
Homology Flows, Cohomology Cuts∗

Erin W. Chambers
Department of Computer Science and Mathematics

Saint Louis University
echambe5@slu.edu

Jeff Erickson
Department of Computer Science

University of Illinois, Urbana-Champaign
jeffe@cs.uiuc.edu

Amir Nayyeri
Department of Computer Science

University of Illinois, Urbana-Champaign
nayyeri2@illinois.edu

ABSTRACT
We describe the first algorithms to compute maximum flows
in surface-embedded graphs in near-linear time. Specifically,
given an undirected graph embedded on an orientable surface
of genus g, with two specified vertices s and t, we can compute
a maximum (s, t)-flow in O(g7n log2 n log2 C) time for integer
capacities that sum to C , or in (g log n)O(g)n time for real capaci-
ties. Except for the special case of planar graphs, for which an
O(n log n)-time algorithm has been known for 20 years, the best
previous time bounds for maximum flows in surface-embedded
graphs follow from algorithms for general sparse graphs. Our
key insight is to optimize the relative homology class of the flow,
rather than directly optimizing the flow itself. A dual formulation
of our algorithm computes the minimum-cost cycle or circulation
in a given (real or integer) homology class.

Categories and Subject Descriptors: G.2.2 [Discrete Mathe-
matics]: Graph theory—Network problems; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems—Computations on discrete structures

General Terms: Algorithms, Performance

Keywords: computational topology, combinatorial optimization

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below.

— John Dryden, All for Love, Prologue (1677)

1. INTRODUCTION
Planar graphs are natural targets for study. In addition to mod-
eling real-world scenarios ranging from road networks to VLSI
layouts, they often admit much faster algorithms compared to
∗Research partially supported by NSF grant DMS-0528086.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

more general graphs. Most algorithms for planar graphs have
been generalized to larger families of graphs, such as graphs of
higher genus, graphs with forbidden minors, or graphs with small
separators. Examples include single-source and multiple-source
shortest paths [14, 29, 43, 53, 54, 56, 72]; minimum spanning
trees [67, 57]; graph and subgraph isomorphism [24, 25, 35, 45,
60]; and approximation algorithms for the traveling salesman
problem, Steiner trees, and other NP-hard problems [9, 10, 11,
21, 25].

A stark exception to this general pattern is the classical max-
imum flow problem and its dual, the minimum cut problem.
Flow and cuts were originally developed as tools for studying
railway and other transportation networks [39], which are nat-
urally modeled as planar graphs; Ford and Fulkerson’s seminal
paper [30] includes an algorithm for planar networks where the
source and target vertices lie on the same face. A long series
of results has led to planar maximum-flow algorithms that run
in O(n log n) time, first for undirected graphs [31, 41, 68] and
more recently for directed graphs [8, 12, 13]. Despite more than
half a century of attention on flows in planar graphs, surprisingly
little is known about flows in these more general graph families.
Even for graphs embedded on the torus, the fastest algorithms to
compute maximum flows are no faster than for arbitrary sparse
graphs.

This paper describes the first algorithms to find maximum
flows in surface-embedded graphs in near-linear time when the
genus is fixed. The input to our problem is an undirected graph
G = (V, E) embedded on an orientable surface of genus g, along
with two vertices s and t and a capacity function c : E→ R+. For
any fixed genus g and polynomially-bounded capacities, both
our algorithms run in O(n polylog n) time. In a companion pa-
per [16], we describe the first algorithm to compute minimum
cuts in surface-embedded graphs in O(n log n) time for any fixed
genus.

Before describing our results in more detail, we review several
previous related results.

Flows in sparse graphs. Euler’s formula implies that an n-
vertex graph embedded on a surface of genus O(n) has at most
O(n) edges. The fastest known combinatorial maximum-flow
algorithms for sparse graphs, due to Sleator and Tarjan [71]
and Goldberg and Tarjan [34], run in time O(n2 log n). The
minimum-cost maximum flow can be computed in O(n2 log2 n)
time using an algorithm of Orlin [65]. (For graphs with small
separators, the running time of Orlin’s algorithm can be improved
to O(n2 log n) by replacing Dijkstra’s algorithm with a linear-time

echambe5@slu.edu
jeffe@cs.uiuc.edu
nayyeri2@illinois.edu

shortest-path algorithm [43, 72].) The fastest algorithm known
for integer capacities, due to Goldberg and Rao [33], runs in
O(min{n2/3, m1/2}m log(n2/m) log U) = O(n3/2 log n log U) time,
where U is an upper bound on the edge capacities. The recent
algorithm of Diatch and Spielman [22] computes the minimum-
cost maximum flow in time O(n3/2 polylog n log U).

For further background on maximum flow algorithms and re-
lated results, we refer the reader to monographs by Ahuja et al. [4]
and Schrijver [69].

Flows in planar graphs. Maximum flows in planar graphs
have received considerable attention for more than 50 years.
Weihe [77] and Borradaile and Klein [8, 12, 13] describe the
history of planar flow algorithms in detail; we describe only a
few important highlights.

Itai and Shiloach exploited the connection between maximum
flows in an undirected planar graph and shortest paths in its dual
graph to obtain an O(n log n)-time algorithm when the source
and sink vertices lie on a common face [49]; see also Hassin [40].

Reif [68] developed a divide-and-conquer algorithm to com-
pute a minimum cut, and thus the maximum flow value, in a
planar undirected network in O(n log2 n) time. Reif’s algorithm
was extended by Hassin and Johnson to compute the actual
maximum flow in O(n log n) additional time, using a carefully
structured dual shortest-path computation [41]. Frederickson
subsequently improved Reif’s algorithm to O(n log n) time [31].
Frederickson’s improvement can also be obtained more directly
using more recent planar shortest-path algorithms [14, 43, 53,
72].

Maximum flows in directed planar graphs were first investi-
gated by Johnson and Venkatesan [50], who described an algo-
rithm based on recursive separator decompositions with running
time O(n3/2 log n). Venkatesan [75] observed that a feasible flow
with a given value, if such a flow exists, can be computed in
O(n3/2) time by computing a single-source shortest path tree in a
dual graph with both positive and negative edge weights, using
an algorithm of Lipton, Rose, and Tarjan [56]; see also [61].
Binary search over the possible flow values gives a max-flow
algorithm that runs in O(n3/2 log C) time, where C is the sum of
the capacities. This running time is improved by recent planar
shortest path algorithms [43, 29]; the algorithm of Klein, Mozes,
and Weimann [54] implies a running time of O(n log2 n log C).
Returning to the classical augmenting path technique, Weihe [77,
76] described a planar maximum-flow algorithm that runs in
O(n log n) time, provided the input graph satisfies a certain con-
nectivity condition. Finally, Borradaile and Klein [8, 12, 13]
described an O(n log n)-time algorithm to find maximum flows
in arbitrary directed planar graphs.

Generalizations of planar graphs. Surprisingly little is known
about the complexity of flow algorithms for generalizations of
planar graphs. Miller and Naor [61] generalized Johnson and
Venkatesan’s algorithm to planar (single commodity) flow net-
works with multiple sources and sinks. A recent algorithm of
Hochstein and Wiehe [44] computes a maximum flow in a planar
graph with k additional edges in O(k3n log n) time, using a clever
simulation of Goldberg and Tarjan’s push-relabel algorithm [34].

To our knowledge, the only prior result that applies to graphs of
positive genus, but not to arbitrary sparse graphs, is an algorithm
of Imai and Iwano [48] that computes minimum-cost flows in
graphs with small balanced separators, using a combination of
nested dissection [56, 66], interior-point methods [74], and

fast matrix multiplication. Their algorithm can be adapted to
compute maximum flows in any graph of constant genus in time
O(n1.595 log C), where C is the sum of the capacities. However,
this is slower than more recent and more general algorithms [33,
22].

New results. Our key insight generalizes the relationship be-
tween flows and dual shortest paths in planar graphs first ob-
served by Venkatesan [75]. We prove that given any flow f ,
one can find a feasible flow in the same homology class in near-
linear time by computing a single-source shortest path tree in
the dual of the residual network G f . This observation allows us
to optimize the homology class of the flow, rather than directly
optimizing the flow itself; instead of optimizing a vector of O(n)
flow values, our algorithm optimizes a vector of 2g + 1 homol-
ogy coefficients. We perform this optimization implicitly using
two different techniques. The central-cut ellipsoid method [38,
37] yields an algorithm that runs in O(g7n log2 n log2 C) time for
integer capacities that sum to C . Alternately, multidimensional
parametric search [1] yeilds an algorithm with running time
gO(g)n log2g+4 n. Both running times are O(n polylog n) for any
fixed genus g.

A dual formulation of our algorithm finds the minimum-cost
circulation in the same homology class as a given circulation, in
roughly the same time as computing a maximum flow. If the ca-
pacities are integers, the resulting circulation is the minimum-cost
integer circulation in the desired homology class. The minimum-
cost circulation is always the weighted sum of at most 2g directed
cycles.

In a companion paper [16], we describe an algorithm to com-
pute minimum cuts in gO(g)n log n time, using very different
techniques than in this paper [15, 55]. Essentially the same al-
gorithm computes the shortest cycle in every Z2-homology class,
in the same running time. Unlike the corresponding problem for
circulations considered in this paper, we prove that computing
the shortest cycle in a single Z2-homology class is NP-hard.

2. DRAMATIS PERSONAE

We begin by recalling several useful definitions from topological
graph theory and algebraic topology. For more comprehensive
background, we refer the interested reader to Gross and Tucker
[36] or Mohar and Thommasen [62] for topological graph theory;
and Hatcher [42], Massey [58], or Spanier [63] for algebraic
topology.

2.1 Surfaces

A surface (more formally, a 2-manifold) is a Hausdorff topo-
logical space in which every point has an open neighborhood
homeomorphic to R2. A cycle in a surface Σ is (the image of)
a continuous map γ: S1 → Σ; a cycle is simple if this map is
injective. The genus of a surface Σ is the maximum number of
simple, disjoint, non-separating cycles γ1,γ2, . . . ,γg in Σ; that is,
γi ∩ γ j = ∅ for all i and j, and the space Σ \ (γ1 ∪ · · · ∪ γg) is
connected. This paper will consider only compact, connected,
orientable surfaces; up to homeomorphism, there is exactly one
such surface with any non-negative genus g, namely the sphere
with g handles attached. We will also assume that g = o(n),
since our new algorithms improve existing results only when g is
small.

2.2 Graphs and Embeddings
Let G = (V, E) be an undirected graph. We define an associated
directed graph ~G = (V, ~E) by replacing each undirected edge
in E with an antisymmetric pair of directed edges. The graphs G
and ~G are represented by the same adjacency matrix. Following
Borradaile and Klein [8, 12, 13], we refer to the directed edges
in ~E as darts. Each dart connects two (possibly equal) vertices,
called its tail and its head; we say that the dart leaves its tail and
enters its head. Each dart ~e has a unique reversal, denoted rev(~e)
and defined by swapping its endpoints: head(rev(~e)) = tail(~e)
and tail(rev(~e)) = head(~e). We will often write u�v to denote a
dart with tail u and head v; thus, rev(u�v) = v�u.

Informally, an embedding of a graph G on a surface Σ is a
drawing of the graph on Σ, such that vertices are mapped to
distinct points and edges are mapped to non-crossing curves. A
face of an embedding is a maximal connected subset of Σ that
does not intersect the image of any edge or vertex. An embedding
is cellular (or 2-cell [62]) if every face is an open topological
disk. Any cellular embedding can be represented combinatorially
by a rotation system, which is a permutation π of the darts of G,
where π(~e) is the dart that appears immediately after ~e in the
counterclockwise ordering of darts leaving tail(~e).

Suppose G is a simple n-vertex graph cellularly embedded on
an orientable surface of genus g. Euler’s formula |V |−|E|+ |F | =
2− 2g implies that G has at most 3n− 6+ 6g edges and at most
2n− 4+ 4g faces, with equality if every face of the embedding is
a triangle. In this paper, we consider only graphs and surfaces
with 1 ≤ g � n, so the overall complexity of any embedding is
O(n).

Every dart in an embedded graph G separates two (possibly
equal) faces, called the left shore and right shore. We say that a
dart ~e winds counterclockwise around left(~e) and winds clock-
wise around right(~e). Reversing the dart swaps these two faces:
left(rev(~e)) = right(~e) and right(rev(~e)) = left(~e). We will some-
times write f �g to denote a dart whose left shore is f and whose
right shore is g; thus, rev(f �g) = g� f . See Figure 1.

2.3 Chains, Circulations, and Flows
Let G = (V, E) be an undirected graph embedded on a surface Σ,
and let F denote the set of faces of the embedding. A k-chain is
a function that assigns a real weight to all cells of dimension k.
Thus, a 0-chain is a function ω: V → R; a 1-chain is a function
φ : E→ R; and a 2-chain is a function α: F → R.

It is useful to think of each 1-chain as assigning both an orien-
tation and a non-negative value to each edge in G. We implicitly
extend any 1-chain to a function on the darts of G; for each
edge uv, we arbitrarily choose one of its darts u�v and define
φ(u�v) = φ(uv) and φ(v�u) =−φ(uv).

The boundary of a 1-chain φ is the 0-chain ∂φ : V → R de-
fined as follows:

∂φ(v) :=
∑

u: u�v∈~E

φ(u�v)

A circulation is a 1-chain φ such that ∂φ(v) = 0 for every
vertex v ∈ V . The equation ∂φ(v) = 0 is often called the flow
conservation constraint at v; intuitively, the total flow into v
equals the total flow out of v. For any two vertices s and t, an
(s , t)-flow is a 1-chain φ such that ∂φ(v) = 0 for every vertex
v ∈ V \ {s, t}. The value of a flow φ is ∂φ(t) = −∂φ(s); a
circulation is simply a flow with value 0.

The (first) chain space C(G) is the vector space of all 1-chains
in G, which is isomorphic to R|E|; this is sometimes also called

the edge space. The cycle space Z(G) is the vector space of all
circulations in G, which is isomorphic to R|E|−|V |+1. The flow
space Z(G; s t) is the vector space of all (s, t)-flows in G, which
is isomorphic to R|E|−|V |+2. The cycle space is (redundantly)
generated by the indicator functions of all simple directed cycles
in ~G, and the flow group is (redundantly) generated by the
indicator functions of all directed walks from s to t in ~G.

2.4 Boundary Circulations and Homology
The boundary of a 2-chain α: F → R is the 1-chain ∂α: E → R
defined by setting ∂α(~e) := α(right(~e)) − α(left(~e)). One can
easily verify that the boundary of any 2-chain is a circulation. A
boundary circulation is the boundary of some 2-chain. In planar
graphs, every circulation is a boundary circulation, but this is not
true for higher-genus embeddings. The boundary space B(G)
is the vector space of all boundary circulations; this is a linear
subspace of Z(G), isomorphic to R|F |−1.

We say that two flows or circulationsφ andψ are homologous,
or in the same homology class, if their difference φ −ψ is a
boundary circulation. We write φ 'ψ to denote that φ and ψ
are homologous.

The homology space H(G) is the vector space of all homology
classes of circulations in G, which is isomorphic to Z(G)/B(G) ∼=
R|E|−|V |−|F |+2 = R2g by Euler’s formula. Similarly, the (s , t)-flow
homology space, which we denote by H(G; s t), is the vector
space of all homology classes of (s, t)-flows in G, which is iso-
morphic to Z(G; st)/B(G)∼= R|E|−|V |−|F |+1 = R2g+1.

2.5 Capacities and Residual Networks
Now fix a positive capacity function c : E→ R+. A flow or circu-
lation φ is feasible (with respect to c) if and only if |φ(e)| ≤ c(e)
for every edge e ∈ E. The residual capacity function cφ : ~E→ R
is defined by setting cφ(u�v) = c(uv)−φ(u�v). The residual
network Gφ is just the graph ~G with darts weighted by the resid-
ual capacity function cφ . Clearly, φ is feasible if and only if every
dart in Gφ has non-negative residual capacity. Moreover, φ is
a maximum flow if and only if there is no directed path in Gφ
from s to t in which every dart has positive residual capacity. We
emphasize that c and cφ are not 1-chains.

2.6 Dual Graphs, Cocycles, and Cohomology
The dual graph G∗ of an embedded graph G is the (multi-)graph
whose vertices are the faces of G, where two faces are joined by
a (dual) edge if and only if they are separated by an edge of G.
Thus, every edge e in G has a corresponding dual edge in G∗,
denoted e∗.

For any face f of G, we let f ∗ denote the corresponding vertex
of G∗. The dual graph G∗ has a cellular embedding on Σ, so that
faces of G∗ correspond exactly to vertices of G. For any vertex v
of G, we let v∗ denote the corresponding face of G∗. We orient the
darts of G∗ by defining (u�v)∗ := u∗�v∗ and (f �g)∗ := f ∗�g∗.
Duality is an involution—the dual of G∗ is isomorphic to the
original graph G. However, G and G∗ use opposite orientations
of the underlying surface Σ to distinguish left from right.

When the graph G is fixed, we abuse notation by writing H∗ to
denote the subgraph of G∗ containing the edges dual to the edges
of a subgraph H of G. If the subgraph H is a cycle, we call H∗

a cocycle. The bijection between the edges of G and the edges
of G∗ extends to a bijection between 1-chains in G and in G∗. A
cocirculation is a 1-chain whose dual is a circulation in G∗; a

f g

u

v

u*

v*

f* g*

Figure 1. Graph duality. One dart u�v = f �g and its dual f ∗�g∗ =
u∗�v∗ are emphasized.

coboundary is a 1-chain whose dual is a boundary circulation
in G∗; two cocirculations are cohomologous if their difference
is a coboundary, or equivalently, if their dual circulations are
homologous.

3. HOMOLOGY FLOWS

Throughout this section, we fix an undirected graph G, a cellular
embedding of G on an orientable surface Σ of genus g, a capacity
function c : E(G)→ R+, and two vertices s and t.

3.1 Homologous Feasible Flows

Let φ : E → R be an arbitrary (i.e. not necessarily feasible)
flow in G. The dual residual network G∗φ is the directed dual
graph ~G∗, where every dual dart ~e ∗ has a cost cφ(~e ∗) equal to
the residual capacity of its corresponding primal dart: cφ(~e ∗) =
cφ(~e).

Lemma 3.1. There is a feasible (s, t)-flow in G homologous to
a given (s, t)-flow φ if and only if the dual residual network G∗φ
contains no negative-cost cycles.

Proof: Let λ∗ be an arbitrary directed cycle in G∗φ , and let λ
denote the corresponding directed cocycle in ~G. The total cost
of λ∗ is the difference between the total capacity of λ and the
total flow through λ:

cφ(λ
∗) = c(λ)−φ(λ) =

∑

~e∈λ

c(e)−
∑

~e∈λ

φ(~e).

For any 2-chain α: F → R, we have
∑

~e∈λ

∂α(~e) =
∑

f �g∈λ

�

α(g)−α(f)
�

=
∑

f ∗�g∗∈λ∗

�

α(g)−α(f)
�

= 0.

(The last equality follows from the fact that λ∗ is a cycle.) Thus,
for any flow ψ homologous to φ, we have ψ(λ) = φ(λ), which
immediately implies that cψ(λ∗) = cφ(λ∗).

If the cycle λ∗ has negative cost, then for any flow ψ homol-
ogous to φ, we have cψ(λ∗) = cφ(λ∗)< 0. It follows immediately
that cψ(~e)< 0 for at least one dart ~e in λ; in other words, ψ is
infeasible.

On the other hand, suppose G∗
φ

has no negative cycles. Fix
an arbitrary source vertex x∗ in G∗

φ
. For any face f of G, let

α(f) denote the shortest-path distance from x∗ to f ∗ in G∗φ;
these distances are well-defined precisely because G∗φ has no
negative cycles. Finally, consider the flow ψ := φ + ∂α, which is
clearly homologous to φ. Because α is defined by shortest-path

distances, we have cφ(f �g) = cφ(f ∗�g∗) ≥ α(g)− α(f), and
therefore

ψ(f �g) = φ(f �g) +α(g)−α(f)
≤ φ(f �g) + cφ(f �g)

= c(f �g)

for every dart f �g. In other words, ψ is feasible.

Theorem 3.2. Given an (s, t)-flow φ in G, we can find a feasible
(s, t)-flow in G that is homologous with φ, or determine that no
homologous feasible flow exists, using O(gn log2 n) arithmetic
operations.

Proof: The recent algorithm of Klein, Mozes, and Weimann [54]
computes either a single-source shortest path tree or a negative
cycle in an embedded directed graph in O(gn log2 n) time. Klein
et al. describe their algorithm only in the context of planar graphs.
However, their algorithm generalizes directly to higher-genus
graphs via the observation that any n-vertex graph of genus g
can be separated into planar subgraphs, each with at most 2n/3
vertices, by removing O(pgn) edges [23, 32, 47, 46]. Moreover,
such a separator can be computed in O(n) time [5, 26].

3.2 Flow Homology Basis
Every (s, t)-flow can be expressed as a weighted sum of walks1

from s to t. Consequently, every homology class of (s, t)-flows
is a weighted sum of homology classes of (s, t)-walks. It follows
immediately that the flow homology space Z(G, st)∼= R2g+1 can
be generated by the homology classes of 2g + 1 (s, t)-walks. We
call such a collection of walks a flow homology basis.

Figure 2. A flow homology basis for a surface of genus 2.

Lemma 3.3. We can compute a flow homology basis for G in
O(gn) time.

Proof: We begin by computing a tree-cotree decomposition [26].
Let T be an arbitrary spanning tree of G; let C∗ be an arbitrary
spanning tree of (G \ T)∗; and finally, let X = G \ (T ∪ C). Euler’s
formula implies that X contains exactly 2g edges; call them
e1, e2, . . . , e2g . Orient these edges arbitrarily.

We define 2g + 1 walks w0, w1, . . . , w2g as follows. Let w0
denote the unique path from s to t in T . For each index i between
1 and 2g, let wi denote the walk obtained by concatenating the
unique path in T from s to tail(~ei), followed by the dart ~ei ,
followed by the unique path in T from head(~ei) to t. (Note that
in each walk wi , each edge in G is traversed at most twice, and
1These walks are not necessarily simple paths; vertices and edges may
be repeated. Indeed, an edge of G can carry flow even though it does
not lie on any simple path from s to t. In principle, we can discard such
‘useless’ edges, because there is always at least one maximum flow that
does not use them. However, no algorithm is known to find all useless
edges in subquadratic time, even in planar graphs [7, 12, 13].

the repeated edges (if any) lie on a simple path.) We claim that
the walks w0, w1, . . . , w2g lie in independent homology classes,
and hence comprise a basis for the flow homology space H(G, st).

Suppose to the contrary that w j
∼=
∑

i< j ai wi for some index
j 6= 0 and some real coefficients ai . Then the difference ϕ =
w j −

∑

i< j ai wi is a boundary circulation, which has nonzero
value only on edges of T ∪ X . Let α: F → R be a 2-chain such
that ϕ = ∂α. For any cotree edge e ∈ C , we have ϕ(e) = 0.
Thus, if a cotree edge separates two faces f and f ′, we must
have α(f) = α(f ′). Because C∗ is a spanning tree for G∗, it
follows that α assigns the same value to every face of G, which
implies that ϕ is identically zero. On the other hand, walk w j
contains an edge e j that does not lie on any other basis walk, so
ϕ(e j) = w j(e j) = 1. We have a contradiction.

The tree T and cotree U can each be constructed in O(n) time
using (for example) depth-first search, after which each walk wi
can be easily constructed in O(n) time.

Fix a flow homology basis w0, w1, . . . , w2g for G. A basic flow

is any flow φ of the form
∑2g

i=0φi · wi for some coefficients
φ0,φ1, . . . ,φ2g . Equivalently, a flow φ is basic if and only if
φ(e) = 0 for every cotree edge e ∈ C . Every flow in G is homol-
ogous to exactly one basic flow.

Corollary 3.4. Given the coefficients φ0,φ1, . . . ,φ2g of a basic
flow φ, we can compute a feasible (s, t)-flow homologous with φ,
or determine that no homologous feasible flow exists, using
O(gn log2 n) arithmetic operations.

3.3 Optimization
The preceding results imply that to compute a maximum (s, t)-
flow in G, it suffices to find a basic flow φ of maximum value
such that the dual residual network G∗

φ
contains no negative

cycles. We can formulate this optimization problem as a linear
program as follows. For any directed cocycle λ, let

c(λ) :=
∑

~e∈λ

c(e) and wi(λ) =
∑

~e∈λ

wi(~e).

The optimal basic flow is the solution to the following linear
programming problem.

max
2g
∑

i=0
φi

s.t.
2g
∑

i=0
φi ·wi(λ) ≤ c(λ) for each cocycle λ in G

(LP)

In fact, most of the constraints in this linear program are redun-
dant; it suffices to consider only cocycles λ whose dual cycles λ∗

are simple and have minimum cost (i.e., primal capacity) in
their homology class. However, there could be as many as nΘ(g)

non-redundant constraints; consequently, we must solve (LP)
implicitly.

3.3.1 Ellipsoid Method

We now transform our decision procedure into an optimization
algorithm using the central-cut ellipsoid method. A full technical
description of the method is given by Grötschel et al. [38, 37].
We briefly sketch the method here, deferring most of the technical
details to the appendix.

Let Φ denote the polytope of feasible basic flow coefficients,
and let φOPT denote the optimum basic flow. The ellipsoid algo-
rithm maintains an ellipsoid E guaranteed to contain φOPT. First,

we perturb the objective function slightly to guarantee that φOPT
is unique; let c̃ denote the perturbed objective vector. Initially, E

is large enough to contain the entire polytope Φ. At each iteration,
we call the decision procedure from Corollary 3.4 to determine
whether the centroid x of E is feasible. If x is infeasible, the
decision procedure returns a negative cycle, which corresponds
to a violated constraint in the linear program. If x is feasible,
we add the artificial constraint 〈c̃,φ〉 ≥ 〈c̃, x〉. In either case, we
obtain a halfspace h that contains φOPT. We then compute a close
approximation of the smallest ellipsoid containing E∩ h, and let
this be the new ellipsoid E. Each iteration reduces the volume of
E by a factor of e1/O(g). Let Φε = Φ∩hε , where hε is the halfspace
〈c̃,φ〉 ≥ 〈c̃,φOPT〉 − ε, where ε is chosen so that Φε lies inside
a ball of radius 1/3. The iterations stop when the volume of E

is smaller than the volume of Φε. Even though the constraint
matrix defining Φ is not totally unimodular, we prove in the full
paper that the vertices of Φ have integer coordinates. Thus, we
obtain the optimal flow value φOPT by rounding the last feasible
point found (which is guaranteed to lie inside Φε) to the integer
grid.

In the full paper, we prove that Φ is contained in a sphere
of radius O(C g) centered at the origin, where C is the sum of
the edge capacities; we can take this ball to be our initial ellip-
soid. We also prove that for an appropriate perturbed objective
function c̃, the volume of Φε is C−O(g2). These two facts imply
that the ellipsoid algorithm halts after O(g3 log C) iterations. In
each iteration, the decision procedure executes O(gn log2 n) addi-
tions, subtractions, and comparisons. Grötschel et al. prove that
to maintain sufficient precision over K iterations, it suffices to
round all numbers to O(K) bits [37, 38]. Thus, each arithmetic
operation in our decision procedure requires O(g3 log C) time.

Theorem 3.5. Given a graph G = (V, E) embedded on a surface
of genus g, a positive integer capacity function c : E→ Z+, and
two vertices s, t ∈ V , a maximum (s, t)-flow in G can be computed
in time O(g7n log2 n log2 C), where C is the sum of the edge
capacities.

3.3.2 Multidimensional Parametric Search

We now describe a more combinatorial algorithm whose run-
ning time has better dependence on the complexity of the graph,
but exponential dependence on the genus of the underlying sur-
face. Our algorithm uses the multidimensional search paradigm
independently developed by Cohen and Megiddo [17, 18, 19],
Norton, Plotkin, and Tardos [64], and Aneja and Kabadi [6], and
extended further by several other authors [1, 2, 3, 20, 51, 52,
73]. Specifically, we use the version of the technique described
by Agarwala and Fernández-Baca [1].

The method requires two black-box algorithms for the decision
problem, one serial and the other parallel. The method also
requires that the parallel algorithm can be modeled as a linear
decision tree with respect to the input parameters. That is, every
branch in the parallel algorithm is based on the sign of an affine
combination of the input parameters. Let Ts denote the running
time of the serial decision algorithm, Tp the running time of the
parallel decision algorithm, P the number of processors used by
the parallel decision algorithm, and d the number of parameters
to be resolved. The running time of the resulting optimization
algorithm is dO(d) · (Tp + log P)d · Ts. (Agarwala and Fernández-
Baca do not report the dependence of their running time on
d; the bound stated here follows form the analysis by Agarwal,
Sharir, and Toledo [3].)

In our application, we have d = 2g + 1; the algorithm of Klein
et al. [54] gives us Ts = O(gn log2 n); and a parallel version of
the Floyd-Warshall algorithm [59] gives us Tp = O(log n log log n)
and P = O(n3). Thus, the overall running time of our algorithm
is gO(g) n (log n)2g+3 (log log n)2g+1.

Theorem 3.6. Given a graph G = (V, E) embedded on a surface
of genus g, a positive capacity function c : E → R+, and two
vertices s, t ∈ V , a maximum (s, t)-flow in G can be computed in
gO(g)n log2g+4 n time.

4. COHOMOLOGY CUTS
A minor modification of our algorithm allows us to solve two
interesting special cases of the minimum-cost (or equivalently,
maximum-value) circulation problem in roughly the same time
as a maximum (s, t)-flow.

4.1 Maximum-Value Circulations
Suppose we are given a graph G (with no source or sink), a
positive capacity function c : E → R+, and a value function
θ : ~E → R. The value of a circulation φ is the inner product
〈φ,θ 〉 =

∑

~e∈~E φ(~e) · θ (~e). Like the capacity function c, the value
function θ is not (in general) a 1-chain; the values of a dart and
its reversal need not have any relationship. In particular, some
darts may have negative value (i.e., positive cost).

The maximum-flow algorithm described in the previous section
can be easily modified to compute maximum-value circulations,
provided all circulations in the same homology class have the
same value. We call the value function θ : ~E → R is homology
invariant if 〈φ,θ 〉 = 〈ψ,θ 〉 for any two homologous circulations
φ 'ψ, or equivalently, if 〈∂α,θ 〉= 0 for any 2-chain α.

Theorem 4.1. Given a graph G = (V, E) embedded on a surface
of genus g, a capacity function c : E→ R+, and a homology-
invariant value function θ : ~E→ R, we can compute a maximum-
value circulation in gO(g)n log2g+3 n time, or in O(g7n log2 n log2 C)
time if capacities are integers that sum to C .

Proof (sketch): The homology space H(G) ∼= R2g can be gener-
ated by (the homology classes of) 2g directed cycles γ1,γ2, . . . ,γ2g
in independent homology classes. Using an algorithm similar to
Lemma 3.3, we can construct such a set of cycles in O(gn) time
[27, 28].

Corollary 3.4 implies that it suffices to find the homology class
of the maximum-value circulation. Specifically, we need to find a
feasible homology vector (φ1, . . . ,φ2g) such that the cost function

� 2g
∑

i=1

φi · γi , θ
�

=
2g
∑

i=1

φi ·

γi ,θ
�

is maximized. Corollary 3.4 gives us strong membership and
separation oracles for this linear optimization problem, so we can
apply either the central-cut ellipsoid method or multidimensional
parametric search, exactly as we did for the standard maximum-
flow problem. Except for the change of objective function and
the slightly smaller dimension, the optimization algorithm is
identical.

The following lemma exactly characterizes homology-invariant
value functions. Recall that a 1-chain θ : E→ R is a cocirculation
if its dual 1-chain θ ∗ : E∗→ R, defined by setting θ ∗(~e ∗) = θ(~e),
is a circulation in G∗.

Lemma 4.2. A value function θ : ~E→ R is homology invariant
if and only if θ is a cocirculation.

Proof: If the function θ : E→ R is not a cocirculation, then for
some face f , we have

〈∂ f ,θ 〉=
∑

~e : left(~e)= f

θ(~e) 6= 0

Because θ gives non-zero value to the boundary circulation ∂ f ,
it cannot be homology invariant.

On the other hand, suppose θ is an arbitrary cocirculation
and α: F → R is an arbitrary 2-chain. We can easily verify that
〈∂α,θ 〉= 0 as follows:

〈∂α,θ 〉=
∑

~e∈~E

∂α(~e) · θ(~e)

=
∑

~e∈~E

�

α(left(~e))−α(right(~e))
�

· θ(~e)

=
∑

f ∈F

�

∑

~e : left(~e)= f

α(f) · θ(~e) −
∑

~e : right(~e)= f

α(f) · θ(~e)
�

=
∑

f ∈F

�

α(f) ·
�

∑

~e : left(~e)= f

θ(~e) −
∑

~e : right(~e)= f

θ(~e)
��

=
∑

f ∈F

�

α(f) ·
∑

~e : left(~e)= f

�

θ(~e)− θ(rev(~e))
�

�

= 2 ·
∑

f ∈F

�

α(f) ·
∑

~e : left(~e)= f

θ(~e)
�

= 2 ·
∑

f ∈F

α(f) · 0 = 0.

It follows that θ is homology-invariant.

4.2 Min-Cost Homologous Circulation
The problem considered in the previous section has the following
natural and useful dual interpretation. Consider the following lin-
ear programming formulation of the maximum-value circulation
problem.

max
∑

u�v
φ(u�v) · θ(u�v)

s.t.
∑

u:uv∈E

�

φ(u�v)−φ(v�u)
�

= 0 for all v ∈ V

φ(u�v) ≤ c(u�v) for all u�v ∈ ~E

φ(u�v) ≥ 0 for all u�v ∈ ~E

The dual of this linear program has a variable α(v) for each
vertex v and a variable x(u�v) for each dart u�v.

min
∑

u�v
x(u�v) · c(u�v)

s.t. α(u)−α(v) + x(u�v) ≥ θ(u�v) for all u�v ∈ ~E

x(u�v) ≥ 0 for all u�v ∈ ~E

This dual linear program is more naturally cast in terms of the
dual graph G∗, as follows:

min
∑

f �g
x(f �g) · c(f �g)

s.t. α(f)−α(g) + x(f �g) ≥ θ(f �g) for all f �g ∈ ~E ∗

x(f �g) ≥ 0 for all f �g ∈ ~E ∗

Let αOPT(f) and xOPT(f �g) denote the variables in the opti-
mum solution to this dual-dual linear program. We view the
vector αOPT of face variables as a 2-chain. We define a 1-chain
ϑ : E∗ → R by setting ϑOPT(f �g) := xOPT(f �g)− xOPT(g� f) for
every dart f �g. Because every primal capacity c(u�v) is positive,
each dart variable xOPT(f �g) is individually as small as possible
without violating any constraint; that is,

xOPT(f �g) =max
�

0, θ(f �g)−α(f) +α(g)
	

.

It follows immediately that ϑOPT = θ − ∂α; thus, ϑOPT is a circu-
lation in G∗, homologous with the circulation θ . Equivalently,
ϑOPT is a cocirculation in G, in the same cohomology class as θ .
Moreover, the optimal objective value can be rewritten as follows:

∑

f �g

xOPT(f �g) · c(f �g) =
∑

e∗∈E∗
c(e∗) · |ϑOPT(e

∗)|

We conclude that ϑOPT is the minimum-capacity cocirculation in
the same cohomology class as θ .

Theorem 4.3 (Homological Maxflow/Mincut). Let G = (V, E)
be an undirected graph embedded on a surface of genus g, let
c : E→ R+ be a capacity function, and let θ : E → R be a co-
circulation in G. The maximum value 〈φ,θ 〉 of any feasible
circulation φ in G is equal to the minimum capacity of any cocir-
culation cohomologous with θ .

A simple modification of our maximum-value circulation algo-
rithm computes the minimum-cost circulation in a given homol-
ogy class.

Theorem 4.4. Suppose we are given an undirected graph G =
(V, E) embedded on a surface of genus g, a cost function c : E→ R+,
and a circulation θ : E→ R. We can compute a minimum-cost
circulation homologous with θ in gO(g)n log2g+4 n time, or in time
O(g7n log2 n log2 C) if all capacities are integers that sum to C .

Proof (sketch): Within the stated time bounds, we can compute
a maximum-value feasible circulation φ∗OPT in the dual graph G∗,
using c as a capacity function and θ as a homology-invariant
value function. Our algorithm optimizes the homology class of
the circulation, using a linear-programming formulation similar
to (LP):

max
2g
∑

i=1
φ∗i ·

γi ,θ
�

s.t.
2g
∑

i=1
φ∗i · λ

∗
i (γ) ≤ c(γ) for every cycle γ in ~G

(LP2)

Here, λ∗1,λ∗2, . . . ,λ∗2g are cycles in G∗ that generate the homology
space of G∗. As described in the proof of Theorem 4.1, we can
construct these cycles in O(gn) time.

In any feasible basis for the homology linear program (LP2),
exactly 2g of the linear constraints are satisfied with equality.
These constraints are defined by 2g cycles γ1,γ2, . . . ,γ2g in ~G
whose total residual cost is zero. Each cycle γi is the minimum-
cost cycle in its homology class. Moreover, these 2g cycles lie in
independent homology classes, and therefore comprise a basis of
the homology space of G.

Let ϑOPT denote the minimum-cost circulation homologous
with θ . This circulation has non-zero value only on edges of G
whose dual edges are saturated by φ∗OPT. Let X denote the sub-
graph of G whose dual edges are saturated by G; every circulation
in X is a linear combination of the 2g basis cycles γ1,γ2, . . . ,γ2g .

In particular, for some real coefficients a1, a2, . . . , a2g , we have

ϑOPT =
∑2g

i=1 aiγi .
We compute these coefficients as follows. For each index j, we

have a linear equation

〈θ ,λ∗j 〉= 〈ϑOPT,λ∗j 〉=

*

2g
∑

i=1

aiγi , λ
∗
j

+

=
2g
∑

i=1

ai〈γi ,λ
∗
j 〉.

Each inner product 〈γi ,λ
∗
j 〉 can be trivially computed in O(n)

time. Thus, we can compute a1, a2, . . . , a2g in O(g2n) time by
setting up and solving a system of 2g linear equations.

Finally, consider the special case where the input circulation θ
is a single directed cycle. The minimum-cost circulation ϑOPT
homologous to θ is not necessarily a cycle. However, the con-
straint matrix for the linear program defining ϑOPT is totally
unimodular, which implies that ϑOPT is an integer circulation.

5. CONCLUSIONS AND OPEN PROBLEMS
We have described the first algorithms to compute maximum
flows in surface-embedded undirected graphs in near-linear time.
Our algorithms can be adapted to directed graphs and to non-
orentable surfaces with no change in the running time, although
the algorithms are slightly more complicated; details will appear
in the full version of the paper. In a companion paper [16],
we describe an algorithm to compute minimum cuts in surface-
embedded graphs in O(n log n) time for any fixed genus.

Many improvements and open questions remain. We conjec-
ture that maximum flows and minimum cuts in embedded graphs
can be computed in O(gkn log n) time for some small constant k,
perhaps using a generalization of the network simplex algorithm
of Borradaile and Klein [8, 12, 13]. Even the special case of unit
capacities is open.

It would be interesting to generalize our results to compute
minimum-cost flows or circulations with no topological restric-
tions on the cost function. We are unaware of any near-linear-
time algorithms to compute minimum-cost flows even in planar
graphs.

Acknowledgments. We would like to thank Cora Borradaile,
Chandra Chekuri, Sariel Har-Peled, Aparna Sundar, and Kim
Whittlesey for helpful discussions.

References
[1] R. Agarwala and D. Fernández-Baca. Weighted multidimen-

sional search and its application to convex optimization.
SIAM J. Comput. 25:83–99, 1996.

[2] P. K. Agarwal and M. Sharir. Efficient algorithms for geomet-
ric optimization. ACM Comput. Surv. 30:412–458, 1998.

[3] P. K. Agarwal, M. Sharir, and S. Toledo. An efficient multi-
dimensional searching technique and its applications. Tech.
Rep. CS-1993-20, Dept. Comp. Sci., Duke Univ., August
1993. 〈ftp://ftp.cs.duke.edu/pub/dist/techreport/1993/
1993-20.ps.gz〉.

[4] R. K. Ahuja, T. L. Magnanti, and J. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[5] L. Aleksandrov and H. Djidjev. Linear algorithms for parti-
tioning embedded graphs of bounded genus. SIAM J. Dis-
crete Math 9(1):129–150, 1996.

ftp://ftp.cs.duke.edu/pub/dist/techreport/1993/1993-20.ps.gz
ftp://ftp.cs.duke.edu/pub/dist/techreport/1993/1993-20.ps.gz

[6] Y. P. Aneja and S. N. Kabadi. Polynomial algorithms for
Lagrangean relaxations in combinatorial problems. Faculty
of Business Working Paper Series W91-03, University of
Windsor, 1991. Cited in [52].

[7] T. C. Biedl, B. Brejová, and T. Vinař. Simplifying flow net-
works. Proc. 25th Symp. Math. Found. Comput. Sci., 192–
201, 2000. Lecture Notes Comput. Sci. 1893, Springer-
Verlag.

[8] G. Borradaile. Exploiting Planarity for Network Flow and
Connectivity Problems. Ph.D. thesis, Brown University, May
2008. 〈http://www.cs.brown.edu/research/pubs/theses/
phd/2008/glencora.pdf〉.

[9] G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-
time approximation schemes for subset-connectivity prob-
lems in bounded-genus graphs. Proc. 26th Int. Symp. The-
oretical Aspects Comput. Sci., 171–182, 2009. Dagstuhl
Seminar Proceedings. 〈http://drops.dagstuhl.de/opus/
volltexte/2009/1835/〉.

[10] G. Borradaile, C. Kenyon-Mathieu, and P. N. Klein. A
polynomial-time approximation scheme for Steiner tree
in planar graphs. Proc. 18th Ann. ACM-SIAM Symp. Discrete
Algorithms, 1285–1294, 2007.

[11] G. Borradaile, C. Kenyon-Mathieu, and P. N. Klein. Steiner
tree in planar graphs: An O(n log n) approximation scheme
with singly-exponential dependence on epsilon. Proc. 10th
Ann. Workshop on Algorithms and Data Structures, 275–286,
2007.

[12] G. Borradaile and P. Klein. An O(n log n)-time algorithm for
maximum st-flow in a directed planar graph. Proc. 17th
Ann. ACM-SIAM Symp. Discrete Algorithms, 524–533, 2006.

[13] G. Borradaile and P. Klein. An O(n log n) algorithm for max-
imum st-flow in a directed planar graph. J. ACM , to ap-
pear, 2009. 〈http://www.math.uwaterloo.ca/~glencora/
downloads/maxflow-full.pdf〉.

[14] S. Cabello and E. W. Chambers. Multiple source shortest
paths in a genus g graph. Proc. 18th Ann. ACM-SIAM Symp.
Discrete Algorithms, 89–97, 2007.

[15] E. W. Chambers, É. Colin de Verdière, J. Erickson, F. Lazarus,
and K. Whittlesey. Splitting (complicated) surfaces is hard.
Comput. Geom. Theory Appl. 41(1–2):94–110, 2008.

[16] E. W. Chambers, J. Erickson, and A. Nayyeri. Minimum cuts
and shortest homologous cycles. Proc. 25th Ann. ACM Symp.
Comput. Geom., 2009. 〈http://www.cs.uiuc.edu/~jeffe/
pubs/surfcut.html〉.

[17] E. Cohen. Combinatorial Algorithms for Optimization Prob-
lems. Ph.D. thesis, Dept. Comput. Sci., Stanford Univ., June
1991. Tech. Report STAN-CS-91-1366.

[18] E. Cohen and N. Megiddo. Maximizing concave functions
in fixed dimension. Complexity in Numerical Optimization,
74–87, 1993. World Scientific.

[19] E. Cohen and N. Megiddo. Strongly polynomial-time and
NC algorithms for detecting cycles in periodic graphs. J.
Assoc. Comput. Mach. 40(4):791–830, 1993.

[20] E. Cohen and N. Megiddo. Algorithms and complexity anal-
ysis for some flow problems. Algorithmica 11(3):320–340,
1994.

[21] E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approxima-
tion algorithms via contraction decomposition. Proc. 18th
Ann. ACM-SIAM Symp. Discrete Algorithms, 278–287, 2007.

[22] S. I. Diatch and D. A. Spielman. Faster lossy generalized
flow via interior point algorithms. Proc. 40th ACM Symp.
Theory Comput., 451–460, 2008.

[23] H. N. Djidjev and S. M. Venkatesan. Planarization of graphs
embedded on surfaces. Proc. 21st Workshop Graph-Theoretic
Concepts Comput. Sci., 62–72, 1995. Lecture Notes Comput.
Sci. 1017, Springer-Verlag.

[24] D. Eppstein. Subgraph isomorphism in planar graphs and
related problems. J. Graph Algorithms and Applications
3(3):1–27, 1999.

[25] D. Eppstein. Diameter and treewidth in minor-closed graph
families. Algorithmica 27:275–291, 2000.

[26] D. Eppstein. Dynamic generators of topologically embed-
ded graphs. Proc. 14th Ann. ACM-SIAM Symp. Discrete Algo-
rithms, 599–608, 2003.

[27] J. Erickson and S. Har-Peled. Optimally cutting a surface
into a disk. Discrete Comput. Geom. 31(1):37–59, 2004.

[28] J. Erickson and K. Whittlesey. Greedy optimal homotopy
and homology generators. Proc. 16th Ann. ACM-SIAM Symp.
Discrete Algorithms, 1038–1046, 2005.

[29] J. Fakcharoenphol and S. Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. J. Com-
put. Syst. Sci. 72(5):868–889, 2006.

[30] L. R. Ford and D. R. Fulkerson. Maximal flow through a
network. Canadian J. Math. 8(399–404), 1956.

[31] G. N. Frederickson. Fast algorithms for shortest paths in pla-
nar graphs with applications. SIAM J. Comput. 16(6):1004–
1004, 1987.

[32] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separa-
tor theorem for graphs of bounded genus. J. Algorithms
5(3):391–407, 1984.

[33] A. V. Goldberg and S. Rao. Beyond the flow decomposition
barrier. J. ACM 45(5):783–797, 1998.

[34] A. V. Goldberg and R. E. Tarjan. A new approach to
the maximum-flow problem. J. Assoc. Comput. Mach.
35(4):921–940, 1988.

[35] M. Grohe. Isomorphism testing for embeddable graphs
through definability. Proc. 32nd ACM Symp. Theory Comput.,
63–72, 2000.

[36] J. L. Gross and T. W. Tucker. Topological graph theory. Dover
Publications, 2001.

[37] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid
method and its consequences in combinatorial optimization.
Combinatorica 1(2):169–197, 1981.

[38] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algo-
rithms and Combinatorial Optimization, 2nd edition. Algo-
rithms and Combinatorics 2. Springer-Verlag, 1993.

[39] T. E. Harris and F. S. Ross. Fundamentals of a method
for evaluating rail net capacities. Tech. rep., The RAND
Corporation, Santa Monica, California, October 24 1955.
Cited in [70].

[40] R. Hassin. Maximum flow in (s, t) planar networks. Inform.
Proc. Lett. 13:107, 1981.

[41] R. Hassin and D. B. Johnson. An O(n log2 n) algorithm
for maximum flow in undirected planar networks. SIAM J.
Comput. 14(3):612–624, 1985.

[42] A. Hatcher. Algebraic Topology. Cambridge University Press,
2001. 〈http://www.math.cornell.edu/~hatcher/〉.

[43] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian.
Faster shortest-path algorithms for planar graphs. J. Com-
put. Syst. Sci. 55(1):3–23, 1997.

http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf
http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/1835/
http://drops.dagstuhl.de/opus/volltexte/2009/1835/
http://www.math.uwaterloo.ca/~glencora/downloads/maxflow-full.pdf
http://www.math.uwaterloo.ca/~glencora/downloads/maxflow-full.pdf
http://www.cs.uiuc.edu/~jeffe/pubs/surfcut.html
http://www.cs.uiuc.edu/~jeffe/pubs/surfcut.html
http://www.math.cornell.edu/~hatcher/

[44] J. M. Hochstein and K. Weihe. Maximum s-t-flow with k
crossings in O(k3n log n) time. Proc. 18th Ann. ACM-SIAM
Symp. Discrete Algorithms, 843–847, 2007.

[45] J. E. Hopcroft and J. K. Wong. Linear time algorithm for
isomorphism of planar graphs (preliminary report). Proc.
6th ACM Symp. Theory Comput., 172–184, 1974.

[46] J. P. Hutchinson. On genus-reducing and planarizing al-
gorithms for embedded graphs. Graphs and Algorithms,
Proc. AMS-IMS-SIAM Joint Summer Res. Conf., 19–26, 1989.
Contemporary Mathematics 89, American Mathematical
Society.

[47] J. P. Hutchinson and G. L. Miller. Deleting vertices to make
graphs of positive genus planar. Discrete Algorithms and
Complexity Theory, Proceedings of the Japan-US Joint Semi-
nar, Kyoto, Japan, 81–98, 1987. Academic Press.

[48] H. Imai and K. Iwano. Efficient sequential and parallel
algorithms for planar minimum cost flow. Proc. SIGAL Int.
Symp. Algorithms, 21–30, 1990. Lecture Notes Comput. Sci.
450, Springer-Verlag.

[49] A. Itai and Y. Shiloach. Maximum flow in planar networks.
SIAM J. Comput. 8:135–150, 1979.

[50] D. B. Johnson and S. M. Venkatesan. Partition of planar
flow networks (preliminary version). Proc. 24th IEEE Symp.
Found. Comput. Sci., 259–264, 1983. IEEE Computer Soci-
ety.

[51] S. N. Kabadi and Y. P. Aneja. ε-approximation minimiza-
tion of convex functions in fixed dimension. Oper. Res. Lett.
18:171–176, 1996.

[52] S. N. Kabadi and Y. P. Aneja. Equivalence of ε-approximate
separation and optimization in fixed dimensions. Algorith-
mica 29:582–594, 2001.

[53] P. Klein. Multiple-source shortest paths in planar graphs.
Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 146–
155, 2005.

[54] P. Klein, S. Mozes, and O. Weimann. Shortest paths in
directed planar graphs with negative lengths: A linear-
space O(n log2 n)-time algorithm. Proc. 20th Ann. ACM-
SIAM Symp. Discrete Algorithms, 236–245, 2009.

[55] M. Kutz. Computing shortest non-trivial cycles on ori-
entable surfaces of bounded genus in almost linear time.
Proc. 22nd Ann. ACM Symp. Comput. Geom., 430–438,
2006.

[56] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested
dissection. SIAM J. Numer. Anal. 16:346–358, 1979.

[57] M. Mareš. Two linear time algorithms for MST on minor
closed graph classes. Archivum Mathematicum 40(3):315–
320, 2004.

[58] W. S. Massey. A basic course in algebraic topology. Springer-
Verlag, 1991.

[59] N. Megiddo. Applying parallel computation algorithms in
the design of serial algorithms. J. Assoc. Comput. Mach.
30(4):852–865, 1983.

[60] G. L. Miller. Isomorphism testing for graphs of bounded
genus. Proc. 12th ACM Symp. Theory Comput., 225–235,
1980.

[61] G. L. Miller and J. Naor. Flow in planar graphs with multiple
sources and sinks. SIAM J. Comput. 24(5):1002–10017,
1995.

[62] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns
Hopkins University Press, 2001.

[63] J. R. Munkres. Topology, 2nd edition. Prentice-Hall, 2000.
[64] C. H. Norton, S. A. Plotkin, and É. Tardos. Using separation

algorithms in fixed dimension. J. Algorithms 13(1):79–98,
1992.

[65] J. B. Orlin. A faster strongly polynomial minimum cost flow
algorithm. Oper. Res. 41(2):338–350, 1993.

[66] V. Y. Pan and J. H. Reif. Fast and efficient parallel solution of
sparse linear systems. SIAM J. Comput. 22(6):1227–1250,
1993.

[67] D. Pe’er. On minimum spanning trees. Master’s thesis, He-
brew University, 1998. 〈http://www.math.ias.edu/~avi/
STUDENTS/dpthesis.pdf〉.

[68] J. Reif. Minimum s-t cut of a planar undirected network in
O(n log2 n) time. SIAM J. Comput. 12:71–81, 1983.

[69] A. Schrijver. Combinatorial Optimization: Polyhedra and Ef-
ficiency. Algorithms and Combinatorics 24. Springer-Verlag,
2003.

[70] A. Schrijver. On the history of combinatorial optimization
(till 1960). Handbook of Discrete Optimization, 1–68, 2005.
Elsevier.

[71] D. D. Sleator and R. E. Tarjan. A data structure for dynamic
trees. J. Comput. Syst. Sci. 26(3):362–391, 1983.

[72] S. Tazari and M. Müller-Hannemann. Shortest paths in
linear time on minor-closed graph classes, with an appli-
cation to Steiner tree approximation. Discrete Appl. Math.
157:673–684, 2009.

[73] S. Toledo. Maximizing non-linear concave functions in fixed
dimension. Complexity in Numerical Optimization, 429–447,
1993. World Scientific.

[74] P. M. Vaidya. Speeding-up linear programming using fast
matrix multiplication. Proc. 30th IEEE Symp. Found. Comput.
Sci., 332–337, 1989.

[75] S. M. Venkatesan. Algorithms for network flows. Ph.D. thesis,
The Pennsylvania State University, 1983. Cited in [50].

[76] K. Weihe. Edge-disjoint (s, t)-paths in undirected planar
graphs in linear time. J. Algorithms 23(1):121–138, 1997.

[77] K. Weihe. Maximum (s, t)-flows in planar networks in
O(|V | log |V |)-time. J. Comput. Syst. Sci. 55(3):454–476,
1997.

http://www.math.ias.edu/~avi/STUDENTS/dpthesis.pdf
http://www.math.ias.edu/~avi/STUDENTS/dpthesis.pdf

	Introduction
	Dramatis Personae
	Surfaces
	Graphs and Embeddings
	Chains, Circulations, and Flows
	Boundary Circulations and Homology
	Capacities and Residual Networks
	Dual Graphs, Cocycles, and Cohomology

	Homology Flows
	Homologous Feasible Flows
	Flow Homology Basis
	Optimization
	Ellipsoid Method
	Multidimensional Parametric Search

	Cohomology Cuts
	Maximum-Value Circulations
	Min-Cost Homologous Circulation

	Conclusions and Open Problems

