red vertices are to the
right. See Figure 3.4. Therefore, the directed edges

−→
LR(C, f∗r , f∗`) are oriented

from blue to red vertices, and their tensions are increasing as sslides across e.
Symmetrically, the directed edges

←−
RL(C, f∗r , f∗`) have decreasing tensions. Any

directed edge not in
−→
LR(C, f∗r , f∗`) or

←−
RL(C, f∗r , f∗`) has constant tension since

both endpoints have the same color.
Our algorithm begins with a shortest path tree T rooted at a vertex r = u.

The dual edges (G \ T)∗ form a spanning tree T ∗ of the dual graph, which we
store in an Euler tour tree as described in Section 3.2.2.

Once e = uv is in the shortest path tree, the algorithm iterates over the
following steps until sreaches v or e leaves the shortest path tree (at which
point every vertex is blue). See Figure 3.4. We call MaxTension

−→
LR(f∗r , f∗`) to

find the edge −→xy with maximum tension. Since t(−→xy) is increasing, this will be
the first edge to become tense. Let ∆ = t(−→xy)/2 be the amount the root needs
to move for −→xy to become tense.

Next, move the root sa distance ∆ along uv, update distances in the primal
tree, and update tensions in the dual tree. In the primal tree, AddSubtree(u, ∆)

19

adds ∆ to every distance for vertices in the red subtree, simulating the root
sliding along the edge e by a distance of ∆. Similarly, AddSubtree(v,−∆)
updates the distance from sto the blue vertices. In the dual structure, we up-
date the tensions of the green edges by calling AddTension

−→
LR(2∆, f∗r , f∗`) and

AddTension
←−
RL(−2∆, f∗r , f∗`).

Now we must actually update the shortest path tree and the cotree. Let z by
the child of y in T . We call Cut(zy) and then Join(xy) to connect the root sto
y via the shorter path. This also (conceptually) recolors y and its subtree blue.
To update the dual tree C, we call cut(xy) in the dual structure to remove the
edge xy whose tension is no longer changing, and then Join(z, y, 0,−w(zy)) to
insert zy, which has t(−→zy) = 0 and t(−→yz) = −w(zy); this reconnects our cotree
to match our new shortest path tree.

Each edge change in the shortest path tree calls a constant number of op-
erations, taking O(log n) amortized time total. We next bound the number of
edges that must be added or removed from the graph.

Lemma 3.3.1. Shortest path trees in planar graphs can be represented in such

a way that the shortest path tree Tu rooted at u can be changed to the shortest

path tree Tv rooted at a neighbor v of u in O(k log n) time, where k is the

number of edges of Tu not present in Tu. In this representation, any shortest

path distance from the root can be computed in O(log n) time. �

In the next section, we show that any edge can be inserted or deleted a
constant number of times.

3.3.2 Analysis for Planar Graphs

Klein [82] noted that if one maintains the so-called leftmost shortest path tree,
each edge enters and leaves the shortest path tree a constant number of times.
This property also holds for our algorithm.

Lemma 3.3.2. As the root of the shortest path tree moves along f , each edge

enters and leaves the shortest path tree O(1) times.

Proof: Recall that we may assume shortest paths are unique; this can be en-
forced using standard perturbation techniques [97].

A green edge xy enters the shortest path tree when either t(−→xy) = 0 or
t(−→yx) = 0. We restrict our attention to the case t(−→xy) = 0, since the other
t(−→yx) = 0 is symmetric.

Let A be the set of points on δf whose shortest path trees contain −→xy. The
vertices in A are the the roots of shortest path trees that could contain −→xy. Let
B = δf \A, the vertices of f not contained in A.

Suppose A is disconnected. We can then find two shortest paths p and q

from vertices in A to the vertex y which use edge −→xy. But then there must be
a shortest path π from a vertex of B to y which crosses p or q, since p and q

20

v u

Figure 3.5. As the blue tree expands, the set of green edges could intersect itself and separate
into g + 1 components. Here, the blue subtree (rooted at v) wrapped around the torus, and the
set of green edges is shown as two disconnected cycles in the dual which separate the red subtree
from the blue subtree.

together with the boundary of f form a closed curve. This is a contradiction;
shortest paths cannot cross, because (by our earlier assumption) shortest paths
are unique and any crossing would allow a shorter path. Thus, A is connected.

Now consider maintaining the shortest path tree as the root smoves along
δf . The edges −→xy enters the shortest path tree at one end of A and leaves when
sreaches the other end. Thus each (undirected) edge can be inserted or removed
at most a total of 4 times.

�

Like Klein [82], we may assume the graph has bounded degree, which allows
the use of persistence [47] to store and search any previous versions of the
shortest path tree. The persistent data structure requires O(n log n) space.
Thus:

Theorem 3.3.3 (Klein [82]). Let G be a plane graph with n vertices, and

let be f a face of G. After O(n log n) preprocessing time and using O(n log n)
space, a shortest path distance from any vertex on f to any other vertex can be

found in O(log n) time.

3.4 Higher Genus Graphs

3.4.1 Algorithm for Orientable Surfaces

The algorithm in the planar case does not immediately extend to higher genus
graphs because the dual graph G∗ \E(T)∗ is no longer a tree. Without this tree
structure, the set of green edges can have a much more complicated combinato-
rial structure, and therefore finding tense edges is more difficult. For example,
suppose g = 1. Initially, the blue subtree is divided from the red subtree by a
cycle of green edges. However, as the blue subtree grows, it is possible for the
blue to meet at other places, and the green boundary splits into two connected
components. See Figure 3.5.

Without loss of generality, we assume each vertex has degree at most 3. Let
T be a shortest path tree rooted at a point salong the edge uv, and assume that
uv is in T . We decompose the dual edges C = ((G \ T) ∪ {uv})∗ as follows.

21

Iteratively delete all edges of degree 1. These edges form a forest in the dual
graph, which we denote F . After the edges of F have been deleted, we have
a set of paths, which we call cut paths, meeting at vertices of degree 3; this is
the cut locus for the root of the shortest path tree [59]. Denote these cut paths
as P = {π0, π1, . . . , πk}, where each πi is a path between two dual vertices of
degree 3, and π0 denotes the path containing e∗. (This is the reduced cut locus
described in [58] and [59].) Cutting the surface along the paths P \ {π0} gives
a topological disk, and Euler’s formula implies that k = O(g) [58, Lemma 4.2].
1 Since π0 has its endpoints in the boundary of the disk, cutting the surface
along the paths splits the surface into two topological disks, R and B.

Consider now sliding the source sof the shortest path tree T across uv. See
Figure 3.6. Let disk R contain all the red vertices, and disk B contain all the
blue vertices. The set of green edges, or primal edges whose endpoints are not
monochromatic, are again those edges that could potentially become tense. The
green edges cross the boundary between B and R. Therefore, P contains the
dual of every green edge. Moreover, for any path πi ∈ P , either all of the edges
in (πi)∗ are green or none of them are. We say that a cut path is green when
all its dual edges are green.

We maintain the primal tree T in an Eulertour tree exactly as in the planar
case.

For the dual structure, we partition the dual subgraph C into trees C0, C1, . . .

by attaching each tree in F to an adjacent path πi; each tree Ci is stored in a
self-adjusting top tree. The trees hanging from a vertex where cut paths meet
are assigned to and stored in only one of the dual trees Ci. Recall that self-
adjusting top trees are stored using a path decomposition; here, πi is stored as
the root path of Ci (using the expose operation).

We also maintain a representation of the reduced cut locus Φ, and embedded
graph whose edges correspond to the cut paths in P . The graph has O(g) edges
and two faces, R and B. To determine if a cut path πi is green, we simply find
the corresponding edge in Φ and check if it bounds both R and B in O(g) time.

Consider a green cut path πi, with endpoints f∗i and g∗i . We can find in
O(log n) amortized time a directed edge −→xy with maximum tension among those
crossing πi as follows. Assume without loss of generality that x ∈ B and y ∈ R.
The path πi is π(Ci, f

∗
i , g∗i) (without orientation). We can determine if the ori-

ented path π(Ci, f
∗
i , g∗i) bounds the blue disk B to its right or to its left by look-

ing in Φ. If π(Ci, f
∗
i , g∗i) bounds B to its left, MaxTension

−→
LR(f∗i , g∗i) returns

the edge with maximum tensions crossing πi; otherwise, MaxTension
←−
RL(f∗i , g∗i)

returns the edge with maximum tension. A similar argument shows that we can
update the tensions for all arcs crossing any green cut path in O(log n) amortized
time.

Our algorithm begins with a shortest path tree T rooted at a vertex s= u.
1The concept of cut path in [58] is different, in that it does not include π0. This “extra

cut path” in our definition may produce up to three extra paths in our setting.

22

u

π1

π2

π3

u

π1

π2

π3

π1

π2

π3

u

v

π1

π2+π2-

π3

π2

π4

u

v

π1

π2

π3

π1

π2

π3

π2-

π2+

π2-

π2+

π4

u

v

π1

π2

π2+π2-

π4

π3

π5

u
v

π1

π2

π3

π1

π2

π3

π2-

π2+

π2-

π4

π5

π2+

Figure 3.6. An example of the algorithm progressing. On the left, the alterations are shown on
the surface on the torus, and on the right, they are shown on a polygonal schema. As new edges
become tense, the set of cut paths alters, but always separates the blue subtree from the red
subtree.

If the edge uv is not in the shortest path tree, all vertices are red. When uv

becomes tense, it enters the shortest path tree, and the subtree rooted at v

becomes blue.
Once uv ∈ T , the algorithm repeats the following steps until sreaches v or

uv leaves the shortest path tree (meaning that every vertex is blue). We find
the first directed edge −→xy that will become tense by querying every green cut
path for its tensest dual edge. We take O(log n) amortized time per cut path,
and there are O(g) paths, so it takes O(g log n) amortized time to find the edge
−→xy with maximum tension. Let ∆ = t(−→xy)/2; this is the distance smust go along
uv for the edge −→xy to enter the shortest path tree.

Next, we update the shortest path tree to simulate moving the source sa
distance ∆ along the uv. Let z be the child of y in the shortest path tree. We

23

then call AddSubtree(u, δ) and AddSubtree(v,−δ) to update the distances,
and Cut(zy), and Join(x, y) to update the structure of the tree.

Next, we update the tensions in the dual structure. For each green cut path,
we add +2∆ to every arc from blue to red and add −2∆ to every arc from red
to blue.

We also update Φ and the trees Ci to reflect the new cut paths. Edge yz

is now green, and an endpoint of (yz)∗ can be vertices in F or directly on
some cut path πj . Find the unique (and possibly empty) path in F connecting
each endpoint of (zy)∗ to the paths P , by performing an expose in the self-
adjusting top tree which each endpoint belongs to; call these paths πz and πy.
Then π = πz ◦ (zy)∗ ◦ πy is the new cut path we must add to C.

As in the planar case, we first call Cut((xy)∗) and Join(z, y, 0,−w(yz)) to
update the dual forest. Note that Join will also make π the top level path in
the combined self-adjusting top tree by calling expose on that path. Now let
pil be the cut path that −→xy crossed. πl is no longer a cut path, so we find the
cut paths in C which meet the two endpoints of πl at vertices of degree three
in Φ. The self-adjusting top trees left after the operation Cut((xy)∗) will be
joined to one of these other cut paths, since they are part of F .

We still need to adjust the partition of C so that the cut paths are correct.
To do this, we call Junction to find the vertices a and b where π intersects the
two other cut paths, say πi and πj , respectively. The portion of these two cut
paths between a and (xy)∗ and b and (xy)∗ is no longer green, since the subtree
rooted at y is now blue. We call expose on a and the relevant vertex of πi in
order to update the representation of πi’s self-adjusting top tree, and similarly
update πj .

Finally, we update Φ by removing the edge corresponding to πl and adding
the new edge corresponding to π. Since Φ has size O(g), this takes O(g) time.

This finishes the description of the algorithm to move salong a single edge
uv. We handle each pivot, or change in the shortest path tree, in O(g log n)
amortized time. The number of pivots is bounded by the difference between Tu

and Tv. This gives the following:

Lemma 3.4.1. Given a shortest path tree rooted at a vertex v in a graph that

is embedded on an orientable surface of genus g, we can compute the shortest

path tree rooted at a neighbor u of v in O(kg log n) time, where k is the number

of edges in Tu which are not in Tv. Shortest path distances in the tree can then

be computed in O(log n) time.

3.4.2 Analysis for Higher Genus Graphs

Let G be a graph embedded in a surface of genus g, orientable or not. We
first show a bound on the number of times that an edge can enter or leave the
shortest path tree as the root smoves around a face.

24

Lemma 3.4.2. As the source of the shortest path tree moves along a face f ,

each edge enters or leaves the shortest path tree O(g) times.

Proof: We use an argument similar to Lemma 3.3.2. We bound the number of
times any edge xy becomes tense and enters the shortest path tree. As before,
let A be the set of points on the boundary of f such that −→xy is in Ts, where Ts

is the shortest path tree rooted at s. A is the union of a set of disjoint, maximal
paths A1, . . . , Ak on the boundary of f . Edge −→xy enters the shortest path tree
exactly k times, once at the initial endpoint of each Ai. We will argue that
k = O(g), which will conclude the proof.

Fix a point vi in each component Ai, for i = 1 . . . k. Next, let pi be the
shortest path from vi to y. By construction, pi uses the edge −→xy, and for all
i 6= j, paths pi and pj do not cross.

Let N be the surface obtained by contracting the face f to a point f . We
claim that in N , any two paths pi and pj with i 6= j are non-homotopic. Assume
for the purpose of contradiction that pi and pj are homotopic in N . InM, this
means that there is a subwalk f ′ of f that together with pi and pj bound a disk
(and thus a planar graph). But then the shortest path to y from every vertex of
f ′ uses xy, which implies that vi and vj are in the same connected component
of A, which is impossible.

Finally, [25, Lemma 2.1] implies that the number of pairwise non-crossing,
non-homotopic paths in N is O(g), since we can combine pairs of non-homotopic
paths to get a set of pairwise non-crossing, non-homotopic loops with basepoint
f∗. We conclude that k = O(g), which completes the proof. �

Since each update to the tree takes O(g log n) amortized time and there are
O(gn) possible updates, the total running time of our algorithm is O(g2n log n).
Again, we can use standard techniques to convert to a graph with bounded
degree, and use persistence [47] to store and search any previous versions of the
shortest path tree.

During our algorithm, we need O(g + n) = O(n) space to maintain the
(dual) structures. The primal structure also uses O(n) space is updated O(gn)
times. Therefore, the final data structure for storing all shortest path trees uses
O(g2n log n) space. We conclude:

Theorem 3.4.3. Let G be a graph with n vertices embedded in a surface of

genus g, and let be f a given face of G. With O(g2n log n) preprocessing time,

a shortest path distance from any vertex on f to any other vertex can be found

in O(log n) time.

25

3.5 Computing Shortest Nonseparating and

Noncontractible Cycles

In this section we describe algorithms to find the shortest nonseparating and
shortest noncontractible cycles in a combinatorial surfaceM, orientable or not.
Our technique for maintaining shortest path trees is condensed in the following
lemma.

Lemma 3.5.1. Let α be a simple cycle or arc inM. A shortest cycle crossing

α exactly once can be obtained in O(g2n log n) time.

Proof: Consider the surface obtained by cuttingM along α: each vertex v in α

gives rise to two vertices v′ and v′′, and two boundary arcs or cycles α′ and α′′.
Let N be the surface obtained by gluing disks to the boundaries that contain α′

and α′′. (If α is an arc, then α′ and α′′ may be contained in a single boundary.)
A cycle inM that crosses α once at a point v becomes a path in N connecting
v′ to v′′. Thus, a shortest cycle that crosses α once at v is a shortest path that
connects v′ to v′′ in N , and vice versa. Since all the points v′, with v ∈ α,
belong to a face of N , we can find in O(g2n log n) time a closest pair (v′0, v

′′
0)

by Theorem 3.4.3. Computing the shortest path from v′0 to v′′0 gives the desired
path. �

For simple arc or cycle α, let Cross(α) be the set of cycles which cross
α exactly once. If α is separating, then Cross(α) = ∅ because every cycle
crosses α an even number of times. We also note that every cycle in Cross(α) is
noncontractible, because contractible cycles are also separating, and therefore
any cycle or arc must cross it an even number of times.

3.5.1 Shortest Nonseparating Cycle

Our algorithm works both for orientable and nonorientable surfaces. Consider
a surfaceM. It suffices to consider surfaces without boundary, since any short-
est nonseparating cycle in M is also nonseparating in the surface obtained by
attaching disks to the boundaries.

Cabello and Mohar [19] describe how to construct in O(gn log n) time a set S

of O(g) simple cycles such that the shortest cycle in
⋃

`∈S Cross(`) is a shortest
nonseparating cycle. Since S consists of O(g) loops, we can apply the previous
lemma to each Cross(`) for each ` in S and take the globally shortest cycle. We
conclude:

Theorem 3.5.2. Let M be an orientable surface, possibly with boundary,

of complexity n and genus g. We can find a shortest nonseparating cycle in

O(g3n log n) time.

26

3.5.2 Shortest Noncontractible Cycle

The main technique for noncontractible cycles is to find a curve which intersects
a shortest noncontractible cycle at most once and whose removal decreases the
genus or number of boundaries of the surface. Our main tool to prove that such
a curve exists is the following exchange argument.

Lemma 3.5.3. Let M be a surface and let `x be a shortest noncontractible

loop with given basepoint x ∈ M. There is a shortest noncontractible cycle in

M crossing `x at most once.

Proof: Let C be a shortest noncontractible cycle that crosses `x the minimum
number of times. We claim that C crosses `x at most once. Assume for the
purpose of contradiction that C crosses `x twice, at y and z. Let γ1 and γ2 be
the two subpaths of C from y to z, let β1 and β2 be the subpaths of `x from
y to z. To simplify notation, we do not differentiate between a path and its
reverse. We consider two cases and in each case arrive to a contradiction with
the hypothesis that C and `x cross twice.

First, suppose β1 ∼ γ1; the other cases are symmetric. The loop (β2 + γ1)
passes through x, and it is noncontractible because (β2 + γ1) ∼ (β2 + β1) = `x.
We then have |β2| ≤ |γ1| because |`x| ≤ |β1| + |γ1|. The cycle C̃ = γ2 + β2 is
noncontractible because (γ2 + β2) ∼ (γ2 + γ1) = C. It also crosses `x at least
twice less than C, and |C̃| = |γ2|+ β2| ≤ |γ2|+ |γ1| ≤ |C|. This contradicts the
definition of C.

It remains to consider the case where no pair of paths βi and γi are homo-
topic. The cycles β1 +γ1 and β1 +γ2 are noncontractible; otherwise, γ1 ∼ β2 or
γ2 ∼ β2, which contradicts our assumption. Now β1 + γ1 is a noncontractible
loop through x, and therefore |`x| ≤ |β1| + |γ1|, so |β2| ≤ |γ1|. The cycle
C̃ = β2 + γ2 is noncontractible because β2 � γ2. C̃ also crosses `x two fewer
times than C, and |C̃| = |β2| + |γ2| ≤ |γ1| + γ2| = |C|, which contradicts our
choice of C. �

The following lemma discusses what happens with simple noncontractible
cycles when pasting a disk into a boundary of the surface.

Lemma 3.5.4. Let M be a surface with boundary and let δ be one of its

boundary components. Let N be the surface obtained by pasting a disk to δ. A

noncontractible simple cycle inM is either noncontractible in N or homotopic

to δ inM.

Proof: Consider a noncontractible simple cycle C in M. Let Dδ be the disk
that is attached to M to obtain N . If C is contractible in N , then C bounds
a disk DC in N . Note that the disk DC must contain Dδ; otherwise, C would
also bound a disk in M, implying that C is contractible in M. DC \ Dδ is
an annulus in M with boundary cycles C and δ. It follows that C and δ are
homotopic inM. �

27

We also have the following results regarding arcs in a surface with boundary.

Lemma 3.5.5. LetM be a surface with boundary, let δ be one of its boundary

cycles, and let α be a shortest noncontractible arc with endpoints in δ. There

is a shortest noncontractible cycle in M that is either homotopic to δ or that

crosses α at most once.

Proof: Let C be a shortest noncontractible cycle in M. Assume C � δ, since
otherwise the proof is complete. Lemma 3.5.4 implies that C is a shortest
noncontractible cycle in N , the surface obtained by pasting a disk D at δ. In
the surface N , place a new vertex p in D and connect it through edges with
weight L to each vertex of δ. Consider the loop ` with basepoint p that follows
the edge p α(0), the arc α, and the edge α(1) p. If we choose L large enough,
` is a shortest noncontractible loop in N through p, so Lemma 3.5.3(a) implies
that a shortest noncontractible cycle C ′ in N crosses ` at most once. We must
have|C ′| = |C|, and if L is large enough, C ′ must avoid the disk D. It follows
that C ′ is a shortest noncontractible cycle inM that crosses α at most once. �

Lemma 3.5.6. Let M be a surface with at least two boundary components,

and let α be a shortest arc connecting two different boundaries ofM. There is

a shortest noncontractible cycle inM that crosses α at most once.

Proof: Let C be a shortest noncontractible cycle in M that crosses α the
minimum number of times. We claim that C crosses α at most once. Assume
for the purpose of contradiction that C crosses α at least twice, and let y and z

be two such crossings. Let γ1 and γ2 be the two subpaths of C from y to z, let
α̃ be the subpath of α from y to z. Since α is a shortest arc connecting the two
specified boundaries, we have |α̃| ≤ |γ1 and |α̃| ≤ |γ2|. If α̃ � γ1, then we have
a contradiction: the cycle α̃ + γ1 is noncontractible, crosses α fewer times than
C does, and |α̃|+ |γ1| ≤ |γ2|+ |γ1| = |C|. Similarly, we must have α̃ ∼ γ2. But
then γ1 ∼ γ2, which implies that C is contractible, which is a contradiction. �

The next lemma summarizes the algorithmic tools that we will use.

Lemma 3.5.7. Let M be a surface of complexity n.

(a) Given a basepoint x, we can find in O(n log n) time a shortest noncon-

tractible loop with basepoint x. This loop has multiplicity 2.

(b) Given a boundary δ, we can find in O(n log n) time a shortest cycle ho-

motopic to δ.

(c) Given a boundary δ, we can find in O(n log n) time a shortest noncon-

tractible arc with endpoints in δ. This acr has multiplicity at most 2 and

is edge-disjoint from δ.

28

(d) IfM has two or more boundaries, we can find in O(n log n) time a shortest

arc with endpoints in two specified boundaries. This arc has multiplicity

1 and is edge-disjoint from all boundaries ofM.

Proof: (a) See Erickson and Har-Peled [58, Lemma 5.2].

(b) See Cabello et al [17].

(c) Contract δ to a point p and construct a shortest noncontractible loop with
basepoint p as in item (i). This is the desired arc inM.

(d) Select boundaries δ and δ′ of M, contract them to points p and p′, and
construct in O(n log n) time the shortest path from p to p′.

�

Lemma 3.5.8. Let M be a combinatorial surface with complexity n, genus

g, and b boundaries. Let N be the surface obtained by pasting a disk to

each boundary of M. We can find a shortest noncontractible cycle in M in

O(bn log n) time plus the time used to find a shortest noncontractible cycle in

N .

Proof: Number the boundaries δ1, δ2, . . . , δb, and set M0 =M. For i ≥ 1, let
Mi be the surface obtained from Mi−1 by pasting a disk to δi. In particular,
Mb = N . For each i, let Ci be a shortest cycle homotopic to δi in Mi−1. We
can compute each cycle Ci in O(n log n) time.

Lemma 3.5.4 implies that a shortest noncontractible cycle in Mi−1 is ei-
ther Ci or a shortest noncontractible cycle in Mi−1. Thus, the shortest non-
contractible cycle in M is either the shortest among C1, . . . , Cb or a shortest
noncontractible cycle in N . �

Theorem 3.5.9. Let M be a combinatorial surface with complexity n, genus

g, and b boundaries. We can find a shortest noncontractible cycle of M in

O((g3 + b)n log n) time.

Proof: We apply Lemma 3.5.8 to M. We spend O(bn log n) time, and have
reduced the problem to find a shortest noncontractible cycle in a surface N of
genus g and no boundary. We next give an iterative algorithm that reduces ei-
ther the genus or the number of boundaries of the subproblems in each iteration.
The algorithm stops when each remaining component is a topological disk. We
distinguish three cases. N denotes the surface in the subproblem; note that N
has complexity O(n) and genus at most g.

(a) If N is a surface without boundary, we choose a point x ∈ N and find
a shortest noncontractible loop `x through x. Lemma 3.5.3 implies that
there is a shortest noncontractible cycle in N crossing `x at most once.
We can compute the shortest cycle in Cross(`x) and then set N = N \ `x.
Note that if `x is separating, then N ′ has two connected components

29

and Cross(`x) = ∅. Lemmas 3.5.1 and 3.5.7(a) imply that we spend
O(g2n log n) time in this iteration.

(b) If N has exactly one boundary δ, we find a shortest noncontractible arc α

with endpoints in δ. Lemma 3.5.5 implies that there is a shortest noncon-
tractible cycle in N that either crosses α at most once or is homotopic to
δ. We can compute the shortest cycle in Cross(`x) and teh shortest cycle
homotopic to δ, set N = N \ `x. Lemmas 3.5.1 and 3.5.7(b-c) imply that
we spend O(g2n log n) time in this iteration.

(c) IfN has two or more boundaries, we find a shortest arc α connecting them.
Lemma 3.5.6 implies that there is a shortest noncontractible cycle in N
crossing α at most once. We compute the shortest cycle in Cross(`x) and
replace N with N \ `x. Lemmas 3.5.1 and 3.5.7(d) imply that we spend
O(g2n log n) time in this iteration.

This finishes the description of the algorithm. The algorithm has O(g) iter-
ations; starting with no boundary, we iteration in case (a) once and then cases
(b) or (c) at most g times. The arcs and loops that we cute, which are obtained
from Lemma 3.5.7, have multiplicity at most two and are edge-disjoint from
the boundary. Thus any subsurface N considered in a subproblem has at most
four copies of an edge of M. Thus, m = O(n), and in each iteration we spend
O(g2n log n) time. �

30

Chapter 4

Shortest Splitting Cycles

Another natural question on surfaces is to find simple, noncontractible, and
separating cycles, or splitting cycles. In the combinatorial surface model, this
question is particularly nice in that it serves as a possible generalization of planar
graph separators [88], since it separates both the graph and the topology.

In this chapter, we prove in Section 4.2 that computing the shortest splitting
cycle on a given surface is NP-hard. In Section 4.3, we prove that a shortest
splitting cycle on a surface of genus g with b boundary components cuts any
shortest path on the surface O(g+b) times; this bound is tight if the surface has
no boundary. This property leads to an algorithm to compute a shortest split-
ting cycle in (g + b)O(g+b)n log n time, which we describe in Section 4.4. Thus,
we show that the shortest splitting problem is fixed-parameter tractable with
respect to the genus and the number of boundary components of the surface.
This is the first result of this kind among the previously cited works. In par-
ticular, although Erickson and Har-Peled provide an algorithm to compute the
minimum cut graph on any surface of constant genus and constant number of
boundary components in polynomial time, the order of the polynomial depends
on the genus and on the number of boundary components [58].

In Section 4.5, we consider the problem of finding a shortest cycle that splits
the surface into two surfaces of prescribed topology. For example, given a surface
of genus g with b boundary components, and given g′ ≤ g and b′ ≤ b + 1, we
can find the shortest cycle that splits M into two surfaces, one of which has
genus g′ and b′ boundary components. We can also find the shortest splitting
cycle that is not homotopic to a boundary. We give an algorithm to solve these
questions in (g + b)O(g+b)n log n time.

Finally, iteratively cutting a surface of genus g without boundary along
a shortest splitting cycle decomposes the surface into g punctured tori, but
we show in Section 4.6 that one does not necessarily obtain the shortest such
decomposition with this method.

We emphasize that most of our structural results (Lemma 4.3.1, Proposi-
tion 4.3.2, and Theorem 4.3.3) are not limited to the combinatorial surface
model, but rather apply to surfaces with a wide range of metrics, including
piecewise-linear, piecewise-algebraic, and abstract Riemannian surfaces. Even
the NP-hardness reduction in Section 3 can be easily modified to apply in these

31

more general surface models. The restriction to the combinatorial surface model
is only necessary for our algorithmic results in Section 4.4, largely because this
is the only known surface model in which exact shortest paths can be computed
efficiently without additional assumptions.1

4.1 Preliminaries

4.1.1 Preliminary Lemma

Let L be a set of simple, pairwise disjoint loops with common basepoint, all in
the interior of M. Let M′ be a connected component of M \ L. If M′ is a
disk with one, two, or three copies of the basepoint on its boundary, it is called
respectively a monogon, a bigon, or a trigon. If iM′ is an annulus with one copy
of the basepoint on its boundary and a boundary cycle that is a boundary of
the original surface M, thenM′ is called an elementary annulus.

Lemma 4.1.1. LetM be a surface with genus g and b boundaries. Let L 6= ∅
be a set of simple, pairwise disjoint loops with common basepoint, all in the

interior of M. If no component of M\ L is a monogon or a bigon, then |L| ≤
6g + 2b− 3.

Proof: We first prove that we can extend L to a set L′ of simple, pairwise
disjoint loops with the same basepoint, x, such that M\ L consists of trigons
and elementary annuli only. Initially, let L′ = L.

Let M′ be any component of M\ L; this component has at least one copy
of x on its boundary. If M′ contains a boundary component of M, we add to
L′ a loop in M′ that encloses this boundary component, splitting M′ into an
elementary annulus and another surface. Now we consider any component M′

of M \ L′ that is not an elementary annulus; such a component contains no
boundary component of the original surface M.

IfM′ has positive genus, we add to L′ a nonseparating loop inM′, based at
some copy of x on its boundary. This does not create monogons or bigons and
decreases the genus ofM′ by one. We repeatedly add nonseparating loops until
M′ has genus zero. IfM′ has at least two boundaries (and is not an elementary
annulus), then each boundary contains a copy of the basepoint x, and we can
add a path in M′ that connects two copies of x on different boundaries. This
path does not separate M′, creates no monogon or bigon, and decreases the
number of boundary components by one. So we may assume thatM′ is a disk.

1Efficient shortest-path algorithms for piecewise-linear surfaces [29, 93] require exact real
arithmetic. Even if the input coordinates are integers, shortest path lengths are sums of
square roots of integers; it is an open question whether two such sums can be compared in
polynomial time on an integer RAM [12]. The analysis of these algorithms also assumes that
the shortest path between any two points in the same face of the surface is contained in that
face. Although this condition is satisfied by (even non-convex) polyhedra in any Euclidean
space, it is not true for arbitrary abstract PL surfaces.

32

For some k ≥ 3, the boundary of the disk M′ contains k copies of x. Such
a disk may be triangulated by adding k − 2 loops. So we obtain a set L′ ⊇ L

of simple, pairwise disjoint loops with common basepoint that split M into b

elementary annuli and t trigons, for some integer t.
Finally, counting the edge-face incidences in two different ways, we obtain

2|L′| = 3t + b. Euler’s formula, applied to the surface M with each boundary
component filled with a disk, implies 2− 2g = 1−|L′|+ t+ b. We conclude that
|L′| = 6g +2b−3 and t = 4g + b−2. Since |L| ≤ |L′|, the proof is complete. �

4.1.2 Finding a Splitting Cycle

If length is not a consideration, we can compute a splitting cycle on a surfaceM
in O(n) time as follows.

If M is a sphere, a disk, or a torus, then no splitting cycle exists. Other-
wise, if M has at least one boundary component, then any cycle enclosing one
boundary component is splitting. So we may assume thatM has genus at least
two and has no boundary.

First we construct a simple noncontractible cycle, using a variant of an algo-
rithm of Erickson and Har-Peled [58], which finds the shortest noncontractible
loop with a given basepoint in O(n log n) time. The running time is domi-
nated by the computation of a shortest-path tree rooted at x using Dijkstra’s
algorithm. If we ignore the edge lengths and use breadth-first search instead,
the running time drops to O(n); the modified algorithm still returns a simple
noncontractible cycle α. If α is separating, then we are done. Otherwise, we
compute another noncontractible cycle that crosses α exactly once, in O(n)
time. To do this, we choose an arbitrary vertex x ∈ α and compute a simple
path β from one copy of x to the other copy in M \ α, using (for example)
depth-first search. The cycle γ = α ·β · ᾱ · β̄ is simple and null-homologous, but
not contractible; specifically, one of the components of M \ γ is a punctured
torus. Thus γ is a splitting cycle.

4.2 NP-Hardness

Theorem 4.2.1. Finding the shortest splitting cycle on a combinatorial surface

is NP-hard.

Proof: A grid graph of size n is a graph induced by a set of n points on the
two-dimensional integer grid. We describe a two-step reduction from the Hamil-
tonian cycle problem in grid graphs [80].

Let H be a grid graph of size n. To begin the first reduction, we overlay n

4× 4 square grids of width ε < 1/4n, one centered on each vertex of H. In each
small grid, we color the square in the second row and second column red and
the square in the third row and third column blue (where we fix the origin at

33

the upper left corner). We now easily observe that the following question is NP-
complete: Does the modified grid contain a cycle of length at most n + 1/2 that
separates the red squares from the blue squares? Any Hamiltonian cycle for H

can be modified to produce a separating cycle of length at most n+1/2 by locally
modifying the Hamiltonian cycle within each small grid, as shown in Figure 4.1,
left and middle. Conversely, any separating cycle must pass through the center
points of all n small grids, which implies that any separating cycle of length at
most n + 1/2 must contain n grid edges that comprise a Hamiltonian cycle for
H. We note that this result holds also if the cycle is allowed to visit vertices
and edges of the modified grid several times, as in the case of combinatorial
surfaces.

Figure 4.1. Left: A Hamiltonian cycle of length n. Middle: The corresponding red/blue separating
cycle (not to scale). Right: Separating heaven from hell (not to scale); the central disk is a small
portion of Earth.

In the second reduction, we reduce the problem to finding a minimum-length
splitting cycle. We isometrically embed the modified grid on a sphere, which we
call Earth. We remove the red and blue squares to create 2n punctures, which
we attach to two new punctured spheres, called Heaven and Hell. We attach the
n punctures in Heaven to the n blue punctures on Earth; similarly, we attach
the n punctures in Hell to the n red punctures on Earth. We append edges of
length n + 1 to the resulting surface so that each face of the final embedded
graph is a disk. The resulting combinatorial surface M(H) has no boundary,
genus 2n− 2, and complexity O(n); it can clearly be constructed in polynomial
time. See Figure 4.1, right.

If the shortest cycle γ that splitsM(H) has length less than n+1/2, then it
must lie entirely on Earth. Moreover, γ must separate the blue punctures from
the red punctures; otherwise,M(H) \ γ would be connected by a path through
heaven or through hell. Thus, γ is precisely the shortest cycle that separates
the red and blue squares in our intermediate problem. Testing whether γ has
length less than n + 1/2 is thus NP-hard from the first reduction. �

With a few trivial modifications, our reduction also implies that computing
the shortest splitting cycle on a polyhedral or Riemannian surface is NP-hard,
although it is an open question whether the corresponding decision problems
are still in NP.

34

4.3 Structural Properties

4.3.1 Multiplicity Bound

For any two points x and y on a cycle α, we let α[x, y] denote the path from
x to y along α, taking into account the orientation of α. For a path or a dual
edge α, the same notation is used for the unique simple path between x and y

on α.

Lemma 4.3.1. Any shortest splitting cycle on an orientable cross-metric sur-

face M crosses each edge e∗ of G∗(M) at most once in each direction.

Proof: Assume for the purpose of contradiction that some shortest splitting
cycle γ crosses some dual edge e∗ twice in the same direction, say left to right.
Let x and z be consecutive left-to-right intersection points along e∗; that is,
γ does not cross e∗[x, z] from left to right. Then γ must cross e∗ (exactly
once) from right to left at some point y between x and z. Indeed, because γ

is separating and M is orientable, the orientation of the crossings of e∗ with γ

must alternate along e∗.
The cycles γ[x, y] ·e∗[y, x] and γ[y, z] ·e∗[z, y] are noncontractible; otherwise,

we could shorten γ by removing two crossings with e∗ without changing its
homotopy class.

e e

x

y

z

x

y

z

a

b

c c

a

b

aa

bb

Figure 4.2. Lemma 4.3.1. If γ crosses e∗ twice in the same direction, we can remove two crossings.

Define a new cycle γ′ = γ[x, y] · e∗[y, z] · γ[z, x] · e∗[x, y] · γ[y, z] · e∗[z, x], as
shown in Figure 4.2. The new cycle γ′ is simple, because x, y, z are consecutive
along e∗. The cycle γ′ is in the same homology class as γ and is therefore
null-homologous. By translating the noncontractible cycles γ[x, y] · e∗[y, x] and
γ[y, z] ·e∗[z, y] away from γ′, we obtain two noncontractible cycles a′ and b′, one
in each component ofM\γ′; so γ′ is noncontractible. Finally, γ′ crosses e∗ two
times fewer than γ and crosses every other edge in G∗(M) the same number of
times as γ. We conclude that γ′ is a splitting cycle that is shorter than γ, which
is impossible. This concludes the proof.

As a side note, letM` andMr be the components ofM\ γ on the left and
on the right of γ; defineM′

` andM′
r similarly to be the components ofM\ γ′

on the left and on the right of γ′. We remark that the topology ofM` andM′
`

is the same, and similarly forMr andM′
r: topologically,M′

` is obtained from
M` by splitting it into two pieces along an arc, and by regluing these two pieces

35

along a subpath of their boundaries. A more formal way to see this result is to
note that the Euler characteristic and the number of boundaries ofM` andM′

`

are the same. �

4.3.2 Shortest-Path Crossing Bound

Proposition 4.3.2. LetM be an orientable cross-metric surface with genus g

and b boundary components. Let P be a set of shortest paths on M such that

the intersection of any two shortest paths is a (possibly empty) set of common

endpoints. There is a shortest splitting cycle that crosses each path in P at

most 12g + 4b− 6 times.

Proof: Amongst all shortest splitting cycles, let γ have the minimum number
of crossings with paths in P . We can assume that γ does not pass through the
endpoints of any path in P , since we are on a cross-metric surface and could
simply perturb γ slightly. Consider any path p in P that intersects γ.

The intersection points γ ∩ p partition γ into arcs. These arcs may intersect
other paths in P . LetM/p be the quotient surface obtained by contracting p to
a point p/p. The set of all arcs corresponds inM/p to a set of simple, pairwise
disjoint loops L with basepoint p/p.

We claim that no component of (M/p) \ L can be a monogon. Otherwise,
there would be two intersection points x and y of γ and p such that γ[x, y] and
p[y, x] bound a disk. But then we could obtain a splitting cycle γ[y, x] · p[x, y],
no longer than γ, that has fewer crossings with the paths in P , a contradiction.

We prove below that each loop in L is (in M/p) incident to at most one
bigon of (M/p) \L. Repeatedly remove any loop in L incident to a bigon until
no bigons remain. Since each loop is incident to at most one bigon, at most half
of the loops have been removed; so, if L′ denotes the new set of loops, we have
|L| ≤ 2|L′|. Furthermore, no component of (M/p)\L′ is a monogon or a bigon,
hence, by Lemma 4.1.1, we have |L′| ≤ 6g + 2b − 3. So |L| ≤ 12g + 4b − 6, as
claimed.

To complete the proof, it thus suffices to prove that no loop in L bounds
two bigons in (M/p)\L. We assume for the purpose of contradiction that some
loop bounds two bigons. Then there are three arcs u = γ[a, z], v = γ[y, b], and
w = γ[c, x] such that u/p and v/p comprise the boundary of a component of
M/p that is a disk, and similarly for v/p and w/p; see Figure 4.3, left. Since
γ is separating, for a fixed orientation of M, the clockwise boundaries of these
disks are u/p ·v/p and v̄/p · w̄/p. Gluing these disks along v/p, we see that there
is an open disk Dp inM/p bounded by u/p · w̄/p such that v/p is the only loop
in L intersecting this disk.

Consider the minimal subpath p′ of p that includes the endpoints a, c, z, and
x of u and w. In particular, the surfaces (M/p) \ (u∪w) and (M/p′) \ (u∪w)
are homeomorphic. One component ofM\ (p′ ∪ u ∪w) is an open disk D such
that the portion of γ inside D is precisely arc v.

36

p

a

y c x b

z

u

w

v

a z

b y

c x

u

v

w

Figure 4.3. Left: Loop v/p is incident with two bigons. Dp is shaded. Right: A drawing obtained
by expanding back the basepoint p/p. The two bold lines correspond to subsegments of p′. These
two subsegments can overlap in the sense that a point on ac and a point on zx may correspond
to the same point of p′.

The boundary of D is a walk in the embedded graph p′ ∪ u ∪ w and is
composed of u, w̄, and pieces of p′. Since the embedded graph p′ ∪u∪w has no
vertex of degree one, this boundary must in fact be u · p′[z, x] · w̄ · p′[c, a]. See
Figure 4.3, right.

We claim that p cannot enter the open disk D. Otherwise, a component q

of p\p′ would be entirely contained in D. Call s the common endpoint of q and
p′, where s ∈ {a, c, z, x}. By symmetry, we may assume s = a. Then, since w

does not cross q and because the crossings are transverse, the arc u′ preceding
u along γ must be in D, whence u′ = v. See Figure 4.4. It follows that p[y, z]
and v · u = γ[y, z] bound a disk. But γ does not cross p[y, z], because otherwise
there would be, in D, an arc different from v. We can thus replace the part
γ[y, z] of γ by p[y, z]. The resulting cycle γ′ is simple, homotopic to γ, and no
longer than γ; also, γ′ crosses γ fewer times that γ. This contradicts the choice
of γ.

a

c

u

y

x

v

z

w

q

Figure 4.4. The two bold lines correspond to subsegments of p. Points s, y, and z must be
pairwise distinct on M since γ is simple.

It follows that D is a component ofM\ (p∪u∪w) with boundary u ·p[z, x] ·
w̄ · p[c, a]. There are two cases to consider depending on the relative directions
of p[z, x] and p[c, a] along p.

If p[z, x] and p[c, a] are directed the same way along p, then p[z, x] and p[c, a]
cannot strictly overlap since otherwiseM would both be orientable and contain
a Möbius strip. Up to a change of direction of γ and to an exchange between u

37

and w, we are in the situation depicted on top Figure 4.5. (The simplicity of γ

implies that c 6= x.)
Suppose on the contrary that p[z, x] and p[c, a] have opposite directions along

p. Up to a change of direction of γ and to an exchange between u and w, we
can assume a arises first along p. We now claim that p[z, x] and p[c, a] cannot
stricly overlap. Otherwise z would occur strictly between a and c, so that the
arc u′ following u along γ would enter D at z, whence u′ = v. It follows that
z = y on M (refer to Figure 4.3, right). Again, since the crossings between
γ and p are transverse, this implies that p enters D, contradicting a previous
claim.

Figure 4.5. The three possible configurations for arcs u = γ[a, z] and w = γ[c, x]; disk D is
shaded.

We conclude the proof by showing that none of the configurations in Fig-
ure 4.5 can actually happen.

Top case: Recall that γ intersects D along arc v.

a b c x y z
p

u

v

w

a b c x y z
p

u

v

w

Figure 4.6. The exchange argument for the top configuration.

Without loss of generality, suppose the path γ[x, a] does not contain any of
the arcs u, v, or w. Consider the cycle

γ′ = p[a, b] · γ[b, c] · p[c, b] · γ̄[b, y] · p[y, z] · γ[z, y] · p[y, x] · γ[x, a]

obtained by removing u and w from γ, reversing v, and connecting the remaining
pieces of γ with subpaths of p; see Figure 4.6. This cycle crosses p fewer times
than γ, and crosses any other path in p no more than γ. An argument identical
to the proof of Lemma 4.3.1 implies that γ′ is simple, null-homologous, and
noncontractible. Because p is a shortest path, u cannot be shorter than p[a, z],
which implies that γ′ is no longer than γ, contradicting our assumption that γ

38

is a shortest splitting cycle with the minimal number of crossings with paths in
P .

Bottom left and right cases: As in the previous case, γ intersects D along v.
If c = z, there is only one way to connect these three arcs to form the cycle

γ; if c 6= z, there are two possibilities. See Figure 4.7. In all three cases, by
deleting arcs u and w, reversing arc v, and connecting the remaining pieces of γ

with subpaths of p, we create a splitting cycle γ′ that is no longer than γ and
crosses the paths in P fewer times than γ, which is impossible. We omit the
tedious details.

We note that, as in the proof of Lemma 4.3.1, the topology of the surface
that is the part ofM on either side of γ does not change during these exchanges:
in all cases, topologically non-trivial components of this surface are cut along
paths with endpoints on the boundary and reglued differently. �

Figure 4.7. Three exchange arguments for the bottom configurations.

4.3.3 Crossing Lower Bound

Earlier algorithms for computing shortest noncontractible, nonseparating, or
essential cycles rely on the fact that the desired cycle is the concatenation of

39

two equal-length shortest paths [95, 58].2 Cabello and Mohar [19], Cabello [15],
and Kutz [86] exploit a slightly different property to compute shortest nontrivial
cycles more quickly on surfaces of constant genus: The desired shortest cycle
crosses any shortest path at most twice. As we prove next, neither of these
properties holds for the shortest splitting cycle; in particular, the upper bound
of Proposition 4.3.2 is tight up to constant factors for surfaces without boundary.

Theorem 4.3.3. For any g ≥ 2, there is an orientable combinatorial surface

Mg of genus g, without boundary, whose unique shortest splitting cycle (up to

orientation) crosses a shortest path g times and (therefore) cannot be decom-

posed into fewer than g shortest paths and edges.

Proof: We consider only the case where g is even. We construct a combinato-
rial surface Mg of genus g such that the shortest noncontractible cycle γ and
the shortest splitting cycle µ cross g times; see Figure 4.8. The shortest noncon-
tractible cycle γ can be partitioned into two shortest paths, one of which will
be disjoint from µ; it follows that µ crosses some shortest path g times.

Figure 4.8. Ph’nglui mglw’nafh Cthulhu R’lyeh wgah’nagl fhtagn! A surface whose shortest
splitting cycle cuts a shortest path g times, and a closeup of the undulating shortest splitting
cycle.

The base surfaceM0 is a sphere whose geometry approximates an hourglass.
Let γ be the central cycle that partitions the two lobes of the hourglass. To
constructMg, we attach g handles to this hourglass, each joining a small circle
ci on the neck of the hourglass, just to one side of γ, to a large circle Ci far away
on the opposite lobe. The small circles ci are arranged symmetrically around the
neck of the hourglass, alternating between the two sides of γ; the large circles
Ci are also partitioned evenly between the two lobes of the hourglass.

Let µ be a cycle that undulates around the small circles in order, crossing
γ a total of g times, as shown in Figure 4.8. We easily verify that µ splits Mg

into two surfaces of genus g/2. Let x1, x2, . . . , xg = x0 denote the g intersection
points of µ and γ. For each i, let µi and γi respectively denote the subpaths of

2In general, this characterization requires shortest paths that terminate in the interior of
edges, but if we refine edges appropriately, the shortest cycle will indeed be the concatenation
of two shortest vertex-to-vertex paths.

40

µ and γ between xi−1 and xi. Finally, we partition path γ1 into three subpaths
γ[
1, γ\

1, and γ]
1 at arbitrary points y and z. Let F denote the union of these

2g + 2 paths.
To obtain a combinatorial structure on Mg, we embed a weighted graph

G that contains F as a subgraph, such that every face of the embedding is a
topological disk. We assign length 1 to edge γi for each i 6= 1, length 1 to edges
γ[
1 and γ]

1, length g + 1 to edge γ\
1, length 4g2 to each edge µi, and length at

least 10g5 to every other edge in G. The cycle µ does not contain a single (even
approximate!) vertex-to-vertex shortest path. Even if we allow shortest paths
between points in the interior of edges, each such path contains at most one
vertex xi. The cycle γ can clearly be partitioned into two shortest paths of
length g + 1 at points y and z, and µ crosses one of these paths g times. Thus,
to complete the proof, it suffices to show that µ is in fact the shortest splitting
cycle inMg.

Let α be a shortest splitting cycle; the assigned edge weights guarantee that
α is a cycle in F . By Lemma 4.3.1, α traverses each path γi and µi at most once
in each direction. For any i, there is a path in Mg \ F from one side of γi to
the other, so α must traverse each edge γi either twice (in opposite directions)
or not at all.

Consider any simple cycle β in a tubular neighborhood N of F that traverses
every edge in F either once in each direction or not at all. This cycle must
be null-homologous, and therefore separating in M and N . Furthermore, the
boundary of N belongs entirely to some component of M\ β. It follows that
one component of N \ β is only bounded by β. This component must be a disk
since N has genus zero. We conclude that β is contractible.

The splitting cycle α is not contractible, so it must traverse some edge µi

exactly once. But α must traverse the edges adjacent to any vertex xi an even
number of times, which implies that α traverses every edge µi exactly once.
Thus, every splitting cycle in F is at least as long as µ. We conclude that µ is
indeed the unique shortest splitting cycle. �

4.4 Algorithm

In this section, we prove that computing the shortest splitting cycle is fixed-
parameter tractable with respect to the genus and the number of boundary
components of the surface.

Theorem 4.4.1. Let M be an orientable cross-metric surface; let g be its

genus, b be its number of boundary components, and n be its complexity. We

can compute a shortest splitting cycle inM in (g + b)O(g+b)n log n time.

The algorithm proceeds in several stages, described in detail in the following
subsections. First, we compute a set of O(g + b) loops and arcs that cut the
surface M into a disk, using (a variant of) the greedy algorithm of Erickson

41

and Whittlesey [59]; each loop and arc is the concatenation of two shortest
paths. Next, we enumerate all possible sequences of crossings of this system of
loops and arcs by a simple cycle that crosses each loop and arc O(g + b) times.
Proposition 4.3.2 implies that the shortest splitting cycle must have one of these
crossing sequences. We discard any crossing sequence that does not correspond
to a splitting cycle. For each valid crossing sequence, we compute a shortest
cycle with that crossing sequence using the recent algorithm of Kutz [86]. The
shortest of these cycles, γ, corresponds to the crossing sequence of a shortest
splitting cycle; finally, we post-process γ to remove any self-intersections, with-
out changing its length or its free homotopy type.

4.4.1 Greedy System of Loops or Arcs

We first compute a set of interior-disjoint shortest paths that split M into a
disk.

If M has no boundary, let v be any point of M in the interior of a face of
G∗(M). Let α1, α2, . . . , α2g be the shortest system of loops of M with base-
point v; this system of loops can be computed in O(n log n + gn) time using a
greedy algorithm of Erickson and Whittlesey [59].

A key property of this greedy system of loops is that each loop αi is composed
of two shortest paths in the primal graph G(M). However, in general these two
paths meet at a point mi in the interior of some edge ei. To simplify our
algorithm, we split ei into two edges at mi—or equivalently, in the dual graph,
we replace the dual edge e∗i with two parallel edges—partitioning the length
appropriately, so that αi consists of two vertex-to-vertex shortest paths βi and
β′i in G(M). Another property that will be used later is that each αi is a
shortest loop in its homotopy class.

If M has at least one boundary component, then an easy variant on the
aforementioned algorithm by Erickson and Whittlesey [59] allows us to compute
a greedy system of arcs, which bears properties similar to the greedy system of
loops: it is made of O(g+b) arcs αi; it can be computed in O(n log n+(g+b)n)
time; each arc αi is composed of two shortest paths βi and β′i; and each arc
is as short as possible in its homotopy class. To compute the greedy system
of loops with basepoint v, the idea is to maintain a set L, initially empty, of
simple, pairwise disjoint loops. The algorithm iteratively adds to L the shortest
loop based at v such that M\ L is connected, relying on a shortest paths tree
rooted at the basepoint. To build the greedy system of arcs, the idea is similar:
we iteratively add to the set of arcs L the shortest arc such that M \ L is
connected. To implement this efficiently, it suffices to compute simultaneously
shortest paths trees rooted at every boundary component.

42

4.4.2 Simple Crossing Sequences

The crossing sequence of a cycle γ records the intersections of γ with the greedy
loops or arcs αi, in cyclic order along γ. Any two cycles with the same cross-
ing sequence are homotopic, although two homotopic cycles can have different
crossing sequences. A crossing sequence is simple if it can be generated by a
simple cycle; non-simple cycles can have simple crossing sequences.

Proposition 4.3.2 implies that some shortest splitting cycle γ crosses each
path βi or β′i O(g+b) times, and thus crosses each loop or arc αi O(g+b) times.
Our algorithm enumerates a superset of all simple crossing sequences that cross
each loop or arc αi O(g+b) times. There are (g + b)Θ((g+b)2) crossing sequences
with O(g + b) occurrences of each loop or arc, but the vast majority of these
are not simple. Thus, to achieve our desired time bound, we cannot naively
enumerate crossing sequences that satisfy Proposition 4.3.2 and then check each
sequence for simplicity. Our enumeration algorithm enforces simplicity from the
beginning.

We begin by cutting M along the loops or arcs αi to obtain a polygonal
schema D; this is a cross-metric disk with complexity O((g + b)n). This cutting
operation also cuts the unknown splitting cycle γ into segments that cut across
D. Because γ is simple, no two of these segments cross. If b = 0, because the
basepoint v does not lie on G∗(M), we can slightly perturb γ without changing
its length (in the crossing metric) or its homotopy class; thus, we assume that
γ does not pass through the basepoint v. If b ≥ 1, because no endpoint of a
segment can be on an edge of the polygonal schema corresponding to a piece of
boundary ofM, we contract these 4g + 2b− 2 edges, working with a contracted
polygonal schema with 4g + 2b− 2 edges instead of 8g + 4b− 4.

The segments of γ can be grouped into subsets according to which pair of
greedy loops they meet on the boundary of D (Figure 4.9). We abstract and
dualize the (contracted) polygonal schema by replacing each edge of the (con-
tracted) polygonal schema with a vertex and connecting vertices that correspond
to consecutive edges. Now each subset of segments corresponds to a diagonal
between two vertices of the dual 4g-gon (if b = 0) or (4g +2b−2)-gon (if b 6= 0).
Since no two segments cross, these diagonals cannot cross. In particular, all the
diagonals belong to some triangulation of the dual polygon.

Thus the candidate crossing sequences of a shortest splitting cycle are de-
scribed by weighted triangulations, which consist of a triangulation of the dual
polygon, each of whose edges is weighted with an integer between 0 and O(g+b).
The label of an edge in the triangulation represents the number of times that
the cycle runs along that edge. There are Ck−2 possible triangulations of a
k-gon, where Ck = O(4k) is the kth Catalan number, which we can enumerate
in O(k) time each. (This is identical to the enumeration of binary trees, see
Section 2.3.4.4 in [83].) Here k = O(g + b). There are (g + b)O(g+b) ways to
label each triangulation, which we can enumerate in constant amortized time

43

2

1

1

1

1
42

2

4
1

1
0

0

10

1

20

0

0

a

b

a

b

c

d

c

d

a

b

a

b

c

d

c

d

a

b

a

b

c

d

c

d

Figure 4.9. Left: A splitting cycle on a double-torus (g = 2, b = 0). Middle: The corresponding
subsets of segments; each label indicates the number of segments contained in a subset. Right:
The corresponding weighted triangulation.

per labeling.
We thus obtain a total of (g + b)O(g+b) weighted triangulations. Most of

these do not correspond to a splitting cycle, or indeed to any cycle. We now
explain how to discard these possibilities.

4.4.3 Testing Weighted Triangulations

Given a candidate weighted triangulation T , we want to test whether T corre-
sponds to a splitting cycle. We must check that (1) T corresponds to a set of
cycles, (2) this set contains exactly one cycle, and (3) this cycle is separating
but noncontractible. (We already know that the cycle is simple.) We describe
how to perform these tests in O((g + b)2) time. If any of these properties is not
satisfied, we simply discard T .

To check that T corresponds to a set of cycles, it suffices to check that the
two edges of D that correspond to the same αi are crossed the same number
of times. (If M has a boundary, no edge of D corresponding to a part of the
boundary of M can be crossed, since we worked in the contracted polygonal
schema.)

For the remaining tests, we build a combinatorial surfaceM′ homeomorphic
toM, whose graph G′ is the arrangement of the greedy system of loops and the
candidate cycle(s) defined by T . We cut the abstract (non-contracted) polygonal
schema along the subsets of edges given by the triangulation and then identify
corresponding subpaths on the boundary of the polygonal schema. If we have
multiple edges running along the same edge of the triangulation, these define
thin rectangular strips. The complexity of the resulting surface is O(g + b)2.
The O(n) internal complexity of the original surface M is ignored.

Once we have constructedM′, we can check whether T defines a single cycle
γ by a simple depth-first search.

To test that γ is separating but noncontractible, we use a simplification of
an algorithm of Erickson and Har-Peled [58]. To test separation, we perform a
depth- or breadth-first search on the faces ofM′, starting from any initial face,
but forbidding crossings of any segment of γ. The cycle γ is separating if and
only if the search halts before visiting every face of the surface. (Alternately, γ

44

is separating if and only if γ crosses each αi the same number of times in both
directions.) We also compute the Euler characteristic of the reachable portion
of the surface during the search by counting vertices, edges, and faces. The
cycle is noncontractible if and only if this Euler characteristic is neither 1 (a
disk) nor 1− 2g − b (the complement of a disk).

4.4.4 From Crossing Sequence to Cycle

For each valid weighted triangulation, we compute the shortest cycle with the
corresponding crossing sequence in time O((g + b)3n log n) using the recent al-
gorithm of Kutz [86]. For the sake of completeness, we sketch the algorithm
here.

First we glue together a cycle of O((g + b)2) distinct copies of the polygonal
schema D, one per crossing in the sequence. Each successive pair of copies
is glued along the edge specified by the corresponding entry in the crossing
sequence. Because we consider only crossing sequences without spurs—the cycle
does not cross a loop αi and then immediately recross the same loop αi in the
opposite direction—the resulting combinatorial surface is an annulus, which we
denote D◦. (In Kutz’s terms, we are considering only curl-free splitting cycles.)
The polygonal schema D has complexity O((g + b)n), so the complexity of D◦

is O((g + b)3n).
We then compute the shortest cycle γ◦ in D◦ that is freely homotopic to the

boundaries of D◦, using an algorithm of Frederickson [61]; see also [33, Lemma
3.3(d)]. Given a combinatorial annulus of complexity N , Frederickson’s algo-
rithm finds a shortest generating cycle in O(N log N) time. Thus, we compute
γ◦ in O((g + b)3n log((g + b)3n)) = O((g + b)3n log n) time.

Finally, projecting γ◦ back to the original surfaceM gives us a shortest cycle
γ with the given crossing sequence.

Since there are (g + b)O(g+b) valid crossing sequences, the total time spent
in this phase is (g + b)O(g+b)

O((g + b)3n log n) = (g + b)O(g+b)
n log n.

4.4.5 Removing Self-Intersections

Let γ be the shortest cycle computed in the previous phase, over all possible
valid weighted triangulations. This cycle is null-homologous, noncontractible,
as short as possible in its homotopy class, and freely homotopic to a simple
cycle, but not necessarily simple. Although the cycle γ◦ is simple, projecting
it back to the original surface may introduce self-intersections. We will prove
that some simple cycle γ′ is homotopic to γ and has the same length as γ (this
also follows from [34]); hence, γ has the correct homotopy class of a shortest
splitting cycle. We then need to compute such a γ′.

We consider the polygonal schema defined by the greedy loops or arcs. A
segment is a path that intersects the polygonal schema precisely at its endpoints.
A set of segments S respects a weighted triangulation T if, for each pair of edges

45

of the polygonal schema, the number of segments of S between them equals the
weight on the corresponding edge of T (or zero if there is no such edge). We
need the following lemma.

Lemma 4.4.2. Let T be a weighted triangulation and let S be a set of segments

that respects T . There is a set of simple, pairwise disjoint segments of total

length no larger than the total length of S that respects T and intersects the

greedy loops or arcs at the same points as S.

Proof: We prove the result by induction on the number of crossings in S. If S

has no crossings, there is nothing to show. Otherwise, we will transform S into
another set of segments that has one or two fewer crossings, still respects T ,
and intersects the greedy loops or arcs at the same points.

Consider a crossing in S in the polygonal schema. If this corresponds to
a self-crossing of a single segment, we may remove the monogon based at this
crossing point and conclude by the induction hypothesis.

Otherwise, the crossing corresponds to two segments s and s′. If these
segments cross at least twice, they form a bigon (two simple interior-disjoint
paths with the same endpoints) inside the polygonal schema, which can be
flipped to obtain a set of segments respecting T that is no longer and has two
crossings fewer.

Otherwise, s and s′ cross exactly once, at some crossing point p; they must
thus correspond to (possibly identical) edges e and e′ of the triangulation. In a
triangulation, no two edges cross; if e and e′ do not share any endpoint, then
s and s′ would cross an even number of times, which is not the case; so e and
e′ must share at least one endpoint, which is also an edge E of the polygonal
schema. Hence swapping the parts of s and s′ that are between E and p also
results in a set of segments respecting T ; this operation decreases the number
of crossings by one and does not increase the length. �

Recall that γ is the cycle computed in the previous section. Let T be the
weighted triangulation corresponding to γ; it was also computed above.

We apply the following algorithm. Consider the intersections of the cycle γ

with the greedy loops or arcs. There is exactly one way to connect these points
with simple, disjoint segments respecting T . We iteratively connect these pairs
of points by shortest segments, forbidding, at each step, any crossing with the
previously computed segments. By a simple exchange argument, the segments
created are shortest paths in the polygonal schema; so this set of segments is
a shortest set of segments, among all sets of simple, pairwise disjoint segments
respecting T and intersecting the polygonal schema at the same points as γ.
By Lemma 4.4.2, this set of segments is no longer than the set of segments
of γ. Since it is a set of simple, pairwise disjoint segments respecting the valid
triangulation T , it forms a single cycle γ′, which has the same crossing sequence
as γ by construction of γ. So γ′ is the desired splitting cycle.

46

There are O((g + b)2) shortest paths to compute, in a planar graph of com-
plexity O((g + b)n). The cost of this uncrossing step is thus O((g + b)3n). Using
a result by Takahashi, Suzuki, and Nishizeki [113, Section 3], we can improve
the running time to O((g + b)n log (g + b)).

This concludes the proof of Theorem 4.4.1.

4.5 Splitting Surfaces into Two Surfaces of

Prescribed Topology

LetM be a surface with genus g and with b boundary components. A splitting
cycle splits M into two surfaces M1 and M2, with respective genus g1 and g2

and with respective number of boundary components b1 ≥ 1 and b2 ≥ 1, where
g1 + g2 = g and b1 + b2 = b + 2. The techniques developed in the previous
section allow to compute the shortest splitting cycle that splits the surface into
two surfaces of prescribed genus and number of boundaries.

More precisely, let S = {(g1, b1), . . . , (gk, bk)} be a set of ordered pairs of
integers. We say that a splitting cycle on M is allowed by S if it splits M
into two surfaces, one of which has genus g′ and b′ boundary components,
for some (g′, b′) ∈ S. In particular, if S = ({0, . . . , g} × {1, . . . , b + 1}) \
{(0, 1), (0, 2), (g, b), (g, b + 1)}, the splitting cycles allowed by S are precisely the
essential splitting cycles (the splitting cycles that do not bound an annulus).

Theorem 4.5.1. Let M be an orientable cross-metric surface with genus g

and b boundary components; let S be a set of ordered pairs. We can compute

a shortest splitting cycle allowed by S in (g + b)O(g+b)n log n time.

Proof: If S contains (0, 0) or (g, b + 1), then a contractible cycle of length zero
is a shortest splitting cycle allowed by S. Otherwise, the algorithm described in
the previous sections, with very minor modifications, also works. Lemma 4.3.1
and Proposition 4.3.2 extend verbatim to the case where we are looking for a
shortest splitting cycle allowed by S, because their proofs are based on exchange
arguments that change the splitting cycle without modifying the topology of
the surface on either side of the cycle. The algorithm has to be modified in
Section 4.4.3 because we now have to check that a given weighted triangulation
corresponds to a splitting cycle that is allowed by S; this is straightforward and
does not increase the running-time of the algorithm. �

4.6 Decomposition into Punctured Tori

A decomposition into punctured tori of an orientable surface M with genus g

and no boundary is a set of g − 1 pairwise disjoint, pairwise non-homotopic,
splitting cycles. Equivalently, it is a set of simple, pairwise disjoint cycles that
splitM into g punctured tori.

47

There is a näıve greedy algorithm to compute a decomposition into punc-
tured tori: compute the shortest splitting cycle of M, cut along it, fill the
boundaries obtained with a disk, and recurse in each of the two resulting sur-
faces.

Proposition 4.6.1. The greedy algorithm does not necessarily provide the

shortest decomposition into punctured tori.

Proof: We use the graph G, embedded in a triple-torus, shown on Figure 4.10.
The graph is extended, with edges of very large weight, to obtain a combinatorial
surface M. Any decomposition into punctured tori of M consists of precisely
two cycles.

There is a decomposition into punctured tori of M of length 28, see Fig-
ure 4.11: one cycle is b̄abc̄āc, the other one is fhf̄gh̄ḡ. It is actually easy to
prove that it is the shortest decomposition into punctured tori, but we won’t
need that. We will prove that the greedy algorithm gives the decomposition
into punctured tori depicted in Figure 4.12, of length 30.

G can be decomposed into five edge-disjoint cycles that are homologically
independent in M and form a cycle basis of G. It follows that the shortest
splitting cycle uses two of these cycles at least twice. From this remark and from
the assignment of the weights of G, we deduce that there are exactly two shortest
splitting cycles, bdēb̄ced̄c̄ and its symmetric, f̄ d̄ef ḡēdg, on M; they both have
length 8. Without loss of generality, assume that the greedy algorithm chooses
the first one, γ, as first cycle of the decomposition into punctured tori.

Now, cutting M along γ and filling its boundaries with disks yields two
connected surfaces, a torus and a double-torus. The double-torus will be split
with another splitting cycle; it is a combinatorial surface M′, as shown on
Figure 4.13, left.

Consider the surfaceM′′ on Figure 4.13, right. It is the same surface asM′,
except that the pairs of edges b′d′ and b′′e′, and c′d′′ and c′′e′′, have been merged
and the leftmost endpoints of these edges have been identified. Any splitting
cycle on M′ gives a splitting cycle on M′′, of the same length. The graph
on M′′ is made of three homologically independent cycles; arguing as above,
the shortest splitting cycle onM′′ uses two cycles at least twice, and thus must
have length at least 22. Hence the shortest splitting cycle on M′ has length at
least 22; but, as shown on Figure 4.12, there is such a cycle. Hence the greedy
algorithm provides a decomposition into punctured tori of total length 30. �

4.7 Conclusions

The results of this chapter suggest several open problems. Most notably, can we
approximate the shortest splitting cycle, or is that also NP-hard? The following
high-level approach seems promising. Compute shortest simple cycles in each

48

10

2

2

2

2

2

2

10

d

e

fb

c g

ha

Figure 4.10. The graph G embedded on a triple-torus M in the proof of Proposition 4.6.1. The
weights of the edges of G are indicated in parentheses.

Figure 4.11. The shortest decomposition into punctured tori, of length 28.

Figure 4.12. The greedy decomposition into punctured tori, of length 30. The first cycle has
length 8, the second one has length 22.

10 h 10

4
6

6

1010

bd

cd

be
2g

f 2

4ce

4

4
a

Figure 4.13. Left: the double-torus M′ obtained after cutting M along the shortest splitting
cycle and filling the boundary with a disk. Each edge b, c, d, and e on M corresponds to two
edges on M′. The weights of the edges are indicated. Right: the surface M′′.

49

non-trivial homotopy class in order of increasing length, stopping either when
we find a separating cycle, or when we find two cycles α and β that intersect an
odd number of times. If we find a separating cycle, it is of course the shortest
splitting cycle. If we find two cycles with odd intersection number, an exchange
argument implies that the intersection number is 1. For some orientation of α

and β, the cycle α ·β · ᾱ · β̄ is a splitting cycle whose length is at most four times
the length of the shortest splitting cycle. Can this algorithm be implemented
efficiently? How quickly can we enumerate the k shortest homotopy classes of
(simple) cycles? Techniques of Eppstein [56] for enumerating k shortest paths
may be useful here.

If we iteratively cut along splitting cycles on the surface where each bound-
ary is filled with a disk, we obtain a decomposition of the surface into punctured
tori. However, we proved that repeatedly cutting the surface along its shortest
splitting cycle does not necessarily yield the shortest such decomposition. Does
this algorithm provide a constant-factor approximation for this problem? Is
computing the shortest torus decomposition NP-hard? Similarly, a pants de-
composition is a set of disjoint simple cycles decomposing a surface into pairs
of pants, or spheres with three boundary components [34]. Is it NP-hard to
compute the shortest pants decomposition? Are either of these problems fixed-
parameter tractable?

Finally, Erickson and Har-Peled [58] prove that finding the minimum cut
graph is NP-hard, by a reduction from the fixed-parameter tractable rectilin-
ear Steiner tree problem. Is computing the shortest cut graph fixed-parameter
tractable? The most serious bottleneck here seems to be computing the shortest
cut graph in a given homotopy class, where the homotopy is allowed to move
the vertices.

50

Chapter 5

Homotopic Fréchet
Distance

Given two curves on a surface, it is natural to ask how similar they are. In
previous sections, we have discussed questions relating to homotopy, but this is
not always the best classification for similarity. Two curves on a surface may be
homotopic but be far apart from each other or be separated by “mountains”,
or areas of high curvature.

One common measure of similarly between curves is the Hausdorff distance.
For two curves A and B, the Hausdorff distance between them is equal to
maxainA minb∈B d(a, b). While the Hausdorff metric does measure closeness in
space, it does not take into account the flow of the curves, which in many
applications, such as morphing in computer graphics, is an important property
of the curves.

The Fréchet distance, sometimes called the dog-leash distance, is defined as
the minimum length of a leash required to connect a dog and its owner as they
walk without backtracking along their respective curves from one endpoint to
the other. The Fréchet metric takes into account the flow of the two curves
because the pairs of points whose distance contributes to the Fréchet metric
sweep continuously along their respective curves. It is therefore possible for
two curves to have small Hausdorff distance but large Fréchet distance. Fréchet
distance is used as a more accurate measure of similarity in applications such
as hand writing recognition [110].

For piecewise linear curves in Euclidean space, an algorithm to compute
Fréchet distance is known [3, 2]. Other citations.

The definition of Fréchet distance accommodates any underlying metric,
and thus can be generalized to other types of metric spaces. For instance, if the
two curves lie on a terrain (or any surface) [89], geodesic distance is a natural
choice, since the leash must lie on the surface. Cook et. al. develop algorithms
to compute geodesic Fréchet distance, where the leash is constrained to the
interior of a simple polygon but remains a geodesic curve at all times [36, 53].
In both settings, the leash is allowed to move discontinuously from one side of
an obstacle or a mountain to another.

In this chapter, we introduce a continuity requirement on the motion of the
leash. We require that the leash move continuously as the dog and his owner
walk along the curves; in particular, the leash cannot jump over obstacles and

51

can sweep over a mountain only if it is long enough. We define the homotopic
Fréchet distance between two curves as the Fréchet distance with this additional
continuity requirement. This continuity requirement is satisfied automatically
for curves inside a simple polygon, but not in more general environments like
convex polyhedra.

The motion of the leash defines a correspondence between the two curves
that can be used to morph between the two curves—two points joined by a leash
morph into each other. The homotopic Fréchet distance describes a morphing
which minimizes the maximum amount of deformation needed to transform one
curve into the other. See [54] for similar results on morphing.

Efficiently computing the homotopic Fréchet distance in general metric spaces
is a new open problem. We present a polynomial-time algorithm for a special
case of this problem, which is to compute the homotopic Fréchet distance be-
tween two polygonal curves in the plane minus a set of point or polygonal
obstacles. Note that the curves themselves could also be obstacles in this set-
ting.

5.1 Definitions

Let S be a fixed Hausdorff metric space. A curve in S is a continuous function
from the unit interval [0, 1] to S. We say a curve is a geodesic if it is locally as
short as possible. We will sometimes abuse notation by using the same symbol to
denote a curve A : [0, 1]→ S and its image in S. A reparameterization of [0, 1] is
a continuous, non-decreasing, surjection α : [0, 1]→ [0, 1]. A reparameterization
of a curve A : [0, 1]→ S is any curve A ◦ α, where α is a reparameterization of
[0, 1]. The length of any curve A, denoted len(A), is defined by the metric of S;
in particular, two reparameterizations of the same curve have the same length.

A leash between two curves A and B is another curve λ : [0, 1]→ S such that
λ(0) = A(s) and λ(1) = B(t) for some parameters s and t. A homotopy between
curves A and B is a continuous map h : [0, 1]× [0, 1]→ S such that h(·, 0) = A

and h(·, 1) = B. For any t ∈ [0, 1], the one-parameter function h(t, ·) is a leash
from A to B. A leash map between curves A and B is a homotopy between some
reparameterization of A and some reparameterization of B. Intuitively, a leash
map describes the continuous motion of a leash between a dog walking along A

and its owner walking along B. The length of a leash map `, denoted len(`), is
the maximum length of any leash `(t, ·). Finally, the homotopic Fréchet distance
between two curves A and B, denoted F(A,B), is the infimum, over all leash
maps ` between A and B, of the length of `:

F(A,B) := inf
leash map `:[0,1]2→S

(
max
0≤t≤1

len(`(t, ·))
)

.

In contrast, the classical (“leashless”) Fréchet distance is defined directly in

52

terms of reparameterizations and distances:

F(A,B) := inf
α,β:[0,1]→[0,1]

(
max
0≤t≤1

d(A(α(t)), B(β(t)))
)

.

In spaces where shortest paths vary continuously as their endpoints move, such
as Euclidean space or the interior of a simple polygon, the two definitions are
equivalent. In general, however, the homotopic Fréchet distance between two
curves can be larger (but never smaller) than the classical Fréchet distance.

A homotopy relative to A and B, or simply relative homotopy, is a continuous
function h : [0, 1]× [0, 1]→ S, such that h(·, 0) and h(·, 1) are respectively of the
form A(u(·)) and B(v(·)), where u and v are re-parameterizations of [0, 1]. Two
leashes λ and λ′ are relatively homotopic, denoted λ ' λ′, if there is a relative
homotopy h such that h(0, ·) = λ and h(1, ·) = λ′. It is easy to prove that ' is
an equivalence relation over the set of leashes from A to B. Any leash map is
(the transpose of) a relative homotopy; thus, all leashes `(t, ·) determined by a
leash map ` lie in the same relative homotopy class.

5.2 Preliminaries

In this paper, we develop a polynomial-time algorithm to compute the homo-
topic Fréchet distance between two polygonal paths in E = E2 \P , for some set
P of closed polygons, where we consider geodesic distance with an underlying
L2 metric. The polygons P act as obstacles; in any leash map in E , the moving
leash can neither touch nor jump over any obstacle. Note that the polygons
themselves can be a part of P .

Specifically, the input to our problem consists of two polygonal curves A and
B and a set P of polygonal objects in the Euclidean plane. Curves A and B may
(self-)intersect, but neither curve intersects any obstacle in P . To simplify our
exposition, we assume that no three vertices of the input (vertices of polygons
in P or vertices of A and B) are collinear; this assumption can be enforced
algorithmically using standard perturbation techniques [107]. A and B may be
elements of P , or not.

Let a0, a1, . . . , am denote the sequence of vertices of A; these points define a
standard parameterization A : [0,m]→ E whose restriction to any integer range
[i − 1, i] is an affine map onto the corresponding edge ai−1ai. Similarly, the
vertices b0, b1, . . . , bn of B define a piecewise-affine parameterization B : [0, n]→
E . Let P1, P2, . . . , Po denote the obstacle polygons in P , and let k denote the
total number of vertices in all obstacle polygons. In the special case where
every obstacle is a single point, we obviously have k = o = |P |. Finally, let
N = n + m + k + 2 denote the total complexity of the input.

Figure 5.1 illustrates optimum leash maps for a few sample inputs where P

is a discrete set of points.

53

1-1

1

1

2

2
3

3

4

4
5

5

1-1

4, 5, 6

2, 3, 4 5

6

1

1

3

7

7

2

1-1

1

1

4

42, 3

2

3

Figure 5.1. Optimum leash maps for three inputs. Dashed curves between matching numbers
represent intermediate leashes.

5.2.1 Geodesic Leash Maps

To simplify our presentation, we will allow ‘paths’ in E to touch obstacles in P .
Specifically, we consider geodesics: piecewise-linear curves in the closure of E ,
whose interior vertices are vertices in P . Although geodesics may run along
obstacle boundaries, they do not intersect the interior of any obstacle.

In the special case where the obstacles are points (so the closure of E is the
entire plane), we need some additional information to ensure that each geodesic
lies in a unique homotopy class. Specifically, we associate a turning angle with
each obstacle point that a geodesic touches. Let Cε be a circle centered at
obstacle point p and radius ε, small enough to exclude every other obstacle in
P . A turning angle of θ at an obstacle point p indicates that replacing the
portion of γ inside Cε with a counterclockwise arc of length θε around Cε yields
a new path homotopic to γ. For example, a path with turning angle zero makes
a U-turn at p without enclosing p; a path that goes straight through p with
p on its left (resp. right) has turning angle π (resp. −π); a turning angle of
10π means the path makes a U-turn after winding around the point five times
counterclockwise. A geodesic could meet the same obstacle point more than
once; we associate a different turning angle with each incidence.

It can be shown that for any two points x and y in E , the shortest path
from x to y in any relative homotopy class is a unique geodesic, in which every
turning angle at a point obstacle is either at least π or at most −π. Conversely,
every geodesic in which every turning angle is either at least π or at most −π

is a shortest path in some homotopy class.
A geodesic leash map is a leash map ` : [0, 1] × [0, 1] → E2 in which every

leash `(t, ·) is a geodesic, and all these geodesics are in the same relative homo-
topy class. We next prove that geodesic leash maps are optimal within their
homotopy class.

Lemma 5.2.1. Suppose ` is a leash map between two curves A and B. There

is a geodesic leash map `′ between A and B such that, for all t ∈ [0, 1], the

leash `′(t, ·) is the shortest path homotopic to `(t, ·) with the same endpoints.

Additionally, the length of `′ is at most the length of `.

Proof: We lift ` to the universal cover Ê of E , obtaining a leash map ˆ̀between
the lifts Â and B̂ of A and B respectively. For each t ∈ [0, 1], let ˆ̀′(·, t) be the
shortest path between the endpoints of ˆ̀(t, ·) in the same homotopy class. The

54

universal cover Ê is a simply-connected space with a locally Euclidean metric,
so shortest paths in Ê vary continuously as the endpoints move continuously.
It follows that ˆ̀′ is a continuous function in both arguments, and therefore a
(geodesic) leash map in Ê . The projection `′ of ˆ̀′ back to E is a (geodesic) leash
map between A and B. For all t, the leash `′(t, ·) is the shortest path homotopic
to `(t, ·), so maxt len(`′(t, ·)) ≤ maxt len(`(t, ·)). �

Lemma 5.2.1 implies that the homotopic Fréchet distance between A and B

is the length of a geodesic leash map in some homotopy class determined by some
reparameterizations of A and B. Thus, the homotopic Fréchet distance can be
redefined as the minimum, over all homotopy classes h, of the classical Fréchet
distance, where distances are defined by shortest paths in relative homotopy
class h:

Fh(A,B) := min
α,β:[0,1]→[0,1]

(
max

t∈[0,1]
Dh(A(α(t)), B(β(t)))

)
F(A,B) := min

homotopy class h
Fh(A,B)

(Here, Dh(u, v) denotes the length of the shortest path from u to v in relative
homotopy class h.)

We call a relative homotopy class h optimal if F(A,B) = Fh(A,B).
For the rest of the paper, we restrict ourselves to geodesic leashes and

geodesic leash maps. In Section 5.3, we provide a characterization of an op-
timal homotopy class, and we use this characterization to enumerate possible
optimal homotopy classes in polynomial time. In Section 5.4, we describe a
polynomial-time algorithm to compute the Fréchet distance within a particular
homotopy class. Combining these two subroutines gives us a polynomial-time
algorithm to compute homotopic Fréchet distance.

5.2.2 Homotopic Shortest Paths

Our algorithm relies on observations by Hershberger and Snoeyink [77] about
shortest homotopic paths in the punctured plane; see also [66, 18, 55, 9, 10].
Suppose we already know a shortest path (a leash) λ between points a ∈ A

and b ∈ B, such as, for instance, a straight-line segment ab. To compute the
geodesic leash between some other pair of points in the same homotopy class
as λ, we follow the continuous evolution of the geodesic as the points a and b

move along their respective curves. The sequence of obstacle vertices on the
leash behaves like a double-ended queue or deque. A new vertex is pushed onto
one end of the deque whenever the first or last segment of λ collides with an
obstacle vertex. Conversely, a vertex is popped off one end of the deque when
the first or last two segments of λ become collinear, and if their common vertex
is a point obstacle, the turning angle at that point is either π or −π.

55

5.3 Optimal Homotopy Classes

5.3.1 Minimality

Let len(λ) denote the length of any geodesic leash λ, and let turn(λ) denote
the sum of the absolute values of the turning angles at any point obstacles on
λ. (Again, if λ meets the same point obstacle more than once, each incidence
separately contributes to turn(λ). If none of the obstacles are points, then
turn(λ) = 0.) For any pair of leashes λ and λ′, we write λ � λ′ if and only if
either (a) len(λ) < len(λ′), or (b) len(λ) = len(λ′) and turn(λ) ≤ turn(λ′). We
write λ ≺ λ′ whenever λ � λ′ but λ′ 6� λ.

We can extend this partial order to homotopy classes as follows. For any
relative homotopy class h and any s, t ∈ [0, 1], let σh(s, t) denote the shortest
path in h between points A(s) and B(t). For any two homotopy classes h and h′,
we write h � h′ if and only if σh(s, t) � σh′(s, t) for all parameters s and t. We
write h ≺ h′ whenever h � h′ but h′ 6� h.

Lemma 5.3.1. For any relative homotopy classes h and h′, if h � h′, then

Fh(A,B) ≤ Fh′(A,B).

Proof: Let `′ be an optimum leash map in homotopy class h′, so that len(`′) =
Fh′(A,B). For some reparameterizations α and β, we have `′(t, ·) = σh′(α(t), β(t))
for all t. Let ` be the geodesic leash map in homotopy class h defined by the
same reparameterizations: `(t, ·) = σh(α(t), β(t)) for all t. The definition of
� implies that len(`(t, ·)) ≤ len(`′(t, ·)) for all t. It follows that Fh(A,B) ≤
len(`) ≤ len(`′) = Fh′(A,B). �

A relative homotopy class h is minimal if h′ � h implies h � h′.

Lemma 5.3.2. For any relative homotopy class h, there is a minimal relative

homotopy class h′ such that h′ � h.

Proof: Assume, for the sake of contradiction, that there is no minimal relative
homotopy class h′ such that h′ � h. Then we can construct an arbitrarily long
descending chain of relative homotopy classes h = h0 � h1 � h2 � · · · . To
simplify notation, let σn = σhn(0, 0).

Consider the ordered list of obstacle points on each path σn. There are
finitely many such ordered lists, because len(σn) ≤ len(σ0) for each n. Thus,
up to taking a subsequence, we may assume that every path σn visits the same
sequence of obstacle points. This assumption implies that all paths σn are geo-
metrically equivalent and thus have equal length. Thus, by definition of �, we
have turn(σn) < turn(σ0) for all n. There are finitely many relative homotopy
classes with a given ordered list of vertices and with bounded total absolute
turning angle. (Specifically, since turn(σn) − turn(σ0) is always a multiple of
2π, there are at most bturn(σ0)/2πc+ 1 such classes.) �

56

The two previous lemmas immediately imply that there is a minimal optimal
homotopy class.

In the next two subsections, we characterize minimal homotopy classes and
describe how to enumerate them efficiently, first for point obstacles and then
for polygonal obstacles.

5.3.2 Point Obstacles

Suppose P is a fixed finite set of points. A proper line segment is a line segment
in E (and thus disjoint from P) joining a point in A to a point in B.

Proposition 5.3.3. A relative homotopy class is minimal if and only if it con-

tains a proper line segment.

Proof: One direction of the proof is straightforward. Let h be the relative
homotopy class of the proper line segment σ from A(s) to B(t). For any relative
homotopy class h′ 6= h, the shortest path σh′(s, t) must be longer than σ, so
σh′(s, t) 6� σ = σh(s, t), which implies that h′ 6� h. We conclude that h is
minimal.

Now let h be an arbitrary minimal homotopy class. Let Â and B̂ be lifts of
A and B in the universal cover Ê , such that for all s and t, the shortest path
σ̂h(s, t) between Â(s) and B̂(t) is a lift of σh(s, t). Let P̂ denote the set of all
lifts of points in P ; these lifted obstacle points lie on the boundary of Ê .

We prove that h contains a proper line segment in two stages. First, we
prove that no lifted obstacle point p̂ ∈ P̂ lies on every path σ̂h(s, t). Next, we
construct a relative homotopy from the initial leash σh(0, 0) to a proper line
segment.

Stage 1: No common corner. For the sake of deriving a contradiction,
suppose there is a lifted obstacle point p̂ ∈ P̂ such that for all s and t, the
path σ̂h(s, t) passes through p̂. For all s and t, the path σ̂h(s, t) is a shortest
path, so its turning angle at p̂ must lie outside the open interval (−π, π). This
turning angle is a continuous function of s and t, so we can assume without loss
of generality that it is always greater than π. In other words, we assume that
every path σ̂h(s, t) winds counterclockwise around p̂.

Now p̂ is a lift of some obstacle p ∈ P , and σ̂h(s, t) similarly projects to a
geodesic σh(s, t). For each s and t, let τ(s, t) denote the path with the same
vertices and turning angles as σh(s, t), except that the turning angle at p is
reduced by 2π. All paths τ(s, t) belong to a single relative homotopy class,
which we denote h′.

Fix parameters s and t, and consider the turning angles of σh(s, t) and
τ(s, t) at p. If the turning angle of σh(s, t) at p is strictly between π and 3π,
then the turning angle of τ(s, t) at p is strictly between −π and π. In this
case, τ(s, t) cannot be the shortest path from s to t in this homotopy class, so
len(σh′(s, t)) < len(τ(s, t)) = len(σh(s, t)).

57

On the other hand, if the turning angle of σh(s, t) at p is at least 3π, then
the turning angle of τ(s, t) at p is at least π, which implies that τ(s, t) is the
shortest path from s to t in h′. In this case σh(s, t) and σh′(s, t) = τ(s, t)
are geometrically equivalent and thus have equal length, but turn(σh′(s, t)) =
turn(σh(s, t))− 2π < turn(σh(s, t)).

Hence σh′(s, t) ≺ σh(s, t) for all s and t, which contradicts our assumption
that h is a minimal homotopy class. We conclude that no lifted obstacle point
p̂ lies on every shortest path σ̂h(s, t).

Stage 2: Homotopy construction. If the shortest path σ̂h(0, 0) is a
proper line segment, then the geodesic σh(0, 0) is also a proper line segment,
and the proof is complete. Thus, we assume that σ̂h(0, 0) passes through at
least one point in P̂ .

Let p̂1, . . . , p̂k be the sequence of lifted obstacle points on the shortest path
σ̂h(0, 0). (The points p̂i are distinct, although their projections back into E
might not be.) Our previous argument implies that for each i, there is a pair of
parameters (si, ti) such that σ̂h(si, ti) does not pass through p̂i.

We consider a continuous motion of the parameter point (s, t), starting at
(s, t) = (0, 0) and then moving successively to each point (si, ti). Specifically,
we define two continuous functions s : [0, k] → [0,m] and t : [0, k] → [0, n] such
that s(0) = t(0) = 0, and for any integer i, we have s(i) = si and t(i) = ti. To
simplify our notation, we write σ̂(τ) to denote the shortest path σ̂h(s(τ), t(τ)).

As the parameter τ (‘time’) increases, points in P̂ are inserted into and
deleted from the deque of vertices of σ̂(τ). If the deque is empty at any time
τ , then the shortest path σ̂(τ) is a proper line segment, which implies that
the projected path σ(τ) is a proper line segment as well, concluding the proof.
Thus, we assume to the contrary that the deque is never empty. Each vertex
p̂1, . . . , p̂k must be deleted from the deque at some time during the motion (but
may be reinserted later).

Suppose p̂ is the last point among p̂1, . . . , p̂k to be removed from the deque
for the first time. Without loss of generality, we assume p̂ is first removed from
the front of the deque at time τ1. Let q̂ denote the second point in the deque just
before p̂ is removed; this point must exist, because the deque is never empty.
The point p̂ lies on the first segment âq̂ of σ̂(τ1), where â = Â(s(τ1)).

By definition of p̂, point q̂ must have been pushed onto the back of in the
deque at some earlier time τ2 < τ1. Just after q̂ is inserted, the last two points
in the deque are p̂ and q̂, in that order. Moreover, q̂ lies on the last segment p̂b̂

of σ̂(τ2), where b̂ = B̂(t(τ2)).
Thus, there is an improper line segment âb̂ between a point in Â and a point

in B̂. Since all line segments in Ê are shortest paths, âb̂ is the shortest path
σ̂h(τ1, τ2). Thus, the path σh(τ1, τ2) in E is an improper line segment in relative
homotopy class h. Finally, for sufficiently small ε > 0, one of the four paths
σh(τ1±ε, τ2±ε) is a proper line segment (because no three vertices of the input

58

are collinear). �

Proposition 5.3.3 implies that we can enumerate the set of minimal relative
homotopy classes in polynomial time as follows. Call a line segment ab with
a ∈ A and b ∈ B extremal if it satisfies one of the following conditions:

(1) The endpoints of ab are vertices of A and B.

(2) One endpoint is a vertex of A or B and the segment contains one point in
P .

(3) The segment contains two points in P .

Every proper line segment is relatively homotopic to at least one extremal line
segment. Conversely, every extremal line segment carries paths in at most four
minimal relative homotopy classes, distinguished by assigning turning angles of
π or −π at the obstacle vertices that lie on the segment. Thus, to enumerate
the minimal relative homotopy classes, it suffices to enumerate the extremal line
segments.

There are O(mn) extremal segments of type (1), which we can easily enumer-
ate in O(mn) time by brute force. Each vertex a ∈ A and point p ∈ P determine
at most n extremal segments of type (2), one for each intersection between −→ap

and B. Similarly, each vertex b ∈ B and point p ∈ P determine at most n

extremal segments of type (2). Thus, there are O(mnk) extremal segments of
type (2); again, we can easily enumerate these in O(mnk) time. Finally, any two
points p, q ∈ P determine O(mn) extremal segments of type (3), distinguished
by the intersection points of ←→pq with A and B, so there are O(mnk2) type-(3)
extremal segments in total. For any obstacle points p and q, we can compute
the intersection points←→pq ∩A and←→pq ∩B in O(m+n) time, and then enumerate
the extremal segments that contain both p and q in O(mn) time, again by brute
force.

Altogether, we enumerate O(mnk2) extremal line segments, and therefore
O(mnk2) minimal homotopy classes, in O(mnk2) time.

There are polygonal curves and point sets that admit Ω(mnk2) distinct
minimal relative homotopy classes; see Figure 5.2 for an example. Thus, any
improvement in this portion of the algorithm will require a finer characterization
of optimal relative homotopy classes.

Figure 5.2. An input with Ω(N4) minimal relative homotopy classes.

59

5.3.3 Polygonal Obstacles

The preceding argument breaks down if we allow polygonal obstacles; indeed,
it is easy to construct instances where there are no proper line segments. Even
if the instance allows proper line segments, the optimal homotopy class may
not include one. Thus, we require a more complex characterization of minimal
homotopy classes in this case. Note that we allow obstacles to be arbitrary
polygonal objects, so the curves A and B may themselves be obstacles also.

We say that obstacle vertices p and q pin a geodesic γ if the globally shortest
path from p to q (in the closure of E) is a subpath of γ; note that p and q may be
the same point. A relative homotopy class h is pinned if some pair of obstacle
vertices pins every geodesic in h. The intersection of all geodesics within a
pinned homotopy class is a shortest path between obstacle vertices, which we
call the pinned subpath of h.

Lemma 5.3.4. Every minimal relative homotopy class either contains a proper

line segment or is pinned.

Proof: As in the proof of Proposition 5.3.3, let h be an arbitrary minimal
homotopy class. Let Â and B̂ be lifts of A and B in the universal cover Ê , such
that for all s and t, the shortest path σ̂h(s, t) between Â(s) and B̂(t) is a lift of
σh(s, t). Let P̂ denote the set of all lifts of the vertices of obstacles in P ; again,
every point in P̂ lies on the boundary of Ê .

Let π̂h denote the intersection of all shortest paths σ̂h(s, t). If π̂ = ∅, then
by Stage 2 in the proof of Proposition 5.3.3, h contains a proper line segment.

Otherwise, π̂h is a shortest path between some pair of lifted obstacle vertices
p̂ and q̂. (In the special case where π̂h is a single point, we have p̂ = q̂ = π̂h.)
Now p̂ and q̂ are lifts of obstacle vertices p and q (which may be the same point,
even if p̂ and q̂ are not), and π̂h is similarly a lift of some path πh from p to q.

Let σh denote the globally shortest path from p to q, and suppose that
πh 6= σh. For each s and t, let τ(s, t) be the curve obtained from σh(s, t) by
replacing πh with σh. All paths τ(s, t) belong to the same relative homotopy
class, which we will denote h′. We now easily confirm that h′ ≺ h, contradicting
our assumption that h is minimal. We conclude that πh is the shortest path
from p to q, which implies that h is a pinned relative homotopy class, and πh is
its pinned subpath. �

We call a geodesic γ direct if it consists of a proper line segment from A to
some obstacle vertex p, the shortest path from p to an obstacle vertex q, and a
proper line segment from q to B.

Lemma 5.3.5. Every pinned relative homotopy class contains a direct geodesic.

Proof: Let h be a pinned homotopy class, and let p and q denote the start and
end of the pinned subpath πh. Any geodesic σh(s, t) consists of a geodesic αh(s)
from A to p, the pinned subpath πh, and a geodesic βh(t) from q to B.

60

If αh(0) is a proper segment, our claim is proved. Thus, we assume that
αh(0) is not a direct geodesic, which implies that the lifted path α̂h(0) passes
through at least one obstacle vertex other than its endpoint p̂. Let p̂− be the
last lifted obstacle vertex on α̂h(0) before p̂. Let s0 be the largest value such
that α̂h(s) contains p̂− for all 0 ≤ s ≤ s0. Because p̂− is not on the pinned
subpath, it is not on every geodesic α̂h(s), which implies that s0 < m. For
sufficiently small ε > 0, the geodesic αh(s0 + ε) is a proper line segment.

A similar argument implies that βh(t) is a proper line segment for some
t. �

We can compute all homotopy classes of proper line segments using only
a small modification of our earlier algorithm. In fact, we begin by running
the earlier enumeration algorithm using only the vertices of polygons in P as
obstacles. We then discard any line segment that intersects the interior of any
obstacle polygon.

Lemma 5.3.5 implies that we can enumerate a superset of of the minimal
relative homotopy classes in polynomial time. We begin by computing the
shortest paths between every pair of obstacle vertices [78]. Next, for every pair
p and q of obstacle vertices, we extend the ray −→pq until it reaches the interior of
an obstacle (or infinity), and then compute all O(m + n) intersections between
the resulting line segment and the curves A and B. Finally, we concatenate
all O(mk) initial segments, O(k2) shortest paths, and O(nk) final segments
to obtain O(mnk4) pinned paths in O(mnk4) = O(N6) time. Every pinned
relative homotopy class contains one of these paths.

Unlike Proposition 5.3.3, we do not have an exact characterization of minimal
homotopy classes for polygonal obstacles—direct geodesics do not necessarily lie
in pinned homotopy classes, and not all pinned homotopy classes are minimal.
However, there are problem instances with Ω(mnk4) pinned homotopy classes;
for example, replace each obstacle point in Figure 2 with a small triangle.

5.3.4 Non-Polygonal Obstacles

We can further generalize our characterization of minimal homotopy classes to
arbitrary non-polygonal obstacles. If we replace ‘obstacle vertex’ with ‘obstacle
boundary point’ in the definitions, Lemmas 5.3.4 and 5.3.5 are still true in
this more general setting. In this section, we redefine the necessary terms and
generalize the necessary proofs.

Again, we say that two obstacle boundary points p and q pin a geodesic γ

if the globally shortest path from p to q (in the closure of E) is a subpath of
γ; note that p and q may be the same point. A relative homotopy class h is
pinned if some pair of obstacle boundary points pins every geodesic in h. The
intersection of all geodesics within a pinned homotopy class is a shortest path
between obstacle boundary points, which we call the pinned subpath of h.

Let O be the set of obstacles present in the space E .

61

Lemma 5.3.6. Every minimal relative homotopy class either contains a proper

line segment or is pinned.

Proof: As in the proof of Proposition 5.3.3, let h be an arbitrary minimal
homotopy class. Let Â and B̂ be lifts of A and B in the universal cover Ê , such
that for all s and t, the shortest path σ̂h(s, t) between Â(s) and B̂(t) is a lift of
σh(s, t). Let Ô be the set of all lifts of obstacles O.

Let π̂h denote the intersection of all shortest paths σ̂h(s, t). If π̂ = ∅, then
by Stage 2 in the proof of Proposition 5.3.3, h contains a proper line segment.

Otherwise, π̂h is a shortest path between some pair of lifted obstacle bound-
ary points, which will we denote by p̂ and q̂. (In the special case where π̂h is a
single point, we have p̂ = q̂ = π̂h.) Now p̂ and q̂ are lifts of obstacle boundary
points p and q (which may be the same point, even if p̂ and q̂ are not), and π̂h

is similarly a lift of some path πh from p to q.
Let σh denote the globally shortest path from p to q, and suppose that

πh 6= σh. For each s and t, let τ(s, t) be the curve obtained from σh(s, t) by
replacing πh with σh. All paths τ(s, t) belong to the same relative homotopy
class, which we will denote h′. We now easily confirm that h′ ≺ h, contradicting
our assumption that h is minimal. We conclude that πh is the shortest path
from p to q, which implies that h is a pinned relative homotopy class, and πh is
its pinned subpath. �

We call a geodesic γ direct if it consists of a line segment from A to some
obstacle boundary point p which is tangent to the obstacle at p, the shortest
path from p to an obstacle boundary point q, and a line segment from q to B

which is a tangent to the obstacle at q.

Lemma 5.3.7. Every pinned relative homotopy class contains a direct geodesic.

Proof: Let h be a pinned homotopy class, and let p and q denote the start and
end of the pinned subpath πh. Any geodesic σh(s, t) consists of a geodesic αh(s)
from A to p, the pinned subpath πh, and a geodesic βh(t) from q to B.

If αh(0) is a proper segment, our claim is proved. Thus, we assume that
αh(0) is not a direct geodesic, which implies that the lifted path α̂h(0) passes
through at least one obstacle boundary point other than its endpoint p̂. Let
p̂− be the last lifted obstacle boundary point on α̂h(0) before p̂. Let s0 be the
largest value such that α̂h(s) contains p̂− for all 0 ≤ s ≤ s0. Because p̂− is not
on the pinned subpath, it is not on every geodesic α̂h(s), which implies that
s0 < m. For sufficiently small ε > 0, the geodesic αh(s0 + ε) is a proper line
segment.

A similar argument implies that βh(t) is a proper line segment for some
t. �

If we have a set of obstacles for which we can compute tangents in poly-
nomial time, Lemma 5.3.7 implies that we can enumerate a superset of of the

62

minimal relative homotopy classes in polynomial time. We begin by computing
tangent curves between every pair of obstacles. For each pair of obstacles, we
use these precomputed tangent curves to find the shortest path connecting the
two obstacles. Next, for each obstacle and line segment in A and B, the set of
tangents from points on the curve to the obstacle is a pair of continuous func-
tions (since each point on the curve has exactly two tangents to any obstacle).
Assuming the obstacles are semi-algebraic sets defined by functions of bounded
degree, we can compute all tangent curves from a line segment to an obstacle
which do not pass through another obstacle [101, 102].

Finally, to enumerate the set of direct geodesics, we pick every possible pair
of obstacles and enumerate all direct geodesics which contain the shortest path
between boundary points on the two obstacles as a pinned subpath. The time
to compute direct geodesics depends on the exact obstacles given.

As in the previous section, we do not have an exact characterization of
minimal homotopy classes for non-polygonal obstacles —direct geodesics do not
necessarily lie in pinned homotopy classes, and not all pinned homotopy classes
are minimal.

We will not consider non-polygonal obstacles in our later algorithmic re-
sults. Assuming tangents and visibility complexes can be computed, the same
algorithms will work, but running times are dependant on the exact type of
obstacles present.

5.4 Fréchet Distance in One Homotopy Class

In this section, we describe an algorithm to compute the Fréchet distance
Fh(A,B) in some relative homotopy class h. Our algorithm is a direct adapta-
tion of Alt and Godau’s algorithm for computing the classical Fréchet distance
between polygonal paths in the plane [3].

As in the previous section, for any s ∈ [0,m] and t ∈ [0, n], let σh(s, t) denote
the shortest path from A(s) to B(t) in homotopy class h, and let dh(s, t) =
len(σh(s, t)). For any ε > 0, let Fε ⊆ [0,m] × [0, n] denote the free space
{(s, t) | dh(s, t) ≤ ε}. Our goal is to compute the smallest value of ε such that
Fε contains a monotone path from (0, 0) to (m,n); this is precisely the Fréchet
distance Fh(A,B).

The parameter space [0,m]× [0, n] decomposes naturally into an m×n grid;
let Ci,j = [i − 1, i] × [j − 1, j] denote the grid cell representing paths from the
ith edge of A to the jth edge of B. Our generalization of Alt and Godau’s
algorithm requires that the restriction of the function dh to any grid cell Ci,j is
convex. We prove this fact in Section 5.4.1 (Proposition 5.4.3).

As input to our problem, we are given a path σh(s0, t0) in relative homotopy
class h; based on the results of the previous section, this is either a proper line
segment or a direct geodesic. Without loss of generality, we assume that the
endpoints A(s0) and B(t0) are vertices of A and B; otherwise, we insert them

63

as new vertices and reparameterize.

5.4.1 Geodesic Distance Is Convex

Let A,B : [0, 1] → E be linear motions in the plane with obstacles, with (con-
stant) derivatives ~a and ~b respectively, and let h be a relative homotopy class.
For each t ∈ [0, 1], let σ(t) be the shortest path from A(t) to B(t) in relative
homotopy class h, and let d(t) be the length of σ(t). The goal of this section is
to prove that the function d is convex.

We omit the easy proof of the following lemma.

Lemma 5.4.1. Let o be a fixed point in the plane, and let ϕ : R2 → R be

the function p 7→ ‖−→op‖. The function ϕ is convex everywhere, and of class C1

everywhere except at o. The gradient of ϕ at any point p 6= o is −→op/‖−→op‖.

Fix t ∈ [0, 1]. The shortest path σ(t) is a polygonal line. Let ~u(t) be the
unit vector representing the direction of the first line segment of σ(t) (at its
initial point A(t)). Similarly, we denote by ~v(t) the unit vector representing the
direction of the last line segment of σ(t).

Recall that, as t increases, the shortest path σ(t) encounters a finite number
of events, between which the set of vertices of the obstacles at which it bends
is the same.

Lemma 5.4.2. Between any two consecutive events, d is convex and of class

C1. In particular, d′(t) = ~b · ~v(t)− ~a · ~u(t), where · denotes inner product.

Proof: Fix two consecutive events t0 and t1.
Assume first that for all t between t0 and t1, the path σ(t) is not a line

segment. Then for every t ∈ [t0, t1], σ(t) is the concatenation of a line segment
from A(t) to a fixed obstacle vertex p, a geodesic from p to another fixed obstacle
vertex q, and the line segment from q to B(t). It follows that d(t) equals a con-
stant plus ‖

−−−→
pA(t)‖+ ‖

−−−→
qB(t)‖. Our result is now a consequence of Lemma 5.4.1.

Specifically, d is the sum of two convex functions, and is therefore convex. Since
A and B do not meet the obstacle vertices M and N , the function d is C1 in
the interval [t0, t1]. The chain rule implies the claimed expression for d′.

If σ(t) is a line segment whenever t0 ≤ t ≤ t1, then d(t) = ‖
−−−−−−→
A(t)B(t)‖. Since

the function t 7→
−−−−−−→
A(t)B(t) is affine, Lemma 5.4.1 also implies that d is convex

and of class C1, and that

d′(t) = (~b− ~a) ·
−−−−−−→
A(t)B(t)/‖

−−−−−−→
A(t)B(t)‖.

Finally, we observe that

~u(t) = ~v(t) =
−−−−−−→
A(t)B(t)

/
‖
−−−−−−→
A(t)B(t)‖,

which completes the proof. �

64

Proposition 5.4.3. The function d is convex.

Proof: Lemma 5.4.2 implies that consecutive events, the function d′ is con-
tinuous and non-decreasing. Let t0 be an arbitrary event. Since the functions
t 7→ ~u(t) and t 7→ ~v(t) are continuous at t0, Lemma 5.4.2 implies that d′ is also
continuous at t0. Thus, d′ is non-decreasing over the entire interval [0, 1], which
implies that d is convex. �

Proposition 5.4.3 implies that the bivariate shortest-path distance function
D(u, v) between A(u) and B(v) is also convex, as follows. For any u, u′, v, v′, t ∈
[0, 1] we denote by du,v,u′,v′(t) the shortest-path distance between A((1− t)u +
tu′) and B((1− t)v + tv′). In other words, we define

du,v,u′,v′(t) = D((1− t)(u, v) + t(u′, v′)).

Proposition 5.4.3 implies that the univariate function du,v,u′,v′ is convex. It
follows that

D((1− t)(u, v) + t(u′, v′)) = du,v,u′,v′((1− t) · 0 + t · 1)

≤ (1− t)du,v,u′,v′(0) + tdu,v,u′,v′(1)

= (1− t)D(u, v) + tD(u′, v′),

which expresses the convexity of D.
The convexity of D immediately implies the following corollary.

Corollary 5.4.4. For all integers i and j, the restriction of dh to any grid cell

Ci,j is convex.

5.4.2 Preprocessing for Distance Queries

The only significant difference between our algorithm and Alt and Godau’s is
that we require additional preprocessing to compute several critical distances
and an auxiliary data structure to answer certain distance queries. (If there are
no obstacles, each critical distance can be computed, and each distance query
can be can be answered, in constant time.)

There are three types of critical distances:

• Endpoint distances dh(0, 0) and dh(m,n),

• Vertex-edge distances dh(i, [j − 1, j]) = min{dh(i, t) | t ∈ [j − 1, j]} for all
integers i ∈ [0,m] and j ∈ [1, n], and

• Edge-vertex distances dh([i− 1, i], j) = min{dh(s, j) | s ∈ [i− 1, i]} for all
integers i ∈ [1,m] and j ∈ [0, n].

Given integers i and j and any real value ε, a horizontal distance query asks
for all values of t ∈ [j− 1, j] such that dh(i, t) = ε, and a vertical distance query

65

asks for all values of s ∈ [i − 1, i] such that dh(s, j) = ε. The convexity of dh

within any grid cell implies that any distance query returns at most two values.
We first describe how to preprocess a single vertical edge in the parameter

grid to answer distance queries; computation of the critical values will be done
automatically during the preprocessing. Obviously a similar result applies to
horizontal grid edges.

Lemma 5.4.5. Suppose we are given a point p and a line segment ` = xy,

parameterized over [0, 1], as well as the geodesic σh(p, x) and its length dh(p, x).
In O(k log k) time, we can build a data structure of size O(k) such that for any

ε, all values t ∈ [0, 1] such that dh(p, `(t)) = ε can be computed in O(log k) time.

We also report the critical vertex-edge distance dh(p, `), the path σh(p, y), and

its length dh(p, y).

Proof: We first compute a constrained Delaunay triangulation of the polygons
P , the segment `, and point p in time O(k log k). This triangulation includes `

and the edges of polygons in P as edges.
We apply the following observations used in the funnel algorithm for com-

puting shortest homotopic paths [28, 87, 77]. The shortest homotopic paths
σh(p, x) and σh(p, y) may share a common subpath and then split at some ver-
tex v; this vertex is then the apex of two concave chains that form a funnel with
base xy. Each concave chain has complexity at most k and intersects a given
edge of the triangulation at most twice.

The geodesic from p to x may have complexity greater than O(k), but (as
observed above) the concave chain from v to x will have at most O(k) segments.
Our goal is to find a vertex w on σh(p, x) such that the path from w to x

contains v. In other words, the chain from w to x along σh(p, x) will be of
complexity O(k) and will contain the concave funnel path.

To find w, walk along the path from x to p. If we find a vertex where the
chain is not concave, we must have passed v, so we mark the non-concave vertex
as w. If we ever re-cross a segment of the triangulation a second time, we again
must have passed the funnel apex v so we can mark the second crossing as w.
(We walked along O(k) edges of the chain to find w.) Let π be the portion of
σh(p, x) between p and w, and τ1 be the portion of σh(p, x) between w and x.

We know that π is contained in σh(p, y), since w is before the apex of the
funnel v. Let τ2 be the portion of σh(p, y) between w and y; this can be computed
in O(k) time using the funnel algorithm. Given τ2, we can then find the apex
of the funnel v in O(k) time.

Imagine extending each line segment on the concave chains until it inter-
sects `, the line connecting x and y. Between the two concave chains, the
combinatorial description of the distance function changes only at points where
the extended lines meet `. To answer distance queries, we will record the O(k)
intersections of the extended lines with `. For each of the resulting intervals,
record the (fixed) length of the geodesic up to the first vertex in the extended

66

line, as well as the equations of the two lines that bracket the interval. In con-
stant time per interval, we can also compute and store the value t∗ ∈ [0, 1] such
that dh(p, `(t∗)) is minimized, along with the path σh(p, `(t∗)); this gives the
desired value dh(p, `).

The funnel data structure requires O(k) space to store the O(k) combinato-
rial changes to the leash as its endpoint sweeps ` = xy.

Now given this data structure, we answer distance queries as follows. If
the distance queried is smaller than dh(p, `), we return the empty set. If it is
equal to dh(p, `), we return `(t∗). If it is larger than dh(p, `), we do two binary
searches, one on the intervals between x and `(t∗) and the other on the intervals
between `(t∗) and y. �

Lemma 5.4.6. In O(mnk log k) time and using O(mnk) space, we can compute

all critical distances, as well as a data structure of size O(mnk) that can answer

any horizontal or vertical distance query in O(log k) time.

Proof: We preprocess each edge of the parameter grid as described in the pre-
vious lemma, Lemma 5.4.5. We start from the vertex (i, j) that is our given
input, either a straight line segment or a direct geodesic. We then walk on the
edges of the grid, visiting each edge at least once and at most O(1) times. Dur-
ing this walk, at each current vertex (i, j), we maintain the shortest homotopic
path σh(i, j) and its length dh(i, j). Each time we walk along an edge, we apply
Lemma 5.4.5 to preprocess it and to compute the shortest homotopic path cor-
responding to the target vertex of that edge. Each step takes O(k log k) time,
and there are O(mn) edges, whence the running-time.

As we walk along an edge of the parameter grid, we use a deque to push and
pop the obstacle vertices along the leash in constant time per operation. Since
at most k vertices are pushed onto the deque for each grid edge, the total size
of the deque is O(mnk). �

5.4.3 Decision Procedure

Like Alt and Godau, we first consider the following decision problem: Is Fh(A,B)
at least some given value ε? Equivalently, is there a monotone path in the free
space Fε from (0, 0) to (m,n)? Our algorithm to solve this decision problem is
identical to Alt and Godau’s, except for the O(log k)-factor penalty for distance
queries; we briefly sketch it here for completeness.

For any integers i and j, let hi,j denote the intersection of the free space Fε

with the horizontal edge ([i− 1, i], j), and let vi,j denote the intersection of Fε

with the vertical edge (i, [j − 1, j]). In the first phase of the decision procedure,
we compute hi,j and vi,j for all i and j, using one distance query (and O(log k)
time) for each edge of the parameter grid.

In the second phase of the decision procedure, we propagate in lexicographic
order from C1,1 to Cm,n and determine which hi,j and vi,j are reachable via a

67

monotone path from C1,1. Since the free space in each Ci,j is convex, we can
propagate through each cell in constant time.

Our decision algorithm returns true if and only if there is a monotone path
that reaches (m,n). The total running time is O(mn log k).

5.4.4 Computing Fréchet Distance

Finally, we describe how to use our decision procedure to compute the optimum
value ε∗ = min{ε | (m,n) ∈ Rε}; this is the Fréchet distance Fh(A,B).

We start by computing critical distances and the distance-query data struc-
ture in O(mnk log k) time, as described in Lemma 5.4.6. We then sort the
O(mn) critical distances. Using the decision procedure, we can compare the
optimal distance ε∗ with any critical distance ε in O(mn log k) time. By bi-
nary search, we can, repeating this step O(log mn) times, compute an interval
[ε−, ε+] that contains ε∗ but no critical distances.

We then apply Megiddo’s parametric search technique [91]; see also [31, 119].
Parametric search combines our decision procedure with a ‘generic’ parallel
algorithm whose combinatorial behavior changes at the optimum value ε∗. Alt
and Godau observe that one of two events occurs when ε = ε∗:

• For some integers i, i′, j, the bottom endpoint of vi,j and the top endpoint
of vi′,j lie on the same horizontal line.

• For some integers i, j, j′, the left endpoint of hi,j and the right endpoint
of hi,j′ lie on the same vertical line.

Thus, it suffices to use a ‘generic’ algorithm that sorts the O(mn) endpoint
values of all non-empty segments hi,j and vi,j , where the value of an endpoint
(s, j) of hi,j is s, and the value of an endpoint (i, t) of vi,j is t.

We use Cole’s parallel sorting algorithm [32], which runs in O(log N) par-
allel steps on O(N) processors, as our generic algorithm. Each parallel step of
Cole’s sorting algorithm needs to compare O(mn) endpoints. The graph of an
endpoint, considered as a function of ε, is convex, monotone, and made of O(k)
pieces, each having a simple closed form (see proof of Lemma 5.4.5). It follows
that the sign of a comparison between two endpoints may change at O(k) dif-
ferent values of ε that can be computed in O(k) time. Applying the parametric
search paradigm requires the following operations for each parallel step of the
sorting algorithm:

• Compute the O(mnk) values of ε corresponding to the changes of sign of
the O(mn) comparisons. This can be done in O(mnk) time and O(mnk)
space.

• Apply binary search to these values by median finding, calling the decision
procedure to discard half of them at each step of the search. This takes
O(mnk + Td log(mnk)) time, where Td = O(mn log k) is the running time

68

of our decision procedure. We obtain this way an interval for ε where each
of the O(mn) comparisons has a determined sign.

• Deduce in O(mn log k) time the sign of each of the O(mn) comparisons
within the previously computed interval.

Since the underlying sorting algorithm requires O(log mn) parallel steps, the
resulting parametric search algorithm runs in time:

O(mn log(mn)(k + log k log(mnk)) = O(N3 log N)

The distance query data structure requires O(mnk) space. We require an
additional O(mnk) space to simulate sequentially each parallel step of the sort-
ing algorithm; we can re-use this space for subsequent parallel steps. Therefore,
the total space complexity of our algorithm is O(mnk) = O(N3).

Lemma 5.4.7. Given either a proper line segment or a direct geodesic any min-

imal relative homotopy class h, the Fréchet distance Fh(A,B) can be computed

in O(N3 log N) time and O(N3) space.

5.4.5 Summary

Finally, to compute the homotopic Fréchet distance F(A,B) in the plane minus
a set of point obstacles, we compute the Fréchet distance Fh(A,B) in each of
the O(mnk2) minimal homotopy classes h. Similarly, for polygonal obstacles,
we compute Fh(A,B) for every class h in a set of O(mnk4) relative homotopy
classes, which includes every minimal homotopy class.

Theorem 5.4.8. The homotopic Fréchet distance between two polygonal curves

in the plane minus a set of points can be computed in O(N7 log N) time using

O(N3) space.

Theorem 5.4.9. The homotopic Fréchet distance between two polygonal curves

in the plane minus a set of polygons can be computed in O(N9 log N) time using

O(N3) space.

5.5 Spaces of Non-positive Curvature

It is worth noting that Lemma 5.2.1 will extend to more general spaces. LetM
be a topological space, and consider a triangle T inM with edges of length a, b,

and c. Form a comparison triangle T ′ in the plane with the same edge lengths.
The CAT(0) inequality is satisfied inM if for every choice of a geodesic triangle
T , any geodesic chord of T has length less than or equal to the corresponding
chord in T ′. If this inequality is satisfied, then we say the space is CAT(0).

Any space that admits a metric which is locally CAT(0) is said to have
non-positive curvature. The relevant fact we rely upon is that any space with

69

non-positive curvature has a unique geodesic between any two points (see e.g.
[14]).

Lemma 5.5.1. Suppose ` is a leash map between two curves A and B in M.

There is a geodesic leash map `′between A and B such that for all t ∈ [0, 1], the

leash `′(t, ·) is the shortest path homotopic to `(t, ·) with the same endpoints.

Additionally, the length of `′ is at most the length of `.

Proof: The proof proceeds as it did in Lemma 5.2.1. We lift ` to the universal
cover M̂ ofM, obtaining a leash map ˆ̀ between the lifts Â and B̂ of A and B

respectively. For each t ∈ [0, 1], let ˆ̀′(·, t) be the shortest path between the
endpoints of ˆ̀(t, ·) in the same homotopy class. The universal cover M̂ is a
simply-connected and non-positively curved space, so geodesics are unique. In
addition, shortest paths in M̂ vary continuously as the endpoints move con-
tinuously. It follows that ˆ̀′ is a continuous function in both arguments, and
therefore a (geodesic) leash map in M̂ . The projection `′ of ˆ̀′ back to M is a
(geodesic) leash map between A and B. For all t, the leash `′(t, ·) is the shortest
path homotopic to `(t, ·), so maxt len(`′(t, ·)) ≤ maxt len(`(t, ·)).

�

This means that there is hope of generalizing homotopic Fréchet distance
to more general surfaces. The main question regards the representation of the
surface, since some representations of non-positively curved surfaces (such as
hyperbolic space) make distance calculations computationally intractable or at
least raise issues of numerical approximations. However, if geodesics are com-
putable, then it is possible to compute the homotopic Fréchet distance.

5.6 Open Problems

Improving the running time of our algorithms is the most immediate outstand-
ing open problem. For point obstacles, we conjecture that the running time
can be improved by at least a factor of N by optimizing leash maps in every
minimal homotopy class simultaneously. Since shortest paths between the same
endpoints but belonging to different homotopy classes are related, we expect to
(partially) reuse the results of shortest path computations going from one ho-
motopy class to another. For polygonal obstacles, an exact characterization of
minimal homotopy classes would almost certainly lead to a significantly faster
algorithm.

Cook and Wenk [36] describe an algorithm for computing geodesic Fréchet
distance between two curves within a simple polygon, generalizing earlier results
of Efrat et al. [53]. Their algorithm is faster than ours by roughly a factor of N ,
in part because they use a randomized strategy in place of parametric search.
Unfortunately, we have not been able to apply their technique to our more

70

general problem, because it seems to require a simply-connected environment.
However, similar ideas may simplify and improve our algorithm.

Weak Fréchet distance is a variant of the ordinary Fréchet distance without
the requirement that the endpoints move monotonically along their respective
curves—the dog and its owner are allowed to backtrack to keep the leash between
them short. Alt and Godau [3] gave a simpler algorithm for computing the weak
Fréchet distance, using a graph shortest-path algorithm instead of parametric
search. A similar simplification of our algorithm computes the weak homotopic
Fréchet distance between curves in the punctured plane in polynomial time.

With regard to morphing applications [54], it would also be interesting to
minimize the average leash length over the course of the homotopy, rather than
the maximum leash length.

It would be interesting to compute homotopic Fréchet distance in more gen-
eral spaces. In particular, we are interested in computing the homotopic Fréchet
distance between two curves on a convex polyhedron, generalizing the algorithm
of Maheshwari and Yi for classical Fréchet distance [89]. The vertices of the poly-
hedron are ‘mountains’ over which the leash can pass only if it is long enough.
Shortest paths on the surface of a convex polyhedron do not vary continuously
as the endpoints move, because of the positive curvature at the vertices, so we
cannot consider only geodesic leash maps.

Finally, it would also be interesting to consider the homotopic (weak) Fréchet
distance between higher-dimensional manifolds; such problems arise with re-
spect to surfaces in configuration spaces of robot systems. Standard Fréchet
distance is difficult to compute in higher dimensions, although the weak Fréchet
distance between two triangulated surfaces can be computed in polynomial
time [2].

71

Chapter 6

Rips Complexes of Planar
Point Sets

6.1 Introduction

The previous chapters have focused on homotopy in combinatorial surfaces and
IR2 minus obstacles. Another type of topological space used in various appli-
cations is a simplicial complex. Homotopy questions in simplicial complexes
are generally much more difficult than previous models discussed. For gen-
eral simplicial complexes, even determining whether two paths are homotopic
is undecidable [90]. For this reason, most topological algorithms for simplicial
complexes are based on homology, which provides a cruder classification of topo-
logical features than homotopy, but generalizes more easily to higher dimensions
[49, 50, 22, 64, 125].

Given a set X of points in Euclidean space En, the Vietoris-Rips complex
Rε(X) is the abstract simplicial complex whose k-simplices are determined by
subsets of k + 1 points in X with diameter at most ε. For simplicity, we set
ε = 1 and write R := R1(X) for the remainder of the paper, with the exception
of §6.4. For brevity (and to conform to typical usage), we refer to R as the
Rips complex ; we denote the 1-skeleton of the Rips complex as R1. The Rips
complex is an example of a flag complex — the maximal simplicial complex with
a given 1-skeleton.

The Rips complex was used by Vietoris [120] in the early days of homology
theory, as a means of creating finite simplicial models of metric spaces. Within
the past two decades, the Rips complex has been utilized frequently in geomet-
ric group theory [67] as a means of building simplicial models for group actions.
Most recently, Rips complexes have been used heavily in computational topol-
ogy, as a simplicial model for point-cloud data [20, 21, 22, 37] and as simplicial
completions of communication links in sensor networks [38, 39, 96].

The utility of Rips complexes in computational topology stems from the
ability of a Rips complex to approximate the topology of a cloud of points.
We make this notion more specific. To a collection of points, one can assign a
different simplicial model called the Čech complex that accurately captures the
homotopy type of the cover of these points by balls. Formally, given a set X

of points in some Euclidean space En, the Čech complex Cε(X) is the abstract
simplicial complex where a subset of k+1 points in X determines a k-simplex if

72

and only if they lie in a ball of radius ε/2. The Čech complex is equivalently the
nerve of the set of closed balls of radius ε/2 centered at points in X. The Čech
theorem (or Nerve lemma, see, e.g., [11]) states that Cε(X) has the homotopy
type of the union of these balls. Thus, the Čech complex is an appropriate
simplicial model for the topology of the point cloud (where the parameter ε is
a variable).

There is a price for the high topological fidelity of a Čech complex. Given the
point set, it is nontrivial to compute and store the simplices of the Čech complex.
The virtue of a Rips complex is that it is determined completely by its 1-skeleton
— the proximity graph of the points. (This is particularly useful in the setting of
ad hoc wireless networks, where the hardware establishes communication links
based, ideally, on proximity of nodes.) The penalty for this simplicity is that it
is not immediately clear what is encoded in the homotopy type of R. Like the
Čech complex, it is not generally a subcomplex of its host Euclidean space En,
and, unlike the Čech complex it need not behave like an n-dimensional space
at all: R may have nontrivial topological invariants (homotopy or homology
groups) of dimension n and above.

The disadvantage of both Čech and Rips complexes are in their rigid cut-
offs as a function of distance between points. Arbitrarily small perturbations
in the locations of the points can have dramatic effects on the topology of the
associated simplicial complexes. Researchers in sensor networks are acutely
aware of this limitation, given the amount of uncertainty and fluctuation in
wireless networks. To account for this, several researchers in sensor networks
have used a notion of a distance-based communication graph with a region of
uncertain edges [6, 84]. This motivates the following construction.

Fix an open uncertainty interval (ε, ε′) which encodes connection errors as
a function of distance. For all nodes of distance ≤ ε, there is an edge, and
for all nodes of distance ≥ ε′, no edge exists. For nodes of distance within
(ε, ε′), a communication link may or may not exist. A quasi-Rips complex with
uncertainty interval (ε, ε′) is the simplicial flag complex of such a graph. We
note that this does not model temporal uncertainty, merely spatial.

A completely different model of simplicial complexes associated to a point
cloud comes from considering shadows. Any abstract simplicial complex with
vertices indexed by geometric points in En (e.g., a Rips, Čech, or quasi-Rips
complex) has a canonical shadow in En, which strikes a balance between com-
putability and topological faithfulness. For, say, a Rips complex, the canonical
projection p : R → En is the well-defined function that maps each simplex in R
affinely onto the convex hull of its vertices in En. This projection map is contin-
uous and piecewise-linear. The shadow S is the image p(R) of this projection
map.

We study the topological faithfulness of the projection map p (see Figure
6.1). Specifically, we look at the connectivity of p. Recall that a topological
map f : X → Y is k-connected if the induced homomorphisms on homotopy

73

Figure 6.1. A connectivity graph in the plane [left] determines a 5-dimensional (Vietoris-) Rips
complex [center] and its 2-dimensional projected shadow [right].

groups p∗ : πi(X) → πi(Y) are isomorphisms for all 0 ≤ i ≤ k: e.g., a 1-
connected map preserves path-connectivity and fundamental group data.

Our principal results are the following, ordered as they appear in the fol-
lowing sections. For any set of points in E2, π1(p) : π1(R) → π1(S) is an iso-
morphism. As a corollary of this result, we get that the fundamental group of
any planar Rips complex is free. Given any finitely presented group G, there
exists a quasi-Rips complex RQ with arbitrarily small uncertainty interval such
that π1(RQ) is a free extension of G. The projection map p on Rn is always
k-connected for k = 0 or n = 1. For all other cases except (k, n) = (1, 2) and,
perhaps, (1, 3), k-connectivity fails on Rn (see Figure 6.8).

6.2 Planar Rips Complexes and Their Shadows

In this section, we restrict our attention to the 2-dimensional case.

6.2.1 The Shadow Complex

The shadow S is a polyhedral subset of the plane. By Carathéodory’s theorem
[48], S is the projection of the 2-skeleton ofR. Since the vertices ofR are distinct
points in the plane, it follows that distinct edges of R have distinct images
under p, and these are nondegenerate. Informally we will identify vertices and
edges of R with their images under p. On the other hand, p may be degenerate
on 2-simplices.

We can canonically decompose S into a 2-dimensional shadow complex as
follows:

• A shadow vertex is either a vertex of R or a point of transverse inter-
section of two edges of R. We write S0 for the set of shadow vertices.

• A shadow edge is the closure of any component of p(R1) \ S0. Each
shadow edge is a maximal line segment contained in a Rips edge, with no
shadow vertices in its interior. We write S1 for the union of all shadow
vertices and shadow edges.

• Finally, a shadow face is the closure of any bounded component of E2\S1.

74

The fundamental group π1(S) may now be described in terms of combina-
torial paths of shadow edges modulo homotopy across shadow faces, whereas
π1(R) may be described in terms of combinatorial paths of Rips edges modulo
homotopy across Rips faces. This description opens the door to combinatorial
methods in the proof that π1(p) is an isomorphism.

6.2.2 Technical Lemmas

Our main result, given in theorem 6.3.1, is that for any planar point set, π1(R) '
π1(S). This result will follow from reduction to three special cases. We prove
these cases in this subsection. We use the following notation. Simplices of a Rips
complex will be specified by square braces, e.g., [ABC]. Images in the shadow
complex will be denoted without adornment, e.g., ABC. The Euclidean length
of an edge AB will be denoted |AB|. Braces 〈·〉 will be used to denote the span
in R: the smallest subcomplex containing a given set of vertices, e.g., 〈ABCD〉.

The following propositions address the three special cases of Theorem 6.3.1
which are used to prove the theorem. Certain induced subcomplexes of R are
shown to be simply connected. In the first two cases, it is helpful to establish the
stronger conclusion that these subcomplexes are cones: all maximal simplices
share a common vertex, called the apex. The first of these cases is trivial and
well-known (viz., [38, 60]).

Proposition 6.2.1. Let R = 〈ABY Z〉 be a Rips complex containing simplices

[AB] and [Y Z] whose images in S intersect. Then R is a cone.

Proof: Let x be the common point of AB and Y Z. Each edge is split at x

into two pieces, at most one of which can have length more than one-half. The
triangle inequality implies that the shortest of these four half-edges must have
its endpoint within unit distance of both endpoints of the traversing edge, thus
yielding a 2-simplex in R. �

Proposition 6.2.2. Let R = 〈ABXY Z〉 be a Rips complex containing sim-

plices [AB] and [XY Z] whose images in S intersect. Then R is a cone.

Proof: The edge AB intersects the triangle XY Z. If AB intersects only one
edge of XY Z, then one vertex of AB (say, A) lies within XY Z and cones off a
3-simplex [AXY Z] in R. Therefore, without a loss of generality we may assume
AB crosses ZY and ZX.

By Proposition 6.2.1, the subcomplexes 〈ABXZ〉 and 〈ABY Z〉 are cones.
If these two cones have the same apex, then the entire Rips complex R is a cone
with that apex. Similarly, if either apex lies inside the image triangle XY Z,
then R is a cone with that apex. The only remaining possibility is that A is
the apex of one subcomplex and B is the apex of the other; in this case, R is a
cone over Z, since both A and B are connected to Z. �

75

Y

B

Z

A

X

Figure 6.2. The last case of Proposition 6.2.2.

D

Y

B Z

C

A

X

Figure 6.3. The setup for Proposition 6.2.3.

Proposition 6.2.3. Let R = 〈ABCDXY Z〉 be a Rips complex containing

simplices [AB], [CD] and [XY Z] whose images in S meet in a common point.

Moreover, assume that none of A,B, C, D lies in the interior of XY Z. Then

π1(R) is trivial.

To prove Proposition 6.2.3, we use two further geometric lemmas.

Lemma 6.2.4. LetR = 〈BXY Z〉 be a Rips complex containing simplex [XY Z].
If M is a point in XY Z such that |BM | ≤ 1

2 , then R contains at least one of

the edges [BX], [BY], [BZ].

Proof: If B lies in XY Z then all three edges belong to R. Otherwise, BM

meets the boundary of XY Z at a point M ′. We may assume without loss of
generality that M ′ lies on XY , with |M ′X| ≤ |M ′Y |. Then |BX| ≤ |BM ′| +
|M ′X| ≤ 1

2 + 1
2 = 1. �

Lemma 6.2.5. Let R = 〈ABCXY Z〉 be a Rips complex containing simplices

[ABC] and [XY Z]. Suppose that AB intersects XY Z but BC and AC do not.

Then R is a cone.

Proof: The hypotheses of the lemma imply that at least one of the points X,
Y , or Z lies in the interior of ABC. R is a cone on this point. �

Proof (Proof of Proposition 6.2.3): We argue by exhaustive case analysis
that R contains no minimal noncontractible cycle.

Suppose γ is a minimal noncontractible cycle in R. Because R is a flag
complex, γ must consist of at least four Rips edges. Our previous Propositions

76

C
A

B

XYZ

C
A

B

XYZ

Figure 6.4. ACXY (left), or ABCX (right), splits into two cycles in the presence of [BX], [BY],
or [BZ].

imply that this cycle intersects each simplex [AB], [CD], and [XY Z] at least
once. By minimality, γ contains at most one edge of [XY Z]. Thus, we may
assume without loss of generality (by relabeling if necessary) that γ is of the
form A(B)C(D)X(Y) where (·) denotes an optional letter; note that at least
one of these optional letters must be present, since the cycle must contain four
Rips edges.

Claim 1: In a minimal cycle, the subwords ABCD, CDXY , XY AB are
impossible. Proposition 6.2.1 (in the first case) and Proposition 6.2.2 (in the
last two cases) imply that the subpaths corresponding to these subwords are
homotopic (relative to endpoints) within a cone subcomplex to a path with at
most two edges, contradicting the minimality of γ.

Claim 1 implies that that there is at most one optional letter. This leaves
three possible minimal noncontractible cycles: ACXY , ABCX, and ACDX.
The last two cases differ only by relabeling, so it suffices to consider only ACXY

and ABCX.

Claim 2: ACXY is impossible. Suppose ACXY is a cycle in R. If AC

meets XY Z then Proposition 6.2.2 implies that 〈ACXY Z〉 is a cone, so ACXY

is contractible. Thus, we can assume that AC does not meet XY Z.
By Proposition 6.2.1, either [BC] or [AD] is a Rips edge. Without loss of

generality, assume [BC] is a Rips edge; then [ABC] is a Rips triangle. If BC

does not meet XY Z, then Lemma 6.2.5 implies that 〈ABCXY Z〉 is a cone,
and hence that ACXY is contractible. Thus we can assume that BC intersects
XY Z.

Proposition 6.2.2 now implies that both 〈ABXY Z〉 and 〈BCXY Z〉 are
cones. If any of the segments [BX], [BY], [BZ] is a Rips edge, then the cycle
ACXY is homotopic to the sum of two cycles, contained respectively in the
cones 〈ABXY Z〉 and 〈BCXY Z〉, and hence is contractible. See Figure 6.4(a).

We can therefore assume that none of the segments [BX], [BY], [BZ] is a
Rips edge. In this case, the apex of 〈ABXY Z〉 must be A. In particular, the
diagonal [AX] of the cycle ACXY belongs to R, and so ACXY is contractible.
This completes the proof of Claim 2.

Claim 3: ABCX is impossible. Suppose ABCX is a cycle in R. If either

77

[AC] or [BX] is a Rips edge, then ABCX is trivially contractible. Moreover, if
either [BY] or [BZ] is a Rips edge, then the cycle ABCX reduces to the sum of
two cycles, as in Figure 6.4(b). The left cycle is contractible by Proposition 6.2.2,
and the right cycle is contractible by Claim 2 (suitably relabeled), so ABCX is
contractible in that case too. We can therefore assume that none of the segments
[AC], [BX], [BY], or [BZ] is a Rips edge.

Now let M be a common point of intersection of AB, CD, and XY Z.
Lemma 6.2.4 implies that |BM | > 1

2 , and so |AM | = |AB| − |BM | ≤ 1
2 . Since

|AC| > 1, we have |CM | = |AC|−|AM | > 1
2 , and so |DM | = |CD|−|CM | ≤ 1

2 .
These inequalities imply that |AD| ≤ |AM |+ |DM | ≤ 1, so [AD] is a Rips edge.

It follows that R contains the cycle ADCX. This cycle is homotopic to
ABCX, since 〈ABCD〉 is a cone by Proposition 6.2.1. Lemma 6.2.4 implies
that at least one of the segments [DX], [DY], [DZ] must be a Rips edge.
Arguing as before, with D in place of B, we conclude that ADCX, and thus
ABCX, is contractible. This completes the proof of Claim 3. �

6.2.3 Lifting Paths via Chaining

For any path α in R1, the projection p(α) is a path in S1, but not every shadow
path is the projection of a Rips path. Every oriented shadow edge in S is
covered by one or more oriented edges in R. Thus to every path in S1 can be
associated a sequence of oriented edges in R. These edges do not necessarily
form a path, but projections of consecutive Rips edges necessarily intersect at
a shadow vertex.

Let [AB] and [CD] be oriented Rips edges induced by consecutive edges in
some shadow path. A chaining sequence is a path from A to D in the subcomplex
〈ABCD〉 which begins with the edge AB and ends with the edge CD.

If we concatenate chaining sequences of shadow edges in S by identifying
the Rips edges in the beginning and end of adjacent lifting sequences, we obtain
a lift of the shadow path to R. For any shadow path α in S, we let α̂ denote
a lift of α to the Rips complex by means of chaining sequences. Note that the
lift of a shadow path is not a true lift with respect to the projection map p —
the endpoints, for example, may differ.

Lemma 6.2.6. For any path α in S1, any two lifts of α to R with the same

endpoints are homotopic in R rel endpoints.

Proof: Let σ and τ be consecutive shadow edges in α, and let [AB] and [CD]
be Rips edges such that σ ⊆ AB and τ ⊆ CD. Proposition 6.2.1 implies that
all chaining sequences from A to D are homotopic rel endpoints in 〈ABCD〉,
and thus in R. If every shadow edge in α lifts to a unique Rips edge, the proof
is complete.

On the other hand, suppose τ ⊆ CD ∩C ′D′ for some Rips edge [C ′D′] that
overlaps [CD]. Proposition 6.2.1 implies that both [CC ′] and [DD′] are Rips

78

C

A

B

D

y

x

w

Figure 6.5. The setting for Lemma 6.2.7

edges. Moreover, since AB intersects CD ∩ C ′D′, any chaining sequence from
A to D is homotopic rel endpoints in R to any chaining sequence from A to D′

followed by [D′D]. Thus, concatenation of chaining sequences is not dependent
on uniqueness of edge lifts. �

We next show that the projection of a lift of any two consecutive shadow
edges is homotopic to the original edges.

Lemma 6.2.7. For any two adjacent shadow edges wx and xy, where AB and

CD are Rips edges with wx ⊆ AB and xy ⊆ CD, p(ŵx · xy) is homotopic rel

endpoints to the path ABxCD in S.

Proof: Consider the possible chaining sequences from A to D for wx·xy. Either
BC or AD must exist in R by Proposition 6.2.1.

Suppose BC exists. By Lemma 6.2.6, the chaining sequence is the Rips
path ABCD (up to homotopy rel endpoints). Either the triangle [ABC] or
the triangle [BCD] exists in R by Proposition 6.2.1, so the triangle BCx is in
shadow. This gives that ABCD ' AxD ' ABxCD in S.

If BC is not a Rips edge, then AD must be a Rips edges. By Lemma 6.2.6,
the chaining sequence is the Rips path ABADCD (up to homotopy rel end-
points). Either the triangle [ACD] or the triangle [ABD] exists in R by Propo-
sition 6.2.1. Therefore, ADx lies in the shadow, so we get ABADCD ' ABxCD

in S. �

Lemma 6.2.8. For any lift α̂ of any shadow path α with endpoints in p(R(0)),
we have p(α̂) ' α rel endpoints.

Proof: For each pair of edges consecutive shadow edges wx and xy in α, where
wx ⊆ AB, xy ⊆ CD, and AB and CD are Rips edges, Lemma 6.2.7 says
that the projection of their lifting sequence deforms back to ABxCD. Every
adjacent pair of chaining sequences can still be identified along common edges,

79

since each ends with the first edge in the next one along α. The projection is
homotopic rel endpoints to the original path α except for spikes of the form xB

and xC at each shadow junction, which can be deformation retracted, giving
p(α̂) ' α. �

6.3 1-Connectivity on R2

The following is the main theorem of this paper.

Theorem 6.3.1. For any set of points in E2, π1(p) : π1(R) → π1(S) is an

isomorphism.

Proof: Assume that all π1 computations are performed with a basepoint in
p(R(0)), to remove ambiguity of endpoints in lifts of shadow paths to R. Sur-
jectivity of p on π1(S) follows from Lemma 6.2.8 and the fact that any loop in
S is homotopic to a loop of shadow edges.

To prove injectivity, note that any contractible cycle in S can be formed by
concatenating boundary loops of shadow faces (conjugated to the basepoint).
Using Lemma 6.2.8, injectivity of π1(p) will follow by showing that the boundary
of any shadow face lifts to a contractible loop in R. Consider therefore a shadow
face Ψ contained in the projection of a Rips 2-simplex [XY Z], and choose [XY Z]
to be minimal in the partial order of such 2-simplices generated by inclusion on
the projections.

Write ∂Ψ as α1 ·α2 · · ·αn, where the αi are the shadow edges, and let [AiBi]
be a sequence of directed Rips edges with αi ⊆ [AiBi]. See Figure 6.6. Neither
the Ai nor the Bi project to the interior of XY Z. If any Rips vertex W did so,
the edges [XW], [Y W] and [ZW] would exist in R. Since Ψ is a shadow face, it
cannot be split by the image of any of these three edges. Therefore, Ψ must be
contained in the projected image of a Rips 2-simplex, say [XY W], whose image
lies within that of [XY Z], contradicting the minimality assumption on [XY Z].
The hypotheses of Proposition 6.2.3 thus apply to [XY Z] and the consecutive
edges [AiBi], [Ai+1Bi+1], giving that each complex 〈AiBiAi+1Bi+1XY Z〉 is
simply connected.

Fix the vertex X as a basepoint and fix a sequence of edge paths βi in
〈AiBiXY Z〉 from X to Ai. Such paths exist and are unique up to homotopy
since 〈AiBiXY Z〉 is a cone by Proposition 6.2.2. We decompose ∂̂Ψ into loops
γ1 · · · γn, where γi is the loop with basepoint X given by

γi = βi · ̂(αi · αi+1) · [Bi+1Ai+1] · β−1
i+1

where all indices are computed modulo n. By Proposition 6.2.3, each of these
loops γi is contractible; hence, so is Ψ̂. �

Corollary 6.3.2. The fundamental group of a Rips complex of a planar point

set is free.

80

Y

Z

X

Ψ

A1

B1

B2

B3

B4

B5

A2

A3

A4

A5

Figure 6.6. The boundary of a shadow face Ψ within XY Z is determined by Rips edges [AiBi]
whose projected endpoints lie outside XY Z.

Proof: S is a polygonal region (possibly with holes) in the plane, so π1(S) is a
free group. Since π1(R) ' π1(S), the result follows. �

6.4 Quasi Rips Complexes and Shadows

We observe that Theorem 6.3.1 fails for quasi-Rips complexes, even for those
with arbitrarily small uncertainty intervals. The failure of Proposition 6.2.1 in
the quasi-Rips case makes it a simple exercise for the reader to generate examples
of a quasi-Rips complexes which are simply-connected but whose shadows are
not. Worse failure than this is possible.

Theorem 6.4.1. Given any uncertainty interval (ε, ε′) and any finitely pre-

sented group G, there exists a quasi-Rips complex RQ with π1(RQ) ∼= G ∗ F ,

where F is a free group.

Proof: It is well-known that any finitely presented group G can be realized as
the fundamental group of a 2-dimensional cell complex whose 1-skeleton is a
wedge of circles over the generators and whose 2-cells correspond to relations.
Such a complex can be triangulated, and, after a barycentric subdivision, can
be assumed to be 3-colored: that is, there are no edges between vertices of the
same color. Call this vertex 3-colored 2-d simplicial complex K.

We perform a ‘blowup’ of the complex K to a 3-d simplicial complex K̃ as
follows (see Figure 6.7 for an example). Recall, the geometric realization of K

can be expressed as the disjoint union of closed i-simplices with faces glued via
simplicial gluing maps (the ∆-complex [73]). To form K̃, take the disjoint union
of closed i-simplices of K and instead of simplicial gluing maps, use the join to
connect all faces. The 3-coloring of K is inherited by K̃ via the blowup process.

There is a natural collapsing map c : K̃ → K which collapses the joins to
simplicial identification maps. The inverse image of any point in an open 2-
simplex (1-simplex, resp.) of K is a closed 0-simplex (2-simplex resp.) of K̃.

81

The inverse image of a vertex v ∈ K consists of the 1-skeleton of the link of v

in K. If we fill in K̃ by taking the flag completion, then c−1(v) is a copy of the
star of v in K. Thus, upon taking the flag complex of K̃, the fiber of c for each
point in K is contractible, which shows that the flag complex of K̃ is homotopic
to K and thus preserves π1.

We now embed K̃ in a quasi-Rips complex RQ. Define the vertices of RQ

in R2 as follows. Fix an equilateral triangle of side length (ε + ε′)/2 in R2.
Embed the vertices of K̃ arbitrarily in sufficiently small open balls (of radii no
larger than (ε′ − ε)/4) centered at the vertices of this triangle, respecting the
3-coloring. For this vertex set in R2, we define RQ by placing an edge between
vertices according to the edges of K̃, using the fact that any two vertices not
of the same color are separated by a distance within the uncertainty interval.
Of course, we must also add a complete connected graph on all vertices with a
given color, since these lie within the small balls.

The quasi-Rips complex RQ is the flag complex of this graph. It contains
the flag complex of K̃, along with three high-dimensional simplices, one for each
color.

We claim that any 2-simplex of RQ which is not also a 2-simplex of K̃ has
all vertices of the same color. Proof: Consider a 2-simplex σ ∈ RQ spanning
more than one color. Since the only edges added to form RQ from K̃ have both
ends with identical colors, it must be that σ∩K̃ contains two edges which share
a vertex. Any two edges in K̃ which share a vertex are sent by the collapsing
map c to either (1) two edges of a 2-simplex in K; or (2) a single 1-simplex of
K; or (3) a single vertex of K. In either case, the entire 2-simplex σ exists in
the flag complex of K̃.

We end by showing that π1(RQ) is a free extension of G. Each of the three
large colored simplices added to form RQ from K̃ is homotopy equivalent to
adding an abstract colored vertex (the apex of the cone) and an edge from this
apex to the blowup of each 0-simplex of K in K̃. This is homotopy equivalent
to taking a wedge with (many) circles and thus yields a free extension of the
fundamental group of the flag complex of K̃, G. �

We note that the construction above may be modified so that the lower-
bound Rips complex Rε is connected. If necessary, the complex can be so
constructed that the inclusion map Rε ↪→ Rε′ induces an isomorphism on π1

(which factors through π1(RQ)).

6.5 k-Connectivity in Rn

Theorem 6.3.1 points to the broader question of whether higher-order topologi-
cal data are preserved by the shadow projection map. Recall that a topological
space is k-connected if the homotopy groups πi vanish for all 0 ≤ i ≤ k. A
map between topological spaces is k-connected if the induced homomorphisms

82

Figure 6.7. A 3-colored simplicial complex K and its blowup K̃, whose flag completion is homotopy
equivalent to K. Opposite edges of K (and thus K̃) can be identified to yield a torus, projective
plane, or Klein bottle.

83

2 3 4 5 61

1

2

3

4

k

n
0

?

Figure 6.8. For which (n, k) is the Rips projection map in En k-connected? The only unresolved
case is (3, 2).

on πi are isomorphisms for all 0 ≤ i ≤ k.
We summarize the results of this section in Figure 6.8.
Throughout this paper, we have ignored basepoint considerations in the

description and computation of π1. The following proposition justifies this as-
sumption.

Proposition 6.5.1. For any set of points in En, the map p : R → S is 0-

connected.

Proof: Certainly π0(p) is surjective, since p is surjective. The injectivity of
π0(p) is a consequence of the following claim: If two Rips simplices σ and τ have
intersecting shadows, then σ and τ belong to the same connected component
of R.

To prove the claim, suppose that p(σ) and p(τ) intersect. By translation,
we can suppose that 0 ∈ p(σ) ∩ p(τ). If {xi} and {yj} respectively denote the
vertices of σ and τ , then ∑

i

λixi = 0 =
∑

j

µjyj

for suitable convex coefficients {λi} and {µj}. Then∑
i,j

λiµj |xi − yj |2 =
∑
i,j

λiµj |xi|2 − 2
∑
i,j

λiµj(xi · yj) +
∑
i,j

λiµj |yj |2

=
∑

i

λi|xi|2 − 2
∑

i

λixi ·
∑

j

µjyj +
∑

j

µj |yj |2

=
∑

i

λi|xi|2 +
∑

j

µj |yj |2,

84

and similarly ∑
i,i′

λiλi′ |xi − xi′ |2 = 2
∑

i

λi|xi|2,∑
j,j′

µjµj′ |yj − yj′ |2 = 2
∑

j

µj |yj |2.

Since every edge xixi′ and yjyj′ has length at most 1, the left-hand sides of these
last equations have value at most 1. Thus

∑
i λi|xi|2 ≤ 1/2 and

∑
j µj |yj |2 ≤

1/2. It follows that
∑

i,j λiµj |xi − yj |2 ≤ (1/2) + (1/2) = 1 and so at least one
edge xiyj has length at most 1.

Thus the simplices σ, τ are connected by an edge, as required. �

Proposition 6.5.2. For any set of points in E1, the map p : R → S is a homo-

topy equivalence.

Proof: Both R and S are homotopy equivalent to finite unions of closed inter-
vals in E1, and therefore to finite sets of points. This is clear for S. For R, we
note that R1 is equal to the Čech complex C1 in E1. Certainly the two com-
plexes have the same 1-skeleton. Moreover, Helly’s theorem implies that Čech
complexes are flag complexes in 1D: a collection of convex balls has nonempty
intersection if all pairwise intersections are nonempty. Thus R1 = C1. By the
nerve theorem, this complex has the homotopy type of a union of closed intervals
in E1.

Since a 0-connected map between finite point sets is a homotopy equivalence,
the same conclusion now holds for the 0-connected map p : R → S. �

Proposition 6.5.3. There exists a configuration of points in E2 for which p is

not 2-connected.

Proof: Consider the vertices rx1, rx2, rx3, rx4, rx5, rx6 of a regular hexagon
of radius scentered at the origin. If 1/2 < r ≤ 1/

√
3 then only the three main

diagonals are missing fromR. ThusR has the structure of a regular octahedron,
and therefore the homotopy type of a 2-sphere. On the other hand S is just the
hexagon itself (including interior), and is contractible. (See Figure 6.9 �

The example of Proposition 6.5.3 extends to higher homotopy groups by
constructing cross-polytopes, as in [38].

Proposition 6.5.4. There exists a configuration of points in E4 for which p is

not 1-connected.

Proof: Consider the six points

(rx1, εx1), (rx2, 0), (rx3, εx3), (rx4, 0), (rx5, εx5), (rx6, 0)

in E4, in the notation of the previous proposition. Then R has the structure
of a regular octahedron, but the map p : R → S identifies one pair of antipodal

85

Figure 6.9. Left: P is 6 points in IR2 placed evenly around a disk of radius 5/4. Middle: R(P)
will be an octahedron (and thus homeomorphic to S2). Right: S(P) will be a topological disk.

points (specifically, the centers of the two large triangles, 135 and 246). Thus
R is simply-connected, whereas π1(S) = Z. �

We note that these counterexamples may be embedded in higher dimensions
and perturbed to lie in general position.

6.6 Algorithmic Results

In this section, we briefly discuss recent algorithmic results for planar Rips
complexes [27]. Note that this work appeared in the Masters thesis of Pratik
Worah, and is included in this thesis only for the sake of completeness.

6.6.1 Structural Results

In [27], we develop an efficient algorithm to compute the Rips shadow S(P) of
a given set P of n points in the plane. Our algorithm relies on two structural
results, which may be of independent interest. First, although the Rips com-
plex R(P) can have Θ(n2) edges and Θ(n3) triangles in the worst case, the Rips
shadow S(P), which is the union of those edges and triangles, always has com-
plexity O(n). Second, there is a subset of O(n) Rips edges and Rips triangles
whose union is the entire the Rips shadow S(P).

Theorem 6.6.1. The Rips shadow of n points in the plane has combinatorial

complexity O(n).

Proof: Fix a set P of n points in the plane. We assume without loss of gener-
ality that R(P) and therefore S(P) are connected; if not, we can analyze each
connected component independently. This assumption implies that each hole in
S(P) has a single boundary cycle.

We bound the complexity of the Rips shadow by (over-)counting the number
of boundary edges and vertices. The same boundary vertex or edge may appear
multiple times on the same facial walk or on multiple walks; we count each
occurrence separately. To simplify our presentation, we consider the two sides
of any Rips edge or shadow boundary edge separately; for any edge uv, let−⇀uv and

86

p

q
r

s

y

x z

Figure 6.10. If the Rips triangle prs is present, then py is in shadow, and y is the boundary corner
on pq which is closest to p.

−⇀vu denote its two oriented halfedges. A facial walk now consists of a sequence of
boundary halfedges, oriented with the hole on the left; two consecutive boundary
halfedges −⇀xy and −⇀yz form a boundary corner at y. We prove that there are O(n)
boundary corners.

We say that a Rips halfedge −⇀pq is uncovered if there is no Rips triangle pqr

with r to the left of the oriented line −→pq. Every corner of the shadow boundary
is located at the intersection of two uncovered halfedges, possibly at a common
endpoint.

If −⇀pq and −⇀pr are two uncovered Rips halfedges with a common source point
p, then ∠qpr > π/3 since qr cannot be a Rips edge. It follows that any point in
P is the source of at most five uncovered halfedges, giving at most 5n uncovered
edges total. In addition, there are at most five boundary corners at any point
in P .

Let −⇀pq and −⇀rs be uncovered Rips halfedges, with r to the left of −⇀pq, whose in-
teriors intersect at boundary vertex y. Suppose some pair of boundary halfedges
−⇀xy ⊂ −⇀pq and −⇀yz ⊂ −⇀rs form a boundary corner at y. Either prs or pqs is a Rips
triangle, since either of the other two possible triangles would cover −⇀pq or −⇀rs.
If prs is a Rips triangle, segment py lies inside the shadow, so y is the closest
boundary corner to p, among all boundary corners on −⇀pq. See Figure 6.10. Sim-
ilarly, if pqs is a Rips triangle, y is the boundary corner on −⇀rs that is closest to
s.

Thus, every boundary corner that is not a point in P is either the first or
last boundary corner on some uncovered halfedge. It follows that there are at
most 10n boundary corners not at points in P , and thus at most 15n boundary
corners overall. �

Theorem 6.6.2. For any set P of n points in the plane, there is a set of O(n)
Rips edges and Rips triangles whose union is the Rips shadow S(P).

The proof of Theorem 6.6.2 takes an existing Rips complex R′ and adds
another Rips vertex to it, getting a larger complex R. It then shows that the
regions in S \ S ′ can be covered using at most 24 new edges or triangles. We
then get (by induction) that a Rips complex with n points can be covered using
at most 24n triangles and edges.

87

Theorem 6.6.3 (No small holes). Any hole in the Rips shadow of a set of

points in the plane has circumradius at least (
√

2− 1)/8
√

3 ≈ 0.029893.

The proof of Theorem 6.6.3 takes any hole in S and uses case analysis com-
bined with the triangle inequality and Prop 6.2.1 to force the hole to be large.

6.6.2 Algorithmic Results

We next outline the algorithms developed for computing S and testing homotopy
properties in R.

Theorem 6.6.4. Given a set P of n points in the plane, we can construct S(P)
in O((m+n) log n) time, where m is the number of edges in the proximity graph

of P .

We briefly sketch the algorithm for completeness. To compute S, we impose
a grid of cells with size 1/2× 1/2 over the point set. There are O(n) grid cells
which contain points, and for any particular Rips vertex p, the set of cells which
contain Rips vertices connected to p is of size O(1). We can then find, for each
Rips vertex, the 24 edges and triangles mentioned in Theorem 6.6.2 using fairly
standard algorithms from computational geometry. See [27] for more details.

Theorem 6.6.5. After O(m log n) preprocessing time, we can determine whether

any given cycle of k Rips edges is contractible in R(P), either in O(k log n) time

using O(n) space, or in O(k) time using O(m) space.

Our algorithm follows a standard strategy used by Cabello et al. [18] and
many other authors [77, 45, 42, 33, 25, 34, 35] for encoding the homotopy class
of paths and cycles in two-dimensional spaces. We compute a sequence of line
segments φ1, φ2, . . . , φb, which we call fences, that form a spanning tree of the
holes; we assign each fence an arbitrary orientation. The crossing word of any
cycle γ records the sequence of fences that γ crosses, along with the direction of
each crossing. For example, the crossing word 1223 indicates that γ first crosses
φ1 from left to right, then φ2 from left to right, then φ2 from right to left, and
finally φ3 from left to right. We can reduce any crossing word by removing any
matching pairs of the form xx or xx; each reduction corresponds to a continuous
deformation of γ that removes some fence crossings. Finally, γ is contractible if
and only if its reduced crossing word is empty. Our spanning tree construction
is a straightforward consequence of Theorem 6.6.3.

Finally, we describe how to find the shortest cycle in the Rips complex that
is noncontractible. We assume that each edge pq in the proximity graph has a
non-negative weight w(pq); the length of a cycle is the sum of the weights of its
edges. Our results hold for any non-negative edge weights; in particular, we can
minimize either the number of edges or the total Euclidean length of the cycle.

For any point p and any Rips edge qr, let C(p, qr) denote the cycle of Rips
edges composed of the shortest path from p to q, the edge qr, and the shortest

88

path from sback to p. The following characterization of shortest noncontractible
cycles was first observed by Thomassen [117, 95] for graphs embedded on sur-
faces; see also [58].

Lemma 6.6.6. For any point p ∈ P , the shortest noncontractible cycle inR(P)
that passes through p is the cycle C(p, qr) for some Rips edge qr.

Using the previous lemma, we get the following result.

Theorem 6.6.7. Given a set P of n points in the plane, we can compute the

shortest noncontractible cycle in R(P) in O(n2 log n + mn) expected time.

6.7 Conclusion

The relationship between a Rips complex and its projected shadow is extremely
delicate, as evidenced by the universality result for quasi-Rips complexes (The-
orem 6.4.1) and the lack of general k-connectivity in Rn (§6.5). These results
act as a foil to Theorem 6.3.1: it is by no means a priori evident that a planar
Rips complex should so faithfully capture its shadow.

We close with a few remarks and open questions.

1. Are the cross-polytopes of Proposition 6.5.3 the only significant examples
of higher homology in a (planar) Rips complex? If all generators of the
homology Hk(R) for k > 1 could be classified into a few such ‘local’ types,
then, after a local surgery on R to eliminate higher homology, one could
use the Euler characteristic combined with Theorem 6.3.1 as a means of
quickly computing the number of holes in the shadow of a planar Rips
complex. This method would have the advantage of being local and thus
distributable.

2. Does the projection map preserve π1 for a Rips complex of points in R3?
Our proofs for the 2-d case rest on some technical lemmas whose extensions
to 3-d would be neither easy to write nor enjoyable to read. A more
principled approach would be desirable, but is perhaps not likely given
the 1-connectivity on R3 is a borderline case.

3. The algorithmic results described from [27] rely heavily on knowing the
exact coordinates of the points. However, the primary advantage of Rips
complexes over other alternatives is the fact that we can avoid exact dis-
tance computations by simply knowing connectivity information. Is there
any way to compute the shadow or homotopy properties of given cycles
without exact coordinates?

89

References

[1] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Tho-
rup. Maintaining information in fully dynamic trees with top trees. ACM
Transactions on Algorithms, 1(2):243–264, 2005.

[2] Helmut Alt and Maike Buchin. Semi-computability of the Fréchet dis-
tance between surfaces. In Proceedings of the 21st European Workshop on
Computational Geometry, pages 45–48, March 2005.

[3] Helmut Alt and Michael Godau. Computing the Fréchet distance between
two polygonal curves. International Journal of Computational Geometry
and Applications, 5(1–2):75–91, 1995.

[4] Nina Amenta and Marshall Bern. Surface reconstruction by voronoi fil-
tering. In Proceedings of the 14th annual Symposium on Computational
Geometry, pages 39–48. ACM Press, 1998.

[5] Reinhold Baer. Isotopie von kurven auf orientierbaren geschlossenen
flächen und ihr zusammenhang mit der topologischen deformation der
flächen. J. f. Math., 159:101–116, 1928.

[6] Lali Barrière, Pierre Fraigniaud, and Lata Narayanan. Robust position-
based routing in wireless ad hoc networks with unstable transmission
ranges. In Proceedings of the 5th International Workshop on Discrete Al-
gorithms and Methods for Mobile Computing and Communications, 2001.

[7] Saugata Basu. Polynomial time algorithm for computing the top betti
numbers of semi-algebraic sets defined by quadratic inequalities. In Pro-
ceedings of the 37th annual ACM Symposium on Theory of Computing,
pages 313–322, 2005.

[8] Saugata Basu. Computing the first few betti numbers of semi-algebraic
sets in single exponential time. Journal of Symbolic Computation,
41(10):1125–1154, 2006.

[9] Sergei Bespamyatnikh. Computing homotopic shortest paths in the plane.
In Proceedings of the 14th annual ACM-SIAM Symposium on Discrete
Algorithms, pages 609–617, 2003.

[10] Sergei Bespamyatnikh. Encoding homotopy of paths in the plane. In
Proceedings of LATIN 2004: Theoretical Infomatics, volume 2976 of Lect.
Notes Comput. Sci., pages 329–338. Springer-Verlag, 2004.

[11] Anders Björner. Topological methods, volume 2, pages 1819–1872. 1995.

[12] Johannes Blömer. Computing sums of radicals in polynomial time. In
Proceedings of the 32nd annual IEEE Symposium on Foundations of Com-
puter Science, pages 670–677, 1991.

90

[13] William W. Boone. The word problem. Proceedings of the National
Academy of Sciences 44, 10:1061–1065, 1958.

[14] Martin R. Bridson and Andr Haefliger. Metric Spackes of Non-Positive
Curvature. A Series of Comprehensive Studies in Mathematics. Springer-
Verlag, 1999.

[15] Sergio Cabello. Many distances in planar graphs. In Proceedings of the
17th annual ACM-SIAM Symposium on Discrete Algorithms, pages 1213–
1220, 2006.

[16] Sergio Cabello and Erin W. Chambers. Multiple source shortest paths in a
genus g graph. In Proceedings of the 18th annual ACM-SIAM Symposium
on Discrete Algorithms, pages 89–97, 2007.

[17] Sergio Cabello, M. DeVos, Jeff Erickson, and Bojan Mohar. Finding one
tight cycle. In Proceedings of the 19th annual ACM-SIAM Symposium on
Discrete Algorithms, page to appear, 2008.

[18] Sergio Cabello, Yuanxin Liu, Andrea Mantler, and Jack Snoeyink. Testing
homotopy for paths in the plane. Discrete and Computational Geometry,
31(1):61–81, 2004.

[19] Sergio Cabello and Bojan Mohar. Finding shortest non-separating and
non-contractible cycles for topologically embedded graphs. Discrete and
Computational Geometry, 37(2):213–235, 2007.

[20] E. Carlsson, Gunnar Carlsson, and Vin de Silva. An algebraic topological
method for feature identification. International Journal of Computational
Geometry and Applications, 16:291–314, 2006.

[21] Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian.
On the local behavior of spaces of natural images. preprint, 2006.

[22] Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas Guibas.
Persistence barcodes for shapes. International Journal of Shape Modeling,
11:149–187, 2005.

[23] Vincent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active
contours. In Fifth International Conference on Computer Vision, pages
694–699, 1995.

[24] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Sylvain Lazard,
Francis Lazarus, and Shripad Thite. Walking your dog in the woods in
polynomial time. In Proceedings of the 24th annual ACM Symposium on
Computational Geometry, 2008.

[25] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus,
and Kim Whittlesey. Splitting (complicated) surfaces is hard. In Proceed-
ings of the 22nd annual Symposium on Computational geometry, pages
421–429, New York, NY, USA, 2006. ACM Press.

[26] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus,
and Kim Whittlesey. Splitting (complicated) surfaces is hard. In Proceed-
ings of the 22nd annual Symposium on Computational Geometry, pages
421–429. ACM, 2006.

91

[27] Erin W. Chambers, Jeff Erickson, and Pratik Worah. Testing contractibil-
ity in planar rips complexes. In Proceedings of the 24th annual Symposium
on Computational Geometry, 2008.

[28] Bernard Chazelle. A theorem on polygon cutting with applications. In
Proceedings of the 23rd annual IEEE Symposium on Foundations of Com-
puter Science, pages 339–349, 1982.

[29] Jindong Chen and Yijie Han. Shortest paths on a polyhedron, part I:
Computing shortest paths. International Journal on Computational Ge-
ometry and Applications, 6(2):127–144, 1996.

[30] David L. Chopp and James A. Sethian. Flow under curvature: Singular-
ity formation, minimal surfaces, and geodesics. Journal of Experimental
Mathematics, 2(4):235–255, 1993.

[31] Richard Cole. Slowing down sorting networks to obtain faster sorting
algorithms. Journal of the ACM, 34(1):200–208, January 1987.

[32] Richard Cole. Parallel merge sort. SIAM Journal on Computing,
17(4):770–785, 1988.

[33] Éric Colin de Verdière and Jeff Erickson. Tightening non-simple paths
and cycles on surfaces. In Proceedings of the 17th annual ACM-SIAM
Symposium on Discrete Algorithm, pages 192–201, 2006.

[34] Éric Colin de Verdière and Francis Lazarus. Optimal pants decompositions
and shortest homotopic cycles on an orientable surface. In Proceedings of
the 11th Symposium on Graph Drawing, volume 2912 of Lecture Notes
Comput. Sci., pages 478–490. Springer-Verlag, 2003.

[35] Éric Colin de Verdière and Francis Lazarus. Optimal systems of loops on
an orientable surface. Discrete and Computational Geometry, 33(3):507–
534, 2005.

[36] Altas Cook and Carola Wenk. Geodesic Fréchet and Hausdorff distance
inside a simple polygon. Tech. Rep. CS-TR-2007-004, University of Texas
at San Antonio, 2007.

[37] Vin de Silva and Gunnar Carlsson. Topological estimation using witness
complexes. In Symposium on Point-Based Graphics, pages 157–166, 2004.

[38] Vin de Silva and Robert Ghrist. Coordinate-free coverage in sensor net-
works with controlled boundaries via homology. International Journal of
Robotics Research, 25:1205–1222, 2006.

[39] Vin de Silva and Robert Ghrist. Coverage in sensor networks via persistent
homology. Algebraic and Geometric Topology, 7:339–358, 2007.

[40] Max Dehn. ber unendliche diskontinuierliche gruppen. Mathematische
Annalen, 71(1):116–144, 1911.

[41] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Bojan Mohar. Ap-
proximation algorithms via contraction decomposition. In Proceedings of
the 18th annual ACM-SIAM Symposium on Discrete Algorithms, pages
278–287, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics.

92

[42] Tamal K. Dey and Sumanta Guha. Transforming curves on surfaces. J.
Comput. Sys. Sci., 58(2):297–325, 1999.

[43] Tamal K. Dey, Kuiyu Li, and Jian Sun. On computing handle and tunnel
loops. In Proceedings of the 2007 International Conference on Cyber-
worlds, pages 357–366. IEEE Computer Society, 2007.

[44] Tamal K. Dey, Kuiyu Li, Jian Sun, and David Cohen-Steiner. Computing
geometry-aware handle and tunnel loops in 3d models. In Proceedings of
the 35th annual Conference on Computer Graphics and Interactive Tech-
niques, 2008.

[45] Tamal K. Dey and Haijo Schipper. A new technique to compute polygo-
nal schema for 2-manifolds with applications to null-homotopy detection.
Discrete and Computational Geometry, 14:93–110, 1995.

[46] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[47] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
Making data structures persistent. In Proceedings of the 18th annual ACM
Symposium on the Theory of Computing, pages 109–121, New York, NY,
USA, 1986. ACM Press.

[48] Jrgen Eckhoff. Helly, Radon, and Carathéodory type theorems. In Hand-
book of convex geometry, volume A, pages 389–448. 1993.

[49] Herbert Edelsbrunner and John Harer. Persistent homology: A survey. In
J. Pack J. E. Goodman and R. Pollack, editors, Discrete & Computational
Topology: Twenty Years Later. AMS Press, to appear.

[50] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological
persistence and simplification. Discrete and Computational Geometry,
28:511–533, 2002.

[51] Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha
shapes. ACM Transactions on Graphics, 13(1):43–72, 1994.

[52] Herbert Edelsbrunner and Afra Zomorodian. Computing linking numbers
in a filtration. Homology, Homotopy and Applications, 5(2):19–37, 2003.

[53] Alon Efrat, Leonidas J. Guibas, Sariel Har-Peled, Joseph S. B. Mitchell,
and T. M. Murali. New similarity measures between polylines with appli-
cations to morphing and polygon sweeping. Discrete and Computational
Geometry, 28:535–569, 2002.

[54] Alon Efrat, Sariel Har-Peled, Leonidas J. Guibas, Joseph S.B. Mitchell,
and T.M. Murali. New similarity measures between polylines with appli-
cations to morphing and polygon sweeping. Discrete and Computational
Geometry, 28:535–569, 2002.

[55] Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. Computing homo-
topic shortest paths efficiently. Computational Geometry: Theory and
Applications, 35(3):162–172, 2006.

[56] David Eppstein. Finding the k shortest paths. SIAM Journal on Com-
puting, 28(2):652–673, 1998.

[57] Jeff Erickson. Shortest paths on pl surfaces. Blog post, 2006.

93

[58] Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a
disk. Discrete and Computational Geometry, 31(1):37–59, 2004.

[59] Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homol-
ogy generators. In Proceedings of the 16th annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1038–1046, 2005.

[60] Qing Fang, Jie Gao, and Leonidas J. Guibas. Locating and bypassing
holes in sensor networks. Mobile Networks and Applications, 11(2):187–
200, 2006.

[61] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM Journal on Computing, 16(6):1004–1022, 1987.

[62] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the ACM,
34(3):596–615, 1987.

[63] Joel Friedman. Computing betti numbers via combinatorial laplacians.
Algorithmica, 21:331–346, 1998.

[64] Robert Ghrist. Barcodes: The persistent topology of data. Preprint, 2007.

[65] Robert Ghrist and Abubakr Muhammad. Coverage and hole-detection
in sensor networks via homology. In Proceedings of the 4th International
Symposium on Information Processing in Sensor Networks, page 34. IEEE
Press, 2005.

[66] Dima Grigoriev and Anatol Slissenko. Polytime algorithm for the shortest
path in a homotopy class amidst semi-algebraic obstacles in the plane. In
Proceedings of the International Symposium on Symbolic and Algebraic
Computation, pages 17–24, 1998.

[67] Misha Gromov. Hyperbolic groups. In Essays in group theory, volume 8
of Mathematical Sciences Research Institute Publications, pages 75–263.
1987.

[68] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images.
In Proceedings of SIGGRAPH 2002, pages 355–361, 2002.

[69] Leonidas Guibas. Kinetic data structures: A state of the art report, 1998.

[70] Igor Guskov and Zoë J. Wood. Topological noise removal. In Proceedings
of Graphics Interface 2001, pages 19–26, Toronto, Ont., Canada, Canada,
2001. Canadian Information Processing Society.

[71] Wolfgang Haken. Theorie der normalflchen. Acta Mathematica, 105:245–
375, 1961.

[72] Joel Hass. Algorithms for recognizing knots and 3-manifolds, 1997.

[73] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.

[74] Poul Heegaard and Max Dehn. Analysis situs. Enzyklopdie der Mathema-
tischen Wissenschaften, 1907.

[75] Monika R. Henzinger and Valerie King. Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. Journal of the ACM,
46(4):502–516, 1999.

94

[76] John Hershberger and Jack Snoeyink. Computing minimum length paths
of a given homotopy class (extended abstract). In Workshop on Algorithms
and Data Structures, pages 331–342, 1991.

[77] John Hershberger and Jack Snoeyink. Computing minimum length paths
of a given homotopy class. Computational Geometry: Theory and Appli-
cations, 4:63–67, 1994.

[78] John Hershberger and Subhash Suri. An optimal algorithm for euclidean
shortest paths in the plane. SIAM Journal on Computing, 28(6):2215–
2256, 1999.

[79] Piotr Indyk and Anastasios Sidiropoulos. Probabilistic embeddings of
bounded genus graphs into planar graphs. In Proceedings of the 23rd an-
nual Symposium on Computational Geometry, pages 204–209, New York,
NY, USA, 2007. ACM.

[80] Alon Itai, Christos H. Papadimitriou, and Jayme L. Szwarcfiter. Hamilton
paths in grid graphs. SIAM Journal on Computing, 11:676–686, 1982.

[81] Ken-ichi Kawarabayashi and Bruce Reed. Computing crossing number in
linear time. In Proceedings of the 39th annual ACM Symposium on Theory
of Computing, pages 382–390, New York, NY, USA, 2007. ACM.

[82] Philip N. Klein. Multiple-source shortest paths in planar graphs. In
Proceedings of the 16th annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 146–155. SIAM, 2005.

[83] Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-
Wesley, 1997.

[84] Fabian Kuhn and Aaron Zollinger. Ad-hoc networks beyond unit disk
graphs. In Proceedings of the 2003 joint workshop on Foundations of
mobile computing, pages 69–78, 2003.

[85] Kazimierz Kuratowski. Sur le problme des courbes gauches en topologie.
Fund. Math., 15:271–283, 1930.

[86] Martin Kutz. Computing shortest non-trivial cycles on orientable surfaces
of bounded genus in almost linear time. In Proceedings of the 22nd annual
Symposium on Computational Geometry, pages 430–438, 2006.

[87] D. T. Lee and Franco P. Preparata. Euclidean shortest paths in the
presence of rectilinear barriers. Networks, 14:393–410, 1984.

[88] Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar
graphs. SIAM Journal Applied Mathematics, 36:177–189, 1979.

[89] Anil Maheshwari and Jiehua Yi. On computing Fréchet distance of two
paths on a convex polyhedron. In Proceedings of the 21st European Work-
shop on Computational Geometry, pages 41–44, 2005.

[90] A. A. Markov. Insolubility of the problem of homeomorphy. In Proceedings
of the International Congress of Mathematics, pages 14–21. Cambridge
University Press, 1958.

[91] Nimrod Megiddo. Applying parallel computation algorithms in the design
of serial algorithms. Journal of the ACM, 30:852–866, 1983.

95

[92] Gary L. Miller and John H. Reif. Parallel tree contraction and its applica-
tions. In Proceedings of the 26th annual IEEE Symposium on Foundations
of Computer Science, pages 478–489, 1985.

[93] Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou.
The discrete geodesic problem. SIAM Journal on Computing, 16(4):647–
668, 1987.

[94] Bojan Mohar. A linear time algorithm for embedding graphs in an arbi-
trary surface. SIAM Journal on Discrete Mathematics, 12:6–26, 1999.

[95] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hop-
kins University Press, Baltimore, 2001.

[96] Abubakr Muhammad and Ali Jadbabaie. Dynamic coverage verification in
mobile sensor networks via switched higher order laplacians. In Robotics:
Science and Systems, 2007.

[97] Ketan Mulmuley, U.V. Vazirani, and Vijay V. Vazirani. Matching is as
easy as matrix inversion. Combinatorica, 7(1):105–114, 1987.

[98] Pyotr S. Novikov. On the algorithmic unsolvability of the word problem
in group theory. Proceedings of the Steklov Institute of Mathematics, 44:1–
143, 1955.

[99] Colm Ó Dúnlaing, Colum Watt, and David Wilkins. Homeomorphism of
2-complexes is equivalent to graph isomorphism. International Journal of
Computational Geometry and Applications, 10(5):453–476, 2000.

[100] Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: Algorithms based on hamilton–jacobi formulations.
Journal of Computational Physics, 79:12–49, 1988.

[101] Michel Pocchiola and Gert Vegter. Computing the visibility graph via
pseudo-triangulations. In Symposium on Computational Geometry, pages
248–257, 1995.

[102] Michel Pocchiola and Gert Vegter. Minimal tangent visibility graphs.
Computational Geometry: Theory and Applications, 6, 1996.

[103] Neil Robertson and Paul D. Seymour. Graph minors i: Excluding a forest.
Journal of Combinatorial Theory Series B, 35(1):39–61, 1983.

[104] Neil Robertson and Paul D. Seymour. Graph minors xi: Circuits on a
surface. Journal of Combinatorial Theory Series B, 60(1):72–106, 1994.

[105] Neil Robertson and Paul D. Seymour. Graph minors xx: Wagner’s con-
jecture. Journal of Combinatorial Theory Series B, 92(2):325–357, 2004.

[106] Jeanette P. Schmidt. All highest scoring paths in weighted grid graphs
and their application to finding all approximate repeats in strings. SIAM
Journal on Computing, 27(4):972–992, 1998.

[107] Raimund Seidel. The nature and meaning of perturbations in geometric
computing. Discrete and Computational Geometry, 19:1–17, 1998.

[108] Alla Sheffer. Spanning tree seams for reducing parameterization distortion
of triangulated surfaces. In Proceedings of Shape Modeling International,
2002.

96

[109] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski.
Bounded-distortion piecewise mesh parameterization. In Proceedings of
the 12th annual IEEE Visualization Conference, pages 355–362, 2002.

[110] E. Sriraghavendra, K. Karthik, and C. Bhattacharyya. Frchet distance
based approach for searching online handwritten documents. In ICDAR07,
pages 461–465, 2007.

[111] Dvir Steiner and Anath Fischer. Cutting 3d freeform objects with genus-n
into single boundary surfaces using topological graphs. In Proceedings of
the 7th annual ACM Symposium on Solid Modeling Applications, pages
336–343, 2002.

[112] John Stillwell. Classical Topology and Combinatorial Group Theory.
Springer-Verlag, New York, 1993.

[113] Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki. Shortest non-
crossing paths in plane graphs. Algorithmica, 16:339–357, 1996.

[114] Robert E. Tarjan. Data Structures and Network Algorithms. SIAM,
Philadelphia, 1983.

[115] Robert E. Tarjan. Dynamic trees via Euler tours, applied to the network
simplex algorithm. Mathematical Programming: Series A and B, 78:169–
177, 1997.

[116] Robert E. Tarjan and Renato F. Werneck. Self-adjusting top trees. In
Proceedings of the 16th annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 813–822. Society for Industrial and Applied Mathematics,
2005.

[117] Carsten Thomassen. Embeddings of graphs with no short noncontractible
cycles. J. Comb. Theory Ser. B, 48(2):155–177, 1990.

[118] Carsten Thomassen. Five-coloring maps on surfaces. Journal of Combi-
natorial Theory Series B, 59(1):89–105, 1993.

[119] René van Oostrum and Remco C. Veltkamp. Parametric search made
practical. Computational Geometry: Theory and Applications, 28:75–88,
2004.

[120] Leopold Vietoris. über den höheren zusammenhang kompakter räume
und eine klasse von zusammenhangstreuen abbildungen. Mathematische
Annalen, 97:454–472, 1927.

[121] E. F. Whittlesey. Classification of finite 2-complexes. Proceedings of the
American Mathematical Society, 9:841–845, 1958.

[122] E. F. Whittlesey. Finite surfaces: a study of finite 2-complexes. i. local
structure. Mathematics Magazine, 34:11–22, 1960.

[123] E. F. Whittlesey. Finite surfaces: a study of finite 2-complexes. ii. the
canonical form. Mathematics Magazine, 34:67–80, 1960.

[124] Zoë Wood, Hugues Hoppe, Mathieu Desbrun, and Peter Schröder. Re-
moving excess topology from isosurfaces. ACM Transactions on Graphics,
23(2):190–208, 2004.

[125] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology.
Discrete and Computational Geometry, 33(2):249–274, 2005.

97

Author’s Biography

Erin Moriarty Wolf Chambers was born in Maryville, Illinois on March 27, 1980.
She obtained her bachelor’s degree in Computer Science from the University of
Illinois at Urbana-Champaign in May 2002, and her Masters in Mathematics
from the same institution in May 2006. After completing her PhD, Erin will
begin working as a faculty member at Saint Louis University in Saint Louis,
Missouri.

98

