Minimum Cuts and Shortest Homologous Cycles*

Erin W. Chambers

Department of Computer Science and Mathematics

Saint Louis University
echambeb5@slu.edu

Jeff Erickson
Department of Computer Science
University of lllinois, Urbana-Champaign
jeffe@cs.uiuc.edu

Amir Nayyeri
Department of Computer Science
University of lllinois, Urbana-Champaign
nayyeri2@illinois.edu

ABSTRACT

We describe the first algorithms to compute minimum cuts in
surface-embedded graphs in near-linear time. Given an undi-
rected graph embedded on an orientable surface of genus g,
with two specified vertices s and t, our algorithm computes a
minimum (s, t)-cut in g%®nlogn time. Except for the special
case of planar graphs, for which O(nlogn)-time algorithms have
been known for more than 20 years, the best previous time
bounds for finding minimum cuts in embedded graphs follow
from algorithms for general sparse graphs. A slight generaliza-
tion of our minimum-cut algorithm computes a minimum-cost
subgraph in every Z,-homology class. We also prove that finding
a minimum-cost subgraph homologous to a single input cycle is
NP-hard.

Categories and Subject Descriptors: E2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Computations on discrete structures; G.2.2 [Discrete
Mathematics]: Graph theory—Graph algorithms

General Terms: Algorithms, Performance

Keywords: computational topology, topological graph theory

Bin 6l¢, bir kes.
[Measure a thousand times, cut once.]

— Turkish proverb

1. INTRODUCTION

Planar graphs have been a natural focus of study for algorithms
research for decades, both because they accurately model many
real-world networks, and because they often admit simpler and/or
more efficient algorithms for many problems than general graphs.

*Research partially supported by NSF grant DMS-0528086.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SCG’09, June 8-10, 2009, Aarhus, Denmark.

Copyright 2009 ACM 978-1-60558-501-7/09/06 ...$5.00.

Most planar-graph algorithms either apply immediately or have
been quickly generalized to larger families of graphs, such as
graphs of higher genus, graphs with forbidden minors, or graphs
with small separators. Examples include minimum spanning
trees [61}(54]; single-source and multiple-source shortest paths
[9,130, 142} (50L|51}, 53} |69]]; graph and subgraph isomorphism [|36,
44] 56/ 125, |26]]; and approximation algorithms for the traveling
salesman problem, Steiner trees, and other NP-hard problems [|3}
4, [5] 22 [26].

The classical minimum cut problem and its dual, the maximum
flow problem, are stark exceptions to this general pattern. Flows
and cuts were introduced in the 1950s as tools for studying
transportation networks, which are naturally modeled as planar
graphs [39]]. Ford and Fulkerson’s seminal paper [|31] includes an
algorithm to compute maximum flows in planar networks where
the source and target lie on the same face. A long series of results
eventually led to planar minimum-cut algorithms that run in
O(nlogn) time, first for undirected graphs [|62} 40, |32]] and later
for directed graphs [[48} 42[]. Strangely, however, almost nothing
is known about computing flows and cuts in generalizations of
planar graphs. Even for graphs embedded on the torus, the fastest
known minimum-cut algorithms have no better performance than
for general sparse graphs.

This paper describes the first algorithm to compute minimum
cuts in surface-embedded graphs of fixed genus in near-linear
time. Before describing our results in detail, we first review
several related results; technical terms are defined in Section [2]

Planar minimum cuts. Recall that for any two vertices s and t
in a graph G, an (s, t)-cut is a subset of the edges of G that
intersects every path from s to t. A minimum (s, t)-cut is an
(s, t)-cut of minimum size, or minimum total weight if the edges
of G are weighted.

Itai and Shiloach [47] observed that the minimum (s, t)-cut in
a planar graph G is dual to the minimum-cost cycle that separates
faces s* and t* in the dual graph G*. They also observed that
this separating cycle intersects any shortest path from a vertex
of s* to a vertex of t* exactly once. Thus, one can compute the
minimum cut by cutting the dual graph G* along a shortest path ¢
from s* to t*; duplicating every vertex and edge of «; and then
computing, for each vertex u of 7, the shortest path between the
two copies of u in the resulting planar graph. Applying Dijkstra’s
shortest-path algorithm at each vertex of 7 immediately yields a
running time of O(n?logn).

Reif [62]] improved the running time of this algorithm to
O(nlog® n) using a divide-and-conquer strategy. Reif’s algorithm

echambe5@slu.edu
jeffe@cs.uiuc.edu
nayyeri2@illinois.edu

was extended by Hassin and Johnson to compute the actual max-
imum flow in O(nlogn) additional time, using a carefully struc-
tured dual shortest-path computation [[40]]. Frederickson [32]]
subsequently improved the running time of Reif’s algorithm to
O(nlogn) using a balanced separator decomposition to speed up
the shortest-path computations. Janiga and Koubek [48]] adapted
Reif’s O(nlog? n)-time algorithm to directed planar graphs. Hen-
zinger et al. [42] generalized Frederickson’s technique to obtain
an O(n)-time planar shortest-path algorithm; using this algo-
rithm in place of Dijkstra’s algorithm improves the running times
of both Reif’s and Janiga and Koubek’s algorithms to O(nlogn).
The same improvement can also be obtained using more recent
multiple-source shortest path algorithms by Klein [50] and Ca-
bello and Chambers [9].

Minimum cuts in directed planar graphs can also be obtained
in O(nlogn) time using the planar maximum-flow algorithms of
Weihe [|72]] (if the graph satisfies certain connectivity restrictions)
and Borradaile and Klein [2, 6, |7]].

Generalizations of planar graphs. Surprisingly little is known
about the complexity of computing maximum flows or minimum
cuts in generalizations of planar graphs. In particular, we know
of no algorithm to compute minimum cuts in non-planar graphs
that does not first compute a maximum flow.

By combining a technique of Miller and Naor [|57] with the
planar directed flow algorithm of Borradaile and Klein [12} 6} 7]],
one can compute maximum (single-commodity) flows in a planar
graph with k sources and sinks in O(k?*nlogn) time. A recent
algorithm of Hochstein and Weihe [[43]] computes a maximum
flow in a planar graph with k additional edges in O(k®nlogn)
time, using a clever simulation of Goldberg and Tarjan’s push-
relabel algorithm [35]].

To our knowledge, the only prior max-flow algorithm that
applies to graphs of positive genus, but not to arbitrary sparse
graphs, is an algorithm of Imai and Iwano [|45] that computes
minimum-cost flows in graphs with small balanced separators,
using a combination of nested dissection [|53}|60]], interior-point
methods [71]], and fast matrix multiplication. Their algorithm
can be adapted to compute maximum flows (and therefore mini-
mum cuts) in any graph of constant genus in time O(n'***log C),
where C is the sum of the capacities. However, this is slower
than more recent and more general algorithms [34]].

Euler’s formula implies that a simple n-vertex graph embed-
ded on a surface of genus O(n) has at most O(n) edges. The
fastest known combinatorial maximum-flow algorithms for sparse
graphs, due to Sleator and Tarjan [67]] and Goldberg and Tar-
jan [135]], run in time O(n%logn). The fastest algorithm known
for integer capacities, due to Goldberg and Rao [|34], runs in time
0(n*?lognlogU), where U is an upper bound on the edge ca-
pacities. These are also the fastest algorithms previously known
for computing maximum flows or minimum cuts in graphs of any
positive genus.

For further background on maximum flows, minimum cuts,
and related problems, we refer the reader to monographs by
Ahuja et al. [|]1]] and Schrijver [65]].

Short interesting cycles. Many different problems, such as
finding approximate traveling salesman tours [22]] and Steiner
trees 3] in surface embedded graphs, embedding high-genus
graphs into the plane with low distortion [[46]] or with few cross-
ings [49]], and feature detection and simplification in meshes [|38},
24], require algorithms to find short but topologically nontrivial
cycles.

Thomassen described the first efficient algorithm to find the
shortest non-contractible or non-separating cycle [70,|58]. After
many intermediate improvements [8} /11,27, |52[], Cabello and
Chambers [9]] described the fastest algorithm currently known
for this problem, which runs in O(g®nlogn) time. Splitting cycles
are non-contractible and separating; finding the shortest such
cycle is NP-hard, although there is an O(nlogn)-time algorithm
for graphs of any fixed genus [|12}|13]]. Colin de Verdiére and
Erickson [|18]] prove that the shortest path or cycle in a given
homotopy class can be computed in polynomial time, improving
earlier results of Colin de Verdiére and Lazarus [17, |20, [21].
Erickson and Whittlesey describe a greedy algorithm to find a
minimum-length set of cycles that generate the first homology
group of a surface [|28]].

Several practical heuristics have been developed for finding
short cycles that work well in practice, although they have no
theoretical guarantees. For example, Guskov and Wood [38]] de-
scribe an algorithm to find and remove intersecting pairs of short
non-contractible cycles (‘topological noise’) from surface meshes.
Zomorodian and Carlsson [[74] define the localized homology of
an arbitrary topological case with respect to a subspace covering;
they also describe algorithms to compute localized homology
generators of simplicial complexes using persistent homology;
however, they do not describe how to compute covers that would
lead to cycles of minimum size. Chen and Friedman [|15} 16
describe a polynomial-time algorithm to compute a cycle of min-
imum radius in a given homology class, in an arbitrary edge-
weighted simplicial complex; however, the length of this cycle
could be arbitrarily longer than optimal.

Dey et al. [|23}24] describe algorithms to find short handle and
tunnel cycles in surface meshes embedded in R®. Any embedded
surface subdivides R® into an inner handlebody I and an outer
handlebody O; handle cycles are null-homologous in I, while
tunnel cycles are null-homologous in O. The algorithm of Dey
et al. finds g short handle cycles and g short tunnel cycles that
collectively generate the first homology group of the input surface.
Their algorithm uses several heuristics to reduce the length of
the output cycles, in part because no algorithm is known to find
the shortest cycle in a given homology class.

New Results. The input to our algorithm is an undirected
edge-weighted graph G embedded on an orientable surface of
genus g. Given vertices s and t, our algorithm computes a
minimum-weight (s, t)-cut in g°®nlogn time. For any fixed
positive genus, this improves the best previous time bound by a
factor of min{n, v/nlogC}.

Our minimum-cut algorithm is a special case of a more general
algorithm to compute a minimum-cost subgraph in a given Z,-
homology class. Even when the homology class is specified by
a simple cycle, the output representative may be the union of
several cycles; see Figure [2| For surfaces with genus g and b
boundary components, our algorithm runs in (g + b)°¢*?nlogn
time. We also show that this more general problem is strongly
NP-hard, even if the input homology class is specified by a simple
cycle; thus, the exponential dependence on the topology of the
surface is unavoidable unless P=NP. We are not aware of any
previous algorithmic results for our more general problem.

Of course, the original minimum-cut problem is not NP-hard!
We conjecture that minimum cuts can be computed in time
O(g°nlogn) for some small constant c.

In a companion paper [[14f], we describe algorithms to compute
a maximum flow in surface embedded graphs, using very differ-
ent techniques from this paper. Specifically, given an undirected

graph embedded on an orientable surface of genus g, with two
specified vertices s and t, we can compute a maximum (s, t)-flow
in 0(g’nlog? nlog® C) time for integer capacities that sum to C,
or in (glogn)°®n time for real capacities. Our key insight is
that it suffices to optimize the relative homology class of the flow,
rather than directly optimizing the flow itself.

2. DRAMATIS PERSONAE

We begin by recalling several useful definitions related to graphs
embedded on surfaces. For more comprehensive treatments,
we refer the interested reader to Gross and Tucker [|37]] and
Mohar and Thomassen [|58] for topological graph theory, and to
Hatcher [41]] and Stillwell [|68]] for topology.

2.1 Surfaces and Curves

A surface (more formally, a 2-manifold) % is a compact topo-
logical space in which every point has an open neighborhood
homeomorphic to either the plane R? or a closed halfplane
{(x,¥) € R? | x > 0}. The points with halfplane neighbor-
hoods comprise the boundary of the surface; every connected
component of the boundary is homeomorphic to a circle. A sur-
face is non-orientable if it contains a subset homeomorphic to the
Mobius band, and orientable otherwise.

A path in a surface X is a continuous function p: [0,1] — X.
A loop is a path whose endpoints p(0) and p(1) coincide; we
refer to this common endpoint as the basepoint of the loop.
An arc is a path whose endpoints lie on the boundary of 2. A
cycle is a continuous function y: S! — . We refer to paths,
loops, arcs, and cycles as curves. We will usually not distinguish
between a path/cycle and its image in X. A curve is simple if the
function that defines it is injective, except for the basepoint in
the case of loops. The reversal p of a path p is defined by setting
p(t) = p(1 — t). The concatenation p - q of two paths p and q
with p(1) = q(0) is the path created by setting (p - q)(t) = p(2t)
forallt <1/2and (p-q)(t)=q(2t —1)forall t > 1/2.

The genus of a surface Z is the maximum number of simple,
disjoint, non-separating cycles y;,75,...,7,; thatis, y;Ny; =&
for all i and j, and the surface X\ (y; U---Uy,) is connected.
This paper will consider only compact, connected, orientable
surfaces. Up to homeomorphism, there is exactly one such surface
with any non-negative genus g and any non-negative number of
boundaries b.

2.2 Graph Embeddings

An embedding of an undirected graph G on a surface X consists
of a mapping of vertices of G to distinct points in 3} and a col-
lection of mappings from edges of G to simple paths in ¥ that
intersect only at common endpoints. A face of an embedding
is a maximal connected subset of ¥ that does not intersect the
image of any edge or vertex. An embedding is cellular (or 2-cell
[58]]) if every face is an open topological disk; in particular, in
any cellular embedding, the boundary of % is covered by edges
of G.

Suppose G is a simple n-vertex graph cellularly embedded
on an orientable surface of genus g with b boundaries. Euler’s
formula |V| — |E| + |F| = 2 — 2g — b implies that G has at most
3n— 6+ 6g + 3b edges and at most 2n — 4 + 4g + 2b faces, with
equality if every face of the embedding and every boundary cycle
is a triangle. Thus, the overall complexity of an embedding of an
n-vertex graph is O(n+ g + b) = O(n).

Cellular graph embeddings are equivalent to the combinato-
rial surfaces introduced by Colin de Verdiere [|17] and used by
several other authors to formulate optimization problems for
surface-embedded graphs [9} {10, 11, |13} {18, 19} |20} |21} 27,
28129, 52[]. A combinatorial surface S = (%, G) consists of an
abstract surface % together with a cellularly embedded graph G
with positively weighted edges. Paths and cycles are required to
be walks in the graph; the length of an curve is the sum of its
edge weights, counted with appropriate multiplicity.

Two paths in a combinatorial surface cross if no continuous
infinitesimal perturbation makes them disjoint; if such a pertur-
bation exists, then the paths are non-crossing. We say that a
cycle v is non-self-crossing if no two sub-paths of y cross, weakly
simple if y is non-self-crossing and traverses each edge at most
once, and (strictly) simple if y visits each vertex at most once.

Cutting a combinatorial surface along a cycle or an arc modi-
fies both the surface and the embedded graph. For any combina-
torial surface S = (X, G) and any cycle or arc y in G, we define a
new combinatorial surface S \ v by taking the topological closure
of 3\ y as the new underlying surface; the new embedded graph
contains two copies of each vertex and edge of y, each bordering
a new boundary.

2.3 Homotopy and Homology

Homotopy is an equivalence relation between curves that cap-
tures the notion of continuous deformation. Two paths p and p’
are homotopic if there is a continuous map h: [0,1] x[0,1] = X
such that h(0, t) = p(t) and h(1,t) = p’(t) for all ¢, and h(-,0)
and h(-,1) are constant maps. Two cycles y and y’ are (freely)
homotopic if there is a continuous map h: [0,1] x S! — % such
that h(0, t) = y(t) and h(1,t) = y’(t) for all t. A loop or cycle
is contractible if it is homotopic to a constant map; an arc is
contractible if it is homotopic to a subpath of a boundary cycle.
A simple cycle y is separating if 3\ y is disconnected.
Homology is a coarser equivalence relation than homotopy,
with nicer algebraic properties. Like several earlier papers [|15}
16,|23}[24]], we will consider only one-dimensional cellular homol-
ogy with coefficients in the finite field Z,; this restriction allows
us to radically simplify our definitions. For a more general treat-
ment of homology, we refer the reader to our companion pa-
per [|14]] or to standard references on topology [41} 68, |73]].
Fix a cellular embedding of an undirected graph G on a sur-
face with genus g and b boundaries. An even subgraph is a
subgraph of G in which every node has even degree, or equiva-
lently, the union of edge-disjoint cycles. A boundary subgraph
is the boundary of the union of a subset of faces of G; for exam-
ple, every separating cycle is a boundary subgraph. Two even
subgraphs are homologous, or in the same homology class, if
their symmetric difference is a boundary subgraph. Boundary
subgraphs are also called null-homologous. Any two homotopic
cycles are homologous, but homologous cycles are not necessarily
homotopic; see Figure[l] Moreover, the homology class of a cycle
can contain even subgraphs that are not cycles; see Figure

The subgraphs of G define a vector space isomorphic to Z‘ZE |
whose addition operation is symmetric difference, denoted ®.
Even subgraphs, boundary subgraphs, and homology classes all
define subspaces of this vector space as follows.

The cycle space Z(G) is the vector space of all even subgraphs,
which is (redundantly) generated by all cycles in G. Every even
subgraph satisfies |V| linear constraints, one at each vertex; how-
ever, exactly one of these constraints is redundant. Thus, the

. . E-[V]+1
cycle space is isomorphic to Z, .

,‘

Figure 1. Homologous pairs of cycles that are not homotopic. (Lighter
portions of the curves are on the back side of the surface.)

Figure 2. Each cycle is homologous to the union of the other two.

The boundary space B(G) is the vector space of all boundary
subgraphs, which is (redundantly) generated by the boundaries
of faces of the embedding of G. Any boundary subgraph is
specified by a subset of the faces; a subset and its complement
define the same boundary subgraph if and only if the surface has
no boundary. Thus B(G) is isomorphic to Z'ZFH if b=0, and Z‘ZFl
if b > 1. Because every boundary subgraph is even, B(G) is a
linear subspace of Z(G).

Finally, the homology space H(G) is the vector space of all
homology classes of even subgraphs, which is isomorphic to
Z(G)/B(G). Euler’s formula implies that H(G) has dimension
(EI=VI+D—-(FI-1)=2gif b=0, or (|E| - [V|+1) - |F| =
2g +b—1if b > 0. In particular, any two graphs embedded
on the same surface define isomorphic homology spaces, and
the number of different homology classes is exactly 22¢+max{0.b-1}
The dimension 8 = 2g +max{0, b — 1} of H(G) is called the first
Betti number of the surface.

2.4 Dual Graphs, Cocycles, and Cuts

For any graph G on a surface without boundaryE] we can define
a canonical dual graph G*. The vertices of G* correspond to the
faces of G, and two vertices in G* are are joined by a (dual) edge
if and only if the corresponding faces of G are separated by an
edge of G. Thus, every edge e in G has a corresponding dual
edge in G*, denoted e*. For any face f of G, we let f* denote
the corresponding vertex of G*. The dual graph G* has a cellular
embedding on X, whose faces correspond exactly to the vertices
of G. For any vertex v of G, we let v* denote the corresponding
face of G*. Duality is an involution—the dual of G* is isomorphic
to the original graph G.

When the graph G is fixed, we abuse notation by writing H*
to denote the subgraph of G* containing the edges dual to the
edges of a subgraph H of G. If a subgraph H is a cycle, we call
its dual H* a cocycle; if a subgraph H is a boundary subgraph,
its dual H* is a cut. In planar graphs, every cocycle is a cut, and
every minimal cut is a cocycle; however, these equivalences do
not extend to higher-genus graphs.

1Graph duality can be generalized to surfaces with boundary [[18} [29]],
but this paper will not require such a generalization.

Figure 3. Graph duality. One edge uv and its dual (uv)* = f*g* are
emphasized.

3. MINIMUM HOMOLOGOUS SUBGRAPHS

Let G be an n-vertex undirected graph, embedded on an ori-
entable surface with genus g and b boundary components, and
let H be an even subgraph of G. In this section, we describe an
algorithm to compute the minimum-cost even subgraph homol-
ogous with H in (g + b)°®*"nlogn time. In fact, our algorithm
can be modified easily to compute a minimum-cost representative
in every homology class in the same asymptotic running time;
there are exactly 228+max{6-1.0} gyich classes.

Our algorithm closely resembles the algorithm of Chambers
et al. [113]] for computing a shortest splitting cycle; in fact, our
algorithm is somewhat simpler. The first stage of our algorithm
cuts the underlying combinatorial surface into a topological disk
by a network of shortest paths. Next, we enumerate all possible
ways for an even subgraph to intersect each shortest path in the
decomposition network O(g + b) times. We quickly discard any
crossing pattern that does not correspond to an even subgraph
in the desired homology class. Each crossing pattern is realized
by several homotopy classes of sets of non-crossing cycles, which
we easily enumerate. Within each homotopy class, we find a
minimum-length set of non-crossing cycles with each crossing
pattern using an algorithm of Kutz [52]]. The union of those
cycles is an even subgraph in the desired homology class; we
return the lightest such subgraph as our output.

To simplify the presentation of our results, we assume that
there is a unique shortest path o(u, v) between any pair of ver-
tices u and v in the input graph G. If necessary, this assumption
can be enforced (at least with high probability) using standard
perturbation techniques [|59].

3.1 Minimum Cuts

Before we describe our algorithm, we first show that the minimum-
weight homologous subgraph problem includes (the combina-
torial dual of) the classical minimum-cut problem as a special
case.

Lemma 3.1. Let G = (V,E) be an edge-weighted graph embed-
ded on a surface 3. without boundary, and let s and t be ver-
tices of G. Finally, let X be the minimum-weight (s, t)-cut in G.
ThenX* is the minimum-weight even subgraph of G* homologous
with the boundary of s* in the surface %\ (s* U t*).

Proof: Let ds* denote the boundary of s*, and let &’ denote the
surface &\ (s* U t*).

Let X be an arbitrary (s, t)-cut in G. This cut partitions the
vertices of G into two disjoint subsets, S and T, respectively
containing vertices s and t. Thus, the dual subgraph X* partitions
the faces of G* into two disjoint subsets, S* and T*, respectively
containing faces s* and t*. In particular, X* is the boundary
of the union of the faces in §*, which implies that X* is null-
homologous in 3. The subgraph X* @ Js* is the boundary of

the union of S* \ {s*}, which is a subset of the faces of ¥’. Thus,
X* @ 0s* is null-homologous in &'. We conclude that X* and 9s*
are homologous in ¥'.

Conversely, let X* be an arbitrary even subgraph of G* homol-
ogous to ds* in X'. The subgraph X* @ Js* is null-homologous
in ¥'. This immediately implies that X* is null-homologous in X;
moreover, faces s* and t* are on opposite sides of X*. any path
from s to t in the original graph G must traverse at least one
edge of X. We conclude that X is an (s, t)-cut. 1

3.2 Crossing Bound

Our main technical lemma establishes an upper bound on the
number of crossings between an arbitrary shortest path and the
minimum-weight even subgraph in any homology class. Crossing-
number arguments were first used by Cabello and Mohar [|11]]
to develop the first subquadratic algorithms for shortest non-
contractible and non-separating cycles; their arguments are the
foundation of all later improvements of their algorithm [|8}|52}(9]].
Our proof is quite similar to the argument of Chambers et al. [13]]
that the shortest splitting cycle crosses any shortest path O(g + b)
times. However, our new proof is simpler, because the structure
we seek is a true subgraph, which need not be connected, rather
than a single (weakly) simple closed walk.

Stating our crossing bound is rather subtle, because we can-
not consistently define when a shortest path crosses an even
subgraph. Instead, we partition the even subgraph into a well-
behaved collection of cycles, and then consider the total number
of crossings between a shortest path and the cycles in that col-
lection. Specifically, we define a cycle decomposition of an even
subgraph H to be a set of edge-disjoint, non-crossing, weakly
simple cycles whose union is H.

Lemma 3.2. Every even subgraph of an embedded graph has a
cycle decomposition.

Proof: Let H be an even subgraph of G. We can decompose H
into cycles by specifying, at each vertex v, which pairs of incident
edges of H are consecutive. Any pairing that does not create a

crossing at v is sufficient. For example, if e, e,,...,e,, are the
edges of H incident to v, indexed in clockwise order around v,
we could pair edges e,;_; and e,; for each i. O

We emphasize that each cycle in a cycle decomposition may
visit vertices multiple times; indeed, some even subgraphs cannot
be decomposed into strictly simple cycles.

Lemma 3.3. Let G be an edge-weighted graph embedded on a
surface with genus g and b boundary components. Let H be
a subgraph of G of minimum weight in its Z,-homology class,
and let v{,Y,...,Y, be a cycle decomposition of H. The total
number of crossings between any shortest path in G and the
cycles y1,Y,---,Y, is at most 6g + 2b — 3.

Proof: Let o(y,z) denote the shortest path between any two
vertices y and z, and let 0 = o(u, v) for some vertices u and v.
Uniqueness of shortest paths implies that if y and z are vertices
of o, either the shortest path o(y,z) or its reversal o(z,y) is a
subpath of o. Without loss of generality, we can assume that o
crosses each cycle y; at least once. For each i, let x; denote the
number of times o and y; cross, and let x = x; +x, + -+ X,.
We need to prove that x < 6g +2b — 3.

Consider the graph G/o obtained from G by contracting o to
a single vertex uv. This graph inherits a cellular embedding on &

from the cellular embedding of G. Each cycle y; is contracted to
the union of x; simple non-crossing loops in G/o with basepoint
uv. Altogether, we obtain x loops, which we denote ¢,,¢,,...,¢,.

Suppose some loop ¢; is contractible. This loop is the contrac-
tion of a path 7; in G whose endpoints u; and v; lie in o. The
cycle 6 = ;- o(v;,u;) is also contractible. Thus, the even sub-
graph H & ¢ is homologous with H. Moreover, the uniqueness of
shortest paths implies that the weight of H®&6 = HUo (v, u;)\ 7;
is smaller than the weight of H. But this contradicts our assump-
tion that H has minimum weight in its homology class.

Now suppose some pair of loops £; and {; are homotopic; by
definition, the cycle {; - £; is contractible. These two loops are
contractions of paths 7; and ; in G with endpoints in o. Let
u; and v; denote the endpoints of 7;, and let u; and v; denote
the endpoints of ;. The cycle 7t; - o(v;,v;) - 7; - o(u;,u;) in G is
also contractible. Let 6 denote the set of edges of G that appear
in this cycle exactly once. If the sub-paths o (v;,v;) and o (u;,u;)
are edge-disjoint, then & is a contractible cycle; otherwise, & is
the union of two non-crossing homotopic cycles. In either case,
6 is a boundary subgraph, so the symmetric difference H @ 6 is
homologous with H. Moreover, H ® 6 has smaller weight than H,
and we obtain another contradiction.

We conclude that the loops £,,£,,...,{, lie in distinct nontriv-
ial homotopy classes. Thus, these loops define an embedding of
a single-vertex graph with x edges onto X, where no face of the
embedding is a disk bounded by less than three edges. Euler’s
formula now implies that x < 6g+2b—3 [113, Lemma 2.1]. O

We emphasize that different cycle decompositions of the same
even subgraph may lead to different numbers of crossings. Our
crossing bound applies to any cycle decomposition.

3.3 Systems of Paths and Crossing Vectors

We are now ready to describe our algorithm. The input consists
of an edge-weighted graph G, embedded on a surface © with
genus g and b boundary components, along with an even sub-
graph H of G. Our algorithm computes the minimum-weight
even subgraph of G that is homologous with H.

Our algorithm begins by computing a set P of paths, each
of which is the concatenation of two shortest paths (possibly
meeting in the interior of an edge), such that the surface Z\P is a
topological disk. If the 3 has no boundary, the paths in P are non-
contractible loops with an arbitrary common basepoint; Euler’s
formula implies that the number of loops is 2g. Specifically, we
construct a greedy system of loops in O(nlogn + gn) time, using
an algorithm of Erickson and Whittlesey [28]]. If the surface
has boundary, the paths in P are non-contractible arcs; Euler’s
formula implies that the number of arcs is 2g + b — 1. Specifically,
we again construct a greedy system of arcs in O(nlogn+ (b+ g)n)
time, using a modification of Erickson and Whittlesey’s algorithm
described by Chambers et al. [|13]].

Let py,py,...,pp denote the paths in P, where § = 2g +
max{0,b — 1}. It is no coincidence that the number of paths
in P is equal to the dimension of the homology group H(G).
Indeed, we can identify the homology class of any even subgraph
by considering the number of times it crosses each path in P, as
follows.

For any cycle y and any index i, let x;(y) denote the number
of times y crosses the path p;. The crossing vector x(y) is the
vector (x;(y),...,xg(y)). The crossing vector of a set of cycles is
the sum of the crossing vectors of its elements. Crossing vectors
are not well-defined for arbitrary even subgraphs; different cycle

decompositions can yield different crossing numbers. However,
the parity of the crossing numbers is independent of the cycle
decomposition. The crossing parity vector of any even subgraph H
is the bit vector ¥(H) = (X;, ..., Xg), where X; = 1 if the path p;
crosses (any cycle decomposition of) H an odd number of times,
and x; = 0 otherwise.

Lemma 3.4. Two even subgraphs are homologous if and only if
their crossing parity vectors are equal.

Proof: Every boundary subgraph is the symmetric difference of
facial cycles. Any non-contractible loop or arc crosses facial cycle
an even number of times; thus, the crossing parity vector of any
facial cycle is the zero vector. Every pair of even subgraphs H
and H’ satisfies the identity x(H @ H') = x(H) & x(H’). Thus,
the crossing parity vector of any boundary subgraph is the zero
vector. O

Lemma 3.5. We can compute the crossing parity vector of any
even subgraph in O(gn) time.

Proof: We can compute a cycle decomposition y4,...,7, of H in
O(n) time, by following the proof of Lemma We can compute
the number of crossings between any cycle y; and any path p;
in time proportional to the number of edges in y;. Thus, we can
compute each bit X;(H) in O(n) time. 1

We call an integer vector (x;,...,Xg) a valid crossing vector if
x; <12g+4b—6foralliand (x; mod 2,...,xs mod 2) = X(H).
Our algorithm enumerates all (g + b)°¢*? valid crossing vectors
by brute force in (g + b)°*?) time. Then for each valid crossing
vector, our algorithm computes the minimum-weight collection
of cycles with that crossing vector, as we describe next.

3.4 Triangulations and Crossing Sequences

We can cut our combinatorial surface ¥ \ P into a 23-gon, or
abstract polygonal schema, by cutting along each path in P and
replacing each copy of each path in the cut surface with a single
edge. Thus, each path in P corresponds to two edges of this
polygon. The vertices correspond to copies of the common base-
point of P if 3 has no boundary, or to boundary paths between
endpoints of P otherwise.

We dualize the abstract polygonal schema by replacing each
edge with a vertex, and connecting vertices which correspond
to adjacent edges in the primal schema. Any collection of non-
crossing, non-self-crossing cycles corresponds to a weighted trian-
gulation [13]], where we draw an edge between two vertices of
the dual abstract polygonal schema if and only if some cycle con-
secutively crosses the corresponding pair of paths in the greedy
system of loops. Each edge is weighted by the number of times
such a crossing occurs in our collection. Conversely, a weighted
triangulation corresponds to a collection of non-crossing, non-
self-crossing cycles as long as corresponding vertices are incident
to edges of equal total weight. Lemma [3.3]implies that we only
need to consider weights between 0 and O(g + b). Thus, there
are (g + b)°+? different weighted triangulations for each valid
crossing vector.

For each valid weighted triangulation, we can compute a cor-
responding collection of abstract cycles in O((g + b)?) time by
brute force. In the same time, we can also compute the sequence
of crossings of each abstract cycle with the paths in P. An al-
gorithm of Kutz [|52]] computes the shortest cycle in G with a

Py
Py P2

P3 P;

P4 P2
[2%]

Figure 4. Two disjoint simple cycles on a surface of genus 2, and the
corresponding weighted triangulation.

given crossing sequence of length x in O(xnlogn) time, by glu-
ing together x copies of the planar surface ¥ \ P into an annulus
and calling Frederickson’s planar minimum-cut algorithm [32f].
Thus, for each weighted triangulation, we obtain the shortest
corresponding set of cycles in O((g + b)*nlogn) time.

Theorem 3.6. Let G be a graph with positively weighted edges
embedded on a surface with genus g and b boundary com-
ponents, and let H be an even subgraph of G. We can com-
pute the minimum-cost even subgraph homologous with H in
(g +b)°E+nlogn time.

Corollary 3.7. Let G be an edge-weighted graph embedded on
a surface with genus g and b boundary components, and let s
and t be vertices of G. We can compute the minimum-weight
(s, t)-cut in G in g°®nlogn time.

4. NP-HARDNESS

In this section, we show that finding the minimum-weight even
subgraph in a given homology class is NP-hard, even when the
underlying surface has no boundary.

Chen and Freedman [|16} |15]] proved a similar hardness result
(by reduction from a special case of Max2Sart) for general simpli-
cial complexes; however, the complexes output by their reduction
are never manifolds. Chambers et al. [[13]] prove that finding the
shortest splitting cycle is NP-hard; a cycle is splitting if it is non-
self-crossing, non-contractible, and null-homologous. A simple
modification of their reduction (from Hamiltonian cycle in planar
grid graphs) implies that finding the shortest strictly simple cycle
in a given homology class is NP-hard. Our proof closely follows
a reduction of McCormick et al. [|55] from MIN2SAT to a special
case of MaxCuT.

Theorem 4.1. Computing the minimum-cost even subgraph in a
given homology class on a surface without boundary is equivalent
to computing a minimum-capacity cut in an embedded edge-
weighted graph G whose negative-cost edges are dual to an even
subgraph in G*.

Proof: Fix a graph G embedded on a surface % without boundary,
together with a cost function c: E — R. For any even subgraph
H of G, let c(H) = ZeeH c(e), and let MinNHom(H, ¢) denote the
even subgraph of minimum cost in the homology class of H.

Consider the residual cost function cy: E — R defined by
setting c;(e) = c(e) for each edge e & H, and cy(e) = —c(e)
for each edge e € H. For any subgraph H' of G, we have
c(H') = cy(H ® H') + c(H), which immediately implies that
MinHoMm(H,¢) = H & MinHom(@,).

Every null-homologous even subgraph of G is dual to a cut
in the dual graph G*. Thus, we have reduced our problem
to computing the minimum cut in G* with respect to the cost
function c. Since the empty set is a valid cut with zero cost, the
cost of the minimum cut is never positive. In particular, H is the
minimum-cost even subgraph in its homology class if and only if
the cut in G* with minimum residual cost is empty.

In fact, our reduction is reversible. Suppose we want to find
the minimum cut in an embedded graph G = (V,E) with re-
spect to the cost function c: E — R, where every face of G is
incident to an even number of edges with negative cost. Let
H = {e € E | c(e) < 0} be the subgraph of negative-cost edges,
and let X denote the (possibly empty) set of edges in the mini-
mum cut of G. Consider the absolute cost function |c|: E* —» R
defined as |c|(e*) = |c(e)|. Then (H & X)* is the even subgraph
of G* of minimum absolute cost that is homologous to H*. O

We now prove that this special case of the minimum cut prob-
lem is NP-hard, by reduction from MinCurT in graphs with neg-
ative edges. This problem includes MaxCuT as a special case
(when every edge has negative cost), but many other special
cases are also NP-hard [55]]. The output of our reduction is a
simple triangulation; the reduction can be simplified if graphs
with loops and parallel edges are allowed.

Suppose we are given an arbitrary graph G = (V,E) with n
vertices and an arbitrary cost function c: E — R. We begin
by computing a cellular embedding of G on some surface. If
we don’t care whether the surface is orientable, we can simply
impose a cyclic order on the edges incident to each vertex. The
maximum-genus orientable cellular embedding can be computed
in polynomial time [33]]. Alternately, we can add zero-length
edges to make the graph complete and then use classical results
of Ringel, Youngs, and others [|64} 63] to compute a minimum-
genus orientable embedding of K,, in polynomial time. Once
we have an embedding, we add vertices and zero-cost edges to
obtain a triangulation.

Let C be the sum of the absolute values of the edge costs:
C:= Zelc(e)l. We locally modify both the surface and the em-
bedding to transform each negative-weight edge into a cocycle,
as follows. We transform the edges one at a time; after each iter-
ation, the embedding is a simple triangulation. (Our reduction
can be simplified if a simple graph is not required.) For each
edge uv with c(uv) < 0, remove uv to create a quadrilateral face.
Triangulate this face as shown in Figure 5} we call the new faces
uuqu, and vv,v, endpoint triangles. Assign cost C to the edges
of the endpoint triangles and cost zero to the other new edges.
Glue a new handle to the endpoint triangles, and triangulate the
handle with a cycle of six edges, each with cost c(uv)/6. These
six edges form a cocycle of cost c(uv), which we call an edge
cocycle, in the new embedding. Each iteration adds 5 vertices and
21 edges to the graph and increases the genus of the underlying
surface by 1.

Let G’ denote the transformed graph and ¢’: E(G’) — R its
associated cost function. The minimum cut in G’ cannot contain
any edge of an endpoint triangle. Thus, for each edge cocycle,
either all six edges cross the cut, or none of them cross the cut.
It follows that the minimum cut in G’ corresponds to a cut with
equal cost in the original graph G. Conversely, any cut in G can
be transformed into a cut in G’ of equal cost. Thus, computing
the minimum cut in G’ is equivalent to computing the minimum
cutin G.

Theorem 4.2. Given an even subgraph H of an edge-weighted
graph G embedded on a surface without boundary, computing

Figure 5. Adding a handle to transform a negative edge into a negative
cocycle. Thick (blue) edges have cost C; dashed edges have cost zero.

the minimum-weight even subgraph homologous to H is strongly
NP-hard.

Our reduction can be modified further to impose other desir-
able properties on the output instances, for example, that the
graph is unweighted, every vertex has degree 3, or the input sub-
graph H is a simple cycle. We leave the details as easy exercises
for the reader.

Finally, we emphasize that the NP-hardness of this problem
relies crucially on the fact that we are using homology with coeffi-
cients taken from the finite field Z,. The corresponding problem
for homology with real or integer coefficients is a minimum-cost
circulation problem, and thus can be solved in polynomial time.
In our companion paper [|14]], we show that this circulation
problem can be solved in near-linear time for graphs of constant
genus, using very different techniques.

5. CONCLUSIONS AND OPEN PROBLEMS

Many potential improvements and open questions remain. For
example, unlike the flow algorithms described in our companion
paper [14], our minimum-cut algorithm does not seem to extend
easily to embedded directed graphs. Computing minimum cuts
in directed graphs embedded on a surface in near-linear time
remains an open question.

We conjecture that both maximum flows and minimum cuts in
embedded graphs can be computed in O(g*nlogn) time for some
small constant k, perhaps using a generalization of the network
simplex algorithm of Borradaile and Klein [2, |6} |7]]. Even the
special case of unit capacities is open.

It seems likely that our minimum-cut algorithm will extend to
graphs embedded on non-orientable surfaces; the main challenge
is extending Lemma3.3] (In contrast, our techniques for comput-
ing maximum flows will not extend to non-orientable surfaces
without substantial modification, in part because our definition
of duality for directed graphs requires a consistent surface orien-
tation.) No near-linear-time algorithms are known in this setting,
even for graphs embedded on the projective plane.

Acknowledgments. The authors would like to thank Chandra
Chekuri and Aparna Sundar for helpful discussions, and the
anonymous reviewers for their comments and suggestions.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

R. K. Ahuja, T. L. Magnanti, and J. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.
G. Borradaile. Exploiting Planarity for Network Flow and
Connectivity Problems. Ph.D. thesis, Brown University, May
2008. (http://www.cs.brown.edu/research/pubs/theses/
phd/2008/glencora.pdf).

G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-
time approximation schemes for subset-connectivity prob-
lems in bounded-genus graphs. Proc. 26th Int. Symp. The-
oretical Aspects Comput. Sci., 171-182, 2009. Dagstuhl
Seminar Proceedings. (http://drops.dagstuhl.de/opus/
volltexte/2009/1835/).

G. Borradaile, C. Kenyon-Mathieu, and P N. Klein. A
polynomial-time approximation scheme for Steiner tree
in planar graphs. Proc. 18th Ann. ACM-SIAM Symp. Discrete
Algorithms, 1285-1294, 2007.

G. Borradaile, C. Kenyon-Mathieu, and P N. Klein. Steiner
tree in planar graphs: An O(nlogn) approximation scheme
with singly-exponential dependence on epsilon. Proc. 10th
Ann. Workshop on Algorithms and Data Structures, 275-286,
2007.

G. Borradaile and P Klein. An O(nlog n)-time algorithm for
maximum st-flow in a directed planar graph. Proc. 17th
Ann. ACM-SIAM Symp. Discrete Algorithms, 524-533, 2006.
G. Borradaile and P, Klein. An O(nlogn) algorithm for max-
imum st-flow in a directed planar graph. J. ACM, to ap-
pear, 2009. (http://www.math.uwaterloo.ca/~glencora/
downloads/maxflow-full.pdf).

S. Cabello. Many distances in planar graphs. Proc. 17th Ann.
ACM-SIAM Symp. Discrete Algorithms, 1213-1220, 2006.
S. Cabello and E. W. Chambers. Multiple source shortest
paths in a genus g graph. Proc. 18th Ann. ACM-SIAM Symp.
Discrete Algorithms, 89-97, 2007.

S. Cabello, M. DeVos, J. Erickson, and B. Mohar. Finding
one tight cycle. Proc. 19th Ann. ACM-SIAM Symp. Discrete
Algorithms, 527-531, 2008.

S. Cabello and B. Mohar. Finding shortest non-separating
and non-contractible cycles for topologically embedded
graphs. Discrete Comput. Geom. 37:213-235, 2007.

E. W, Chambers, E. Colin de Verdiére, J. Erickson, F. Lazarus,
and K. Whittlesey. Splitting (complicated) surfaces is hard.
Proc. 22nd Ann. ACM Symp. Comput. Geom., 421-429,
2006.

E. W, Chambers, E. Colin de Verdiére, J. Erickson, F. Lazarus,
and K. Whittlesey. Splitting (complicated) surfaces is hard.
Comput. Geom. Theory Appl. 41(1-2):94-110, 2008.

E. W. Chambers, J. Erickson, and A. Nayyeri. Homology
flows, cohomology cuts. Proc. 41st Ann. ACM Symp. Theory
Comput., 2009.

C. Chen and D. Freedman. Quantifying homology classes
II: Localization and stability. Preprint, 2007. (http://arxiv.
org/abs/0709.2512v2).

C. Chen and D. Freedman. Quantifying homology classes.
Proc. 25th Ann. Symp. Theoretical Aspects Comp. Sci., 169—
180, 2008. Dagstuhl Seminar Proceedings. (http://drops.
dagstuhl.de/opus/volltexte/2008/1343/).

E. Colin de Verdiére. Raccourcissement de courbes et décom-
position de surfaces [Shortening of Curves and Decomposition
of Surfaces]. Ph.D. thesis, University of Paris 7, Dec. 2003.
(http://www.di.ens.fr/ ~colin/textes/these.html).

(18]

(19]

(20]

[21]

[22]

(23]

(24]

(25]

[26]
(27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

E. Colin de Verdiére and J. Erickson. Tightening non-simple
paths and cycles on surfaces. Proc. 17th Ann. ACM-SIAM
Symp. Discrete Algorithms, 192-201, 2006.

E. Colin de Verdiére and E Lazarus. Optimal pants decom-
positions and shortest homotopic cycles on an orientable
surface. Proc. 11th Sympos. Graph Drawing, 478-490, 2003.
Lecture Notes Comput. Sci. 2912.

E. Colin de Verdiére and F. Lazarus. Optimal system of
loops on an orientable surface. Discrete Comput. Geom.
33(3):507-534, 2005.

E. Colin de Verdiere and E Lazarus. Optimal pants decom-
positions and shortest homotopic cycles on an orientable
surface. J. ACM 54(4), 2007.

E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approxima-
tion algorithms via contraction decomposition. Proc. 18th
Ann. ACM-SIAM Symp. Discrete Algorithms ACM-SIAM sym-
posium on Discrete algorithms, 278-287, 2007.

T. K. Dey, K. Li, and J. Sun. On computing handle and
tunnel loops. IEEE Proc. Int. Conf. Cyberworlds, 357-366,
2007.

T. K. Dey, K. Li, J. Sun, and D. Cohen-Steiner. Computing
geometry-aware handle and tunnel loops in 3D models.
ACM Trans. Graphics 27(3):1-9, 2008. Proc. SIGGRAPH
2008.

D. Eppstein. Subgraph isomorphism in planar graphs and
related problems. J. Graph Algorithms and Applications
3(3):1-27, 1999.

D. Eppstein. Diameter and treewidth in minor-closed graph
families. Algorithmica 27:275-291, 2000.

J. Erickson and S. Har-Peled. Optimally cutting a surface
into a disk. Discrete Comput. Geom. 31(1):37-59, 2004.

J. Erickson and K. Whittlesey. Greedy optimal homotopy
and homology generators. Proc. 16th Ann. ACM-SIAM Symp.
Discrete Algorithms, 1038-1046, 2005.

J. Erickson and P Worah. Computing the shortest essential
cycle. Preprint, November 2008. (http://www.cs.uiuc.edu/
~jeffe/pubs/essential.html).

J. Fakcharoenphol and S. Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. J. Com-
put. Syst. Sci. 72(5):868-889, 2006.

L. R. Ford and D. R. Fulkerson. Maximal flow through a
network. Canadian J. Math. 8(399-404), 1956.

G. N. Frederickson. Fast algorithms for shortest paths in pla-
nar graphs with applications. SIAM J. Comput. 16(6):1004—
1004, 1987.

M. L. Furst, J. L. Gross, and L. A. McGeoch. Finding a
maximum-genus graph imbedding. J. Assoc. Comput. Mach.
35(3):523-534, 1988.

A. V. Goldberg and S. Rao. Beyond the flow decomposition
barrier. J. ACM 45(5):783-797, 1998.

A. V. Goldberg and R. E. Tarjan. A new approach to
the maximum-flow problem. J. Assoc. Comput. Mach.
35(4):921-940, 1988.

M. Grohe. Isomorphism testing for embeddable graphs
through definability. Proc. 32nd ACM Symp. Theory Comput.,
63-72, 2000.

J. L. Gross and T. W. Tucker. Topological graph theory. Dover
Publications, 2001.

I. Guskov and Z. Wood. Topological noise removal. Proc.
Graphics Interface, 19-26, 2001.

http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf
http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/1835/
http://drops.dagstuhl.de/opus/volltexte/2009/1835/
http://www.math.uwaterloo.ca/~glencora/downloads/maxflow-full.pdf
http://www.math.uwaterloo.ca/~glencora/downloads/maxflow-full.pdf
http://arxiv.org/abs/0709.2512v2
http://arxiv.org/abs/0709.2512v2
http://drops.dagstuhl.de/opus/volltexte/2008/1343/
http://drops.dagstuhl.de/opus/volltexte/2008/1343/
http://www.di.ens.fr/~colin/textes/these.html
http://www.cs.uiuc.edu/~jeffe/pubs/essential.html
http://www.cs.uiuc.edu/~jeffe/pubs/essential.html

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

T. E. Harris and E S. Ross. Fundamentals of a method
for evaluating rail net capacities. Tech. rep., The RAND
Corporation, Santa Monica, California, October 24 1955.
Cited in [|66].

R. Hassin and D. B. Johnson. An O(nlog®n) algorithm
for maximum flow in undirected planar networks. SIAM J.
Comput. 14(3):612-624, 1985.

A. Hatcher. Algebraic Topology. Cambridge University Press,
2001. (http://www.math.cornell.edu/~hatcher/).

M. R. Henzinger, P Klein, S. Rao, and S. Subramanian.
Faster shortest-path algorithms for planar graphs. J. Com-
put. Syst. Sci. 55(1):3-23, 1997.

J. M. Hochstein and K. Weihe. Maximum s-t-flow with k
crossings in O(k®>nlogn) time. Proc. 18th Ann. ACM-SIAM
Symp. Discrete Algorithms, 843-847, 2007.

J. E. Hopcroft and J. K. Wong. Linear time algorithm for
isomorphism of planar graphs (preliminary report). Proc.
6th ACM Symp. Theory Comput., 172-184, 1974.

H. Imai and K. Iwano. Efficient sequential and parallel
algorithms for planar minimum cost flow. Proc. SIGAL Int.
Symp. Algorithms, 21-30, 1990. Lecture Notes Comput. Sci.
450, Springer-Verlag.

P Indyk and A. Sidiropoulos. Probabilistic embeddings of
bounded genus graphs into planar graphs. Proc. 23rd Ann.
ACM Symp. Comput. Geom., 204-209, 2007.

A. Ttai and Y. Shiloach. Maximum flow in planar networks.
SIAM J. Comput. 8:135-150, 1979.

L. Janiga and V. Koubek. Minimum cut in directed planar
networks. Kybernetika 28(1):37-49, 1992.

K. Kawarabayashi and B. Reed. Computing crossing number
in linear time. Proc. 39th Ann ACM Symp. Theory Comput.,
382-390, 2007.

P Klein. Multiple-source shortest paths in planar graphs.
Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 146—
155, 2005.

P Klein, S. Mozes, and O. Weimann. Shortest paths in
directed planar graphs with negative lengths: A linear-
space O(nlog?n)-time algorithm. Proc. 20th Ann. ACM-
SIAM Symp. Discrete Algorithms, 236-245, 2009.

M. Kutz. Computing shortest non-trivial cycles on ori-
entable surfaces of bounded genus in almost linear time.
Proc. 22nd Ann. ACM Symp. Comput. Geom., 430-438,
2006.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested
dissection. SIAM J. Numer. Anal. 16:346-358, 1979.

M. Mares. Two linear time algorithms for MST on minor
closed graph classes. Archivum Mathematicum 40(3):315-
320, 2004.

S. T. McCormick, M. R. Rao, and G. Rinaldi. Easy and
difficult objective functions for max cut. Math. Program.,
Ser: B 94:459-466, 2003.

[56]

[57]

(58]
[59]

[60]

[61]

[62]

(63]

[64]

[65]

[66]

[67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]

G. L. Miller. Isomorphism testing for graphs of bounded
genus. Proc. 12th ACM Symp. Theory Comput., 225-235,
1980.

G. L. Miller and J. Naor. Flow in planar graphs with multiple
sources and sinks. SIAM J. Comput. 24(5):1002-10017,
1995.

B. Mohar and C. Thomassen. Graphs on Surfaces. Johns
Hopkins University Press, 2001.

K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as
easy as matrix inversion. Combinatorica 7:105-113, 1987.
V. Y. Pan and J. H. Reif. Fast and efficient parallel solution of
sparse linear systems. SIAM J. Comput. 22(6):1227-1250,
1993.

D. Pe’er. On minimum spanning trees. Master’s thesis, He-
brew University, 1998. (http://www.math.ias.edu/~avi/
STUDENTS /dpthesis.pdf).

J. Reif. Minimum s-t cut of a planar undirected network in
O(nlog®n) time. SIAM J. Comput. 12:71-81, 1983.

G. Ringel. Map Color Theorem. Springer-Verlag, 1974.

G. Ringel and J. W. T. Youngs. Solution of the Heawood
map-coloring problem. Proc. Nat. Acad. Sci. USA 60:438-
445, 1968.

A. Schrijver. Combinatorial Optimization: Polyhedra and Ef-
ficiency. Algorithms and Combinatorics 24. Springer-Verlag,
2003.

A. Schrijver. On the history of combinatorial optimization
(till 1960). Handbook of Discrete Optimization, 1-68, 2005.
Elsevier.

D. D. Sleator and R. E. Tarjan. A data structure for dynamic
trees. J. Comput. Syst. Sci. 26(3):362-391, 1983.

J. Stillwell. Classical Topology and Combinatorial Group
Theory, 2nd edition. Graduate Texts in Mathematics 72.
Springer-Verlag, 1993.

S. Tazari and M. Miiller-Hannemann. Shortest paths in
linear time on minor-closed graph classes, with an appli-
cation to Steiner tree approximation. Discrete Appl. Math.
157:673-684, 2009.

C. Thomassen. Embeddings of graphs with no short non-
contractible cycles. J. Comb. Theory Ser. B 48(2):155-177,
1990.

P. M. Vaidya. Speeding-up linear programming using fast
matrix multiplication. Proc. 30th IEEE Symp. Found. Comput.
Sci., 332-337, 1989.

K. Weihe. Maximum (s, t)-flows in planar networks in
O(|V|log|V|)-time. J. Comput. Syst. Sci. 55(3):454-476,
1997.

A. Zomorodian. Topology and Computing. Cambridge Uni-
versity Press, 2005.

A. Zomorodian and G. Carlsson. Localized homology. Proc.
IEEE Int Conf. Shape Modeling Appl. (SMD), 189-198, 2007.

http://www.math.cornell.edu/~hatcher/
http://www.math.ias.edu/~avi/STUDENTS/dpthesis.pdf
http://www.math.ias.edu/~avi/STUDENTS/dpthesis.pdf

	Introduction
	Dramatis Personae
	Surfaces and Curves
	Graph Embeddings
	Homotopy and Homology
	Dual Graphs, Cocycles, and Cuts

	Minimum Homologous Subgraphs
	Minimum Cuts
	Crossing Bound
	Systems of Paths and Crossing Vectors
	Triangulations and Crossing Sequences

	NP-hardness
	Conclusions and Open Problems

