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Abstract

Measuring the similarity of curves is a fundamental problem arising in many application fields. There
has been considerable interest in several such measures, both in Euclidean space and in more general
setting such as curves on Riemannian surfaces or curves in the plane minus a set of obstacles. However,
so far, efficiently computable similarity measures for curves on general surfaces remain elusive. This
paper aims at developing a natural curve similarity measure that can be easily extended and computed
for curves on general orientable 2-manifolds. Specifically, we measure similarity between homotopic
curves based on how hard it is to deform one curve into the other one continuously, and define this
“hardness” as the minimum possible surface area swept by a homotopy between the curves. We consider
cases where curves are embedded in the plane or on a triangulated orientable surface with genus g, and
we present efficient algorithms (which are either quadratic or near linear time, depending on the setting)
for both cases.
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1 Introduction

Measuring curve similarity is a fundamental problem arising in many application fields, including graph-
ics, computer vision, and geographic information systems. Traditionally, much research has been done on
comparing curves embedded in the Euclidean space. However, in many cases it is natural to study curves
embedded in a more general space, such as a terrain or a surface.

In this paper, we study the problem of measuring curve similarity on surfaces. Specifically, given two
simple homotopic curves embedded on an orientable 2-manifold (including the plane), we measure their
similarity by the minimum total area swept when deforming one curve to the other (the “area” of the homo-
topy between them), and present efficient algorithms to compute this new measure.

Related work. From the perspective of computational geometry, the most widely studied similarity mea-
sures for curves is the Fréchet distance. Intuitively, imagine that a man and his dog are walking along two
paths with a leash between them. The Fréchet distance between these two paths is the minimum leash
length necessary for them to move from one end of the paths to the other end without back-tracking. Since
the Fréchet distance takes the “flow” of the curves into account, in many settings it is a better similarity
measure for curves than alternatives such as the Hausdorff distance [5, 6].

Given two polygonal curves P and Q with n total edges in IRd, the Fréchet distance can be computed
in O(n2 log n) time [4]. An Ω(n log n) lower bound for the decision problem in the algebraic computation
tree model is known [11], and Alt has conjectured that the decision problem is 3SUM-Hard [2]. Recently,
Buchin et al. [12] show that there is a real algebraic decision tree to solve the Fréchet problem with sub-
quadratic depth, suggesting that perhaps this is not the case. They also give an improved algorithm which
runs in O(n2

√
log n(log log n)2) time. Very recently, Agarwal et al. present a novel approach to compute

the discrete version of the Fréchet distance between two polygonal curves in sub-quadratic time [1]. This is
the first algorithm for any variant of the Fréchet distance to have a sub-quadratic running time for general
curves. No previous algorithm, exact or approximate, with running time o(n2) is known for general curves,
although sub-quadratic approximation algorithms for special families of curves are known [6, 7, 22].

While the Fréchet distance is a natural curve similarity measure, it is sensitive to outliers. Variants of
it, such as the summed-Fréchet distance, and the partial Fréchet similarity, have been proposed [13, 14, 23],
usually at the cost of further increasing the time complexity.

The problem of extending and computing the Fréchet distance to more general metric space has also
received much attention. Geodesic distance between points is usually considered when the underlying do-
main is not IRd. For example, Maheshwari and Yi [28] computed the geodesic Fréchet distance between
two polygonal paths on a convex polytope in roughly O(n3K4 log(Kn)) time, where n and K are the
complexity of the input paths and of the convex polytope, respectively. Raichel and Har-Peled consider ap-
proximating the weak Fréchet distance between simplicial complexes in Rd [26]. Geodesic Fréchet distance
between polygonal curves in the plane within a simple polygon has been studied in [8, 18, 24].

One issue with generalizing Fréchet distance directly to surfaces is that the underlying topology is not
taken into account; for example, in geodesic Fréchet distance, while the length of the leash varies continu-
ously, the actual leash itself does not. As a result, several measures of similarity have been proposed which
take the underlying topology into account. Chambers et al. [15] proposed the so-called homotopic Fréchet
distance and gave a polynomial (although not efficient) algorithm for when the curves reside in a planar
domain with a set of polygonal obstacles. The extra requirement for this homotopic Fréchet distance is that
the leash itself and not just its length has to vary in a continuous manner, essentially restricting the homotopy
class which the leash is in. A stronger variant called isotopic Fréchet distance has also been proposed and
investigated, although no algorithms at all are known to even approximate this parameter [16].

Orthogonal to homotopic Fréchet distance is the concept of the height of a homotopy; instead of mini-
mizing the maximum leash length, this measure views the homotopy as tracing a way for the first curve to
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deform to the second curve, where the goal is to minimize the longest intermediate curve length. Introduced
independently in two very different contexts [10, 17], it is not even known if the problem is in NP.

Recent work on approximating the homotopy height and the homotopic Fréchet distance has yielded
efficient O(log n) approximation algorithms for both of these problems [25]. However, exact algorithms on
surfaces for either problem are still unknown.

New work. In this paper, we develop a natural similarity measure for curves on general surfaces that can
be computed both quickly and exactly. Intuitively, we measure distances between homotopic curves based
on how hard it is to deform one curve into the other one, and define this “hardness” as the minimal total
surface area swept by a homotopy between them. Our similarity measure is natural, and robust against noise
(as the area captures average, instead of maximum, deviation from one curve to the other). To the best of our
knowledge, this is the first similarity measure for curves on general surfaces with efficient polynomial-time
algorithms to compute it exactly.

It is worth noting that this definition in essence combines homotopic Fréchet distance with homotopy
height; those measures compute the “width” and “height” of the homotopy, while our measure calculates
the total area. It is thus surprising that while no exact algorithms are known for either of those measures on
surfaces, we are able to provide a polynomial running time for computing the area of a homotopy.

We consider both cases where curves are embedded in the plane, or on a closed, triangulated orientable
surface with genus g. For the former case, our algorithm runs in O(n+ I2 log n) time, where n is the total
complexity of input curves and I is the number of intersections between them. The running time is thus
linear in n if there are a constant number of intersection points. On a surface, if the input is a triangulation
of complexity N , then our algorithm runs in time O(I2 log I +n log n+n log g+N). While our similarity
measure is more expensive to compute than the Fréchet distance when I = ω(

√
n), one major advantage is

that this measure can be computed on general orientable surfaces efficiently. In fact, the ideas and algorithms
behind the planar case form the foundation for the handling of the case on general surfaces.

The main ideas behind our approach are developed by examining some properties of one natural class
of homotopies, including a relation with the winding number of a closed curve. Specifically, the use of the
winding number enables us to compute the optimal homotopy area efficiently in the plane. This forms the
basis of our dynamic programming framework to compute similarity between curves in the plane. We also
show how to build efficient data structures to keep the total cost of the dynamic program low.

For the case where the underlying surface is a topological sphere, we extend the winding number in a
natural way and show how to adapt our planar algorithm without additional blow-up in the time complexity.
For the case when the surface has non-zero genus, we must extend our algorithm to run efficiently in the
universal cover (which is homeomorphic to the plane) by using only a small portion of it.

We remark that the idea of measuring deformation areas has been used before in practice [19, 29]. For
example, similarity between two convex polygons can be measured by their symmetric difference [3, 35]. In
[9], the area sandwiched between a x-monotone curve and another curve is used to measure their similarity.
However, “area” between general curves and its computation have not been investigated.

2 Definitions and Background

Paths and cycles. We will assume that we are working on an orientable 2-manifold M (which could be
the plane). A curve (or a path) on a surface M is a map P : [0, 1]→M ; a cycle (or a loop) is a continuous
map γ : S1 → M where S1 is the unit circle. A curve P or a cycle γ is simple if P (t1) 6= P (t2) (resp.
γ(t1) 6= γ(t2)) for any t1 6= t2.

For a loop γ in the plane, we will also be concerned with the winding number of γ at a point x ∈ IR2.
Intuitively, imagine starting from a point y on Γ, and connecting x and y by a string. wn(x; Γ) is an integer
measuring how many times this string winds, in a clockwise manner, around x as y traverses Γ. More
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formally, consider an infinite ray f based at x which is generic (meaning it has a finite set of intersections
with γ). An intersection point γ(t) between r and γ is a crossing if for all sufficiently small ε, the points
γ(t − ε) and γ(t + ε) lie on opposite sides of r. A crossing is positive if the triangle through points 0,
γ(t), and γ(t+ ε) is oriented counterclockwise, and is negative if oriented clockwise. Then wn(x; γ) is the
number of positive crossings minus the number of negative crossings with respect to any generic ray.

Homotopy A homotopy between two paths P and Q (with the same endpoints) is a continuous map H :
[0, 1]×[0, 1]→M whereH(0, ·) = P ,H(1, ·) = Q,H(·, 0) = P (0) = Q(0) andH(·, 1) = P (1) = Q(1).
A homotopy describes a continuous deformation between the two paths or curves: for any value t ∈ [0, 1],
we let Ht = H(t, ·) to be the intermediate curve at time t, so that H0 = P and H1 = Q.

We define the area of a homotopy H to be the total area covered by the image of the homotopy on the
surface, where an area that is covered multiple times will be counted with multiplicity. More precisely, given
a homotopy H whose image is piecewise differentiable, Area(H) =

∫
s∈[0,1]

∫
t∈[0,1]

∣∣dH
ds × dH

dt

∣∣ dsdt. The
minimum homotopy area between P and Q is the infimum of the areas of all homotopies between P and
Q, denoted by σ(P,Q). If such an infimum does exist, we call the homotopy which produces the minimum
area the optimal homotopy.

We note that it is not immediately clear that this value exists, depending on the curves and underlying
homotopy. Minimum area homotopies were considered by Douglas [21] and Rado [31] in the context of
Plateau’s problem; they noted that not only is the integral improper in general, but the infimum itself may
not be continuous. The eventual proof that these exist in Rn relies on a definition using Dirichlet integrals
which ensure (almost) conformal parameterizations of the homotopy. See the book by Lawson [27] for an
overview of this result as well as several extensions to minimal area submanifolds in more general settings.

However, beyond a proof of existence, we are interested in computing such
homotopies, or at least measuring their actual area, in much simpler settings such
as R2 or a surface. To this end, we restrict the input curves to be simple curves
which consist of a finite number of piecewise analytic components. We also need H to be continuous and
piecewise differentiable, so that the integral can be defined. Finally, we will also require that at any time
t, the intermediate curve Ht is regular (see [36] for smooth curves and [30] for piecewise-linear curves).
Intuitively, this means that the deformation is “kink”-free [30], and cannot create or destroy a local loop as
shown in the right figure (the singular point in the right curve is a kink).

Decomposing arrangements. Consider two simple piecewise analytic curves P and Q with the same
endpoints. Their concatenation forms a (not necessarily simple) closed curve denoted by C = P ◦ Q. Let
Arr(C) denote the arrangement formed by C, where vertices in Arr(C) are the intersection points between
P and Q. An edge / arc in Arr(C) is a subcurve of either P or Q.

P

Q

p

x
We give C (and thus P and Q) an arbitrary orientation. Hence we can talk

about the sidedness with respect toC at a point p ∈ P . Specifically, a point x ∈ IR2

is to the right of C at p if it is a counter-clockwise turn from the orientation of the
vector px the orientation of (tangent of)C at p (see the right figure for an example).
Given two oriented curves γ1 and γ2, an intersection point p of them is positive if
it is a counter-clockwise turn from the orientation of γ1 to that of γ2 at p. (Note that this also agrees with
our crossing definition in the context of winding numbers.) For a curve γ and a point x ∈ γ, the index of x
is the parameter of x under the arc-length parameterization of γ. We sometimes use x to represent its index
along γ when its meaning is clear from the context. Given two points x, y ∈ γ, we will use γ[x, y] to denote
the unique sub-curve of γ between points x and y.

We say that a homotopy H from P to Q is right sense-preserving if for any t, s ∈ [0, 1], we have that
either Ht+dt(s) = Ht(s) or Ht+dt(s) is to the right of the oriented curve Ht at Ht(s). If it is the former
case, then we say that p = Ht(s) is a fixed point at time t. Similarly, we say that H is left sense-preserving
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if for any t, s ∈ [0, 1], Ht(s) is either a fixed point or deforms to the left of the curve Ht. Our homotopy
H is sense-preserving if it is either right or left sense-preserving. The sense-preserving property means that
we can continuously deform the curve P always in the same direction, without causing local folds in the
regions swept. Intuitively, any optimal homotopy should have this property to some extent, which we will
make more precise and prove later.

3 Structure of Optimal Homotopies

Given two simple curves P and Q (with the same end points) embedded on an orientable 2-manifold M ,
let X = {x1, . . . ,xI} denote the set of I intersection points between them, sorted by their order along P .
Given a homotopy H from P to Q, a point p ∈ M is called an anchor point with respect to H if it remains
on H(t, ·) = Ht at all times t ∈ [0, 1]. If p is an anchor point, then it is necessarily an intersection point
between P and Q, as p ∈ H0 = P and p ∈ H1 = Q. We exclude the beginning and ending end points of
P and Q from the list of anchor points, as they remain fixed for all homotopys. In what follows, we show
that any optimal homotopy can be decomposed by anchor points such that each of the resulting smaller
homotopies has a simple structure.

Specifically, consider an arbitrary optimal homotopy H∗. Let B = {b1, . . . ,bk} be the set of anchor
points with respect to H∗, the minimum area homotopy. We order the bi’s by their indices along P . It
turns out that the order of their indices along Q is the same, and the proof of this simple observation is in
Appendix A.

Observation 3.1 The order of bi’s along P and along Q are the same.

This observation implies that we can decompose H∗ into a list of sub-homotopys, where H∗i morphs
P [bi,bi+1] to Q[bi,bi+1]. Obviously, each H∗i is necessarily optimal, and it induces no anchor points.
The following result states that an optimal homotopy without anchor points has a simple structure, which is
sense-preserving. Intuitively, if any point changes its deformation direction at any moment, the deformation
will sweep certain redudant area and thus cannot be optimal. The detailed proof is in Appendix B.

Lemma 3.2 If an optimal homotopy H from P to Q has no anchor points, then it is sense-preserving.

4 Minimum Area Homotopies In The Plane

In this section, we consider the case where the input consists of two simple polygonal curves in the plane.
We develop an algorithm to compute the similarity between P and Q in O(I2 log I + n log n) time, where
n is the total complexity of input curves and I is the number of intersections. Note that I = Θ(n2) in worst
case. Although efficient algorithms for comparing curves in the plane exist (such as the Fréchet distance),
our planar algorithm will be the fundamental component for comparing curves on general surfaces in the
next section. It turns out that our approach can easily be extended to measure similarity between simple
cycles in the plane; see Appendix F.

4.1 Relations to Winding Numbers

We are given two simple (open) curves in the plane which share common endpoints. Previously, we have
shown that if an optimal homotopy does not induce anchor points, then it is sense-preserving. The implica-
tion of this result is manifested by using the winding number.
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Figure 1: (a) The cell R with highest positive winding number. It boundary consists of alternating P -arcs (red) and
Q-arcs (green). The two cases of relations between P [p, q] and R are shown in (b) and (d), respectively. For case (b),
we can deform P to sweep through Ω as shown in (c), and reduce the number of intersections by 2.
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We say an oriented curve Γ has consistent winding numbers if
wn(x,Γ) is either all non-negative, or all non-positive, for all x ∈
IR2. Note that for a curve with consistent winding numbers, we can
always orient the curve appropriately so that wn(x,Γ) is all non-
negative. Two examples are shown in the figure on the right, where
the second example has consistent winding numbers. Let Arr(Γ) denote the arrangement formed by the
curve Γ. All points in the same cell of the arrangement Arr(Γ) of Γ have the same winding number, and
the winding numbers of two neighboring cells differ by 1. The relation of consistent winding numbers and
sense-preserving homotopys is given below, and the proof can be found in Appendix C.

Lemma 4.1 If there is a sense-preserving homotopy H from P to Q, then the closed curve P ◦ Q has
consistent winding numbers.

Next, we describe two results to connect the above lemma to the computation of optimal homotopy.
First, we define the total winding number Tw(γ) of a curve γ as Tw(γ) =

∫
IR2 wn(x; γ)dν(x), where

dν(x) is the area form1. The following observation is straightforward.

Observation 4.2 For any P and Q in the plane, σ(P,Q) ≥ |Tw(P ◦Q)|.

Proof: Take any regular homotopy H from P to Q. The area of a regular homotopy H in our setting can
be reformulated as an integral on the image domain as Area(H) =

∫
IR2 degH(x)dν(x), where degH(x) is

defined as the number of connected components in the pre-image of x under H . In other words, degH(x)
is the number of times that any intermediate curve Ht sweeps through x. Now consider the function F :
[0, 1] → IR defined as F (t) = Tw(H∗t ◦ Q). Obviously, F (0) = Tw(P ◦ Q), F (1) = 0, and F is
a continuous function. Furthermore, each time the winding number at a point x changes by 1 for some
t ∈ [0, 1], it means that some intermediate curve H(t) sweeps through it. Hence |wn(x)| is a lower bound
for degH(x). We thus have that |Tw(P ◦ Q)| ≤

∫
IR2 |wn(x)|dν(x) ≤

∫
IR2 degH(x)dν(x) for any regular

homotopy H , implying that |Tw(P ◦Q)| ≤ infH Area(H) = σ(P,Q).

Lemma 4.3 Given P and Q, if Γ = P ◦Q has consistent winding numbers, then σ(P,Q) = |Tw(Γ)|.

Proof: We provide a sketch of the proof here to illustrate the main idea; see Appendix D for the full proof.
We prove the claim by induction on the number of intersections between P and Q. The base case is when
there is no intersection between P and Q. In this case, Γ is a Jordan curve which decomposes IR2 into two
regions, one inside Γ and one ouside. The optimal homotopy area σ(P,Q) in this case is the area of the

1Note that this allows us to use any Riemannian metric on the plane (including the standard Euclidean metric). This will be
necessary later when we use the same algorithm to curves in a universal covering space.
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bounded cell. By orienting Γ appropriately, every point in the bounded cell has winding number 1 and the
claim follows.

Now assume that the claim holds for cases with at most k−1 intersections. We now prove it for the case
with k intersections. Let an X-arc denote a subcurve of curve X . Consider the arrangement Arr(Γ) formed
by Γ = P ◦ Q. Since P and Q are simple, every cell in this arrangement has boundary edges alternating
between P -arcs andQ-arcs. Assume without loss of generality that Γ has all non-negative winding numbers.
Consider a cell R ∈ Arr(Γ) with largest (and thus positive) winding number. Since its winding number is
greater than all its neighbors, it is necessary that all boundary arcs are oriented consistently as shown in
Figure 1 (a), where the cell R (shaded region) lies to the right of its boundary arcs.

R

Q

P

P ′

e

e′

Q

If R has only two boundary arcs, e from P and e′ from Q, respectively, then we
can morph P to another simple curve P ′ by deforming e through R to −e′ (where
‘−’ means reversing the orientation) as illustrated on the right. The area swept by
this deformation is exactly the area of cell R. Furthermore, after the deformation,
every point x ∈ R decreases their winding number by 1, and no other point changes
its winding number. Since points in this cell initially has strictly positive winding
number, the resulting curve Γ′ = P ′ ◦ Q still has all non-negative winding number.
The number of intersections between P ′ and Q is k − 2. By induction hypothesis, σ(P ′, Q) = Tw(Γ′).
Since Tw(Γ) − Tw(Γ′) = Area(R), we have that Tw(Γ) = σ(P ′, Q) + Area(R). It then follows from
Observation 4.2 and the fact σ(P,Q) ≤ σ(P ′, Q) + Area(R) that σ(P,Q) = Tw(Γ).

Otherwise, the cell R has more than one P -arc. Take the P -arc e1 with the smallest index along P ,
and let p be its ending point. Let e2 be the next P -arc along the boundary of R, and q its starting point,
and Q[p, q] the Q-arc between e1 and e2, denoted by ē in Figure 1. P [p, q] and −Q[p, q] bound a simple
polygon, which we denote by Ω. Since Ω does not intersect R, either Ω is on the opposite side of the Q-arc
ē from the interior of R (Figure 1 (b)), or they are on the same side (Figure 1 (d)). It turns out that in both
cases, we can deform P to another simple curve P ′ such that (i) the number of intersections is reduced by
2, and (ii) P ′ ◦ Q still has consistent winding numbers. For example, in the case of Figure 1 (b), P is then
deformed to sweep the region Ω as shown in Figure 1 (c). By applying the induction hypothesis to P ′ ◦Q,
we are able to obtain that σ(P,Q) = Tw(Γ). The details are in Appendix D.

4.2 The Algorithm

Lemma 3.2 and 4.1 imply that if the closed curve P ◦ Q produces both positive and negative winding
numbers, then any optimal homotopy from P toQmust have at least one anchor point. On the other hand, if
it has consistent winding numbers, then by Lemma 4.3 we can compute the optimal cost to deform them by
simply computing the total winding number. This leads to a simple dynamic-programming (DP) approach
to compute σ(P,Q).

Specifically, let x0,x1, . . . ,xI denote the intersection points between P and Q, ordered by their indices
along P , where x0 and xI are the beginning and ending points of P and Q, respectively. Let T (i) be
the cost of the optimal homotopy between P [0,xi] and Q[0,xi], and C[i, j] the closed curve formed by
P [xi,xj ] ◦Q[xi,xj ]. We say that a pair of indices (i, j) is valid if (1) xi and xj have the same order along
P and along Q; and (2) the closed curve C[i, j] has consistent winding numbers. We have the following
recursion:

T (i) =

{
Tw(C[0, i]), if C[0, i] has consistent winding numbers
min

j<i and (j, i) is valid { Tw(C[j, i]) + T (j) }, otherwise

Time complexity. The main components of the above DP framework are (i) to compute Tw(C[i, j]) for
all pairs of i, js, and (ii) to check whether each pair (i, j) is valid or not. These can be done in O(I2n)
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total time in a straightforward manner. We now show how to compute them in O(I2 log I) time after
O(I log I + n log n) pre-processing time. Specifically, we describe how to compute such information in
O(I log I) time for all C[r, i]s for a fixed r ∈ [1, I] and all indices i > r.

To simplify the description of the algorithm, we extendQ on both sides until infinity, and obtain Q̂. Now
collect all intersection points between P and Q̂, {x̂1, . . . , x̂I}, which is a super-set of previous intersection
points, and sort them by their order along the curve P . The algorithm can be made to work with Q directly,
but using Q̂ makes the intuition behind our algorithm, as well as its description, much more clear.

Note that Q̂ divides the plane to two half-planes. For illustration purpose, we will draw Q̂ as a hori-
zontal line, and use the upper and lower half-planes to refer to these two sides of Q̂. Another way to see
that regarding Q̂ as a horizontal line does not cause any loss of generality is that one can always find a
homeomorphism from IR2 → IR2 such that the image of Q̂ is a horizontal line under this homeomorphism.

Now for a fixed integer r, we traverse P starting from x̂r. We aim to maintain appropriate data structures
so that each time we pass through an intersection point x̂i with Q̂, we can, in O(log I) time, (1) check
whether (r, i) is valid, and (2) obtain total winding number for C[r, i].

Q̂

P

Ru

x̂u

x̂u+1

Total winding numbers. We first explain how to maintain the total
winding number for the closed curve C[r, i] = P [x̂r, x̂i] ◦ Q[x̂i, x̂r]
as i increases. Assume i changes from u to u+ 1. Since x̂u and x̂u+1

are two consecutive intersection points along P , the arcs P [x̂u, x̂u+1]
and Q̂[x̂u, x̂u+1] form a simple closed polygon which we denote by
Ru (shaded region in the right figure). Comparing the arrangement
Arr(C[r, u+1]) with Arr(C[r, u]), regardless of where r is, only points withinRu will change their winding
number, either all by +1 or all by −1, depending on whether Ru is to the right side or the left side of the
P -arc P [x̂u, x̂u+1], respectively. The winding numbers for points outside Ru are not affected. Hence the
change in the total winding number is simply αuArea(Ru), where αu is either +1 or −1. See the previous
figure, where all points inRu will decrease their winding number by 1 as we move fromC[r, u] toC[r, u+1].
We can pre-compute the area of Ru’s for all u in O(n log n+ I log I) time, by observing that the set of Rus
satisfy the parentheses property: Namely, either Ru and Rv are disjoint in their interior, or one contains the
other. The details can be found in Appendix E. With the area of Rus known, updating the total winding
number from C[r, u] to C[r, u+ 1] takes only constant time.

Checking the validity of (r, i)s. To check whether (r, i) is valid or not, we need to check whether all
cells in the arrangement Arr(C[r, i]) have consistent winding numbers. First observe that for any r and
i, Arr(P + Q̂) is a refinement of the arrangement Arr(C[r, i]). That is, a cell in Arr(P + Q̂) is always
contained within some cell in Arr(C[r, i]). Hence all points within the same cell of Arr(P + Q̂) always
have the same winding number, and we simply need one point from each cell in Arr(P + Q̂) to maintain
the winding number for all cells in Arr(C[r, i]), for any r and i. We now describe how to maintain the
winding number for cells of Arr(P + Q̂) (thus for Arr(C[r, u])s) as we pass each u > r, so that we can
check whether C[r, u] has consistent winding numbers or not efficiently.

P

Q̂

∗∗ ∗∗ ∗∗ ∗
∗

∗
∗

∗
∗

∗
∗
∗
∗

To this end, take four points around each intersection point x̂i of P and Q̂
(shown as stars in the right figure). The collection of such representative points
hit all cells in Arr(P + Q̂). (It does not matter whether there may be more than
one point taken from a cell of Arr(P + Q̂).) Hence Arr(C[r, i]) has consistent
winding number if and only if all these representative points have consistent
winding numbers. Next, we build a data structure to maintain the winding numbers for these points as i
increases. Specifically, let U be the set of representatives that are to the right of Q̂, which are the stars above
Q̂ in the right figure. (Those to the left of Q̂ will be handled in a symmetric manner). Each point has a key
associated with it which is its index along Q̂. We build a standard balanced 1-D range tree on U based on
such keys, where each leaf f stores a point from U . Every internal node v is associated with an interval
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[lv, rv], where lv and rv are the smallest and largest keys stored in the subtree rooted at v. In other words,
all representatives with an index along Q̂ within [lv, rv] are stored in the subtree rooted at v. At every node
v, interior or not, we also store a value addWv. To compute the winding number for the representative point
pf stored at a leaf node f , we identify the path {v0, v1, . . . , va = f} from the root v0 to f . The winding
number for pf is simply

∑a
i=0 addWvi . Finally, each internal node v also stores the maximum and minimum

winding numbers associated with all leaves in its subtree. At the beginning, all winding numbers are zero.
The size of this tree is O(I) with height O(log I), and can be built in O(I log I) time once the arrangement
Arr(P + Q̂) is known.

Let qi denote the index of point x̂i along Q̂ (or can be considered as the x-coordinate of x̂i). As we move
from C[r, u] to C[r, u + 1], cells of Arr(P + Q̂) contained in Ru should either all increase or all decrease
their winding number by 1. Note that representatives of these cells are simply those contained in the interval
[qu,qu+1] (or [qu+1,qu] if qu+1 < qu). Hence updating the winding number is similar to an interval query
of [qu,qu+1], and the O(log I) number of nodes in the canonical decomposition of [qu,qu+1] update their
addWv values by either +1 or −1 depending on the sideness of Ru with respect to the arc P [x̂u, x̂u+1].
The minimum and maximum winding numbers can also be updated O(1) time per visited node. The entire
process visits O(log I) nodes, and thus takes O(log I) time as i increases from u to u + 1. To see whether
C[r, u + 1] has consistent winding numbers or not, we only need to check the minimum and maximum
winding numbers stored at the root of the tree, denoted by wmin and wmax, respectively. If wmin × wmax
equals to zero, then all winding numbers w.r.t. C[r, u + 1] are either all non-negative or all non-positive.
Otherwise, (r, u+ 1) is not valid.

Repeat the above process for every r ∈ [1, I]. Overall, after O((n + I) log n) pre-processing, we can
check whether (r, i) is valid or not and compute Tw(C[r, i]) for all r ∈ [1, I] and all i > r in O(I2 log I)
time. Putting everything together, we have the following result.

Theorem 4.4 Given two simple polygonal chains P and Q (with the same endpoints) in the plane of n total
complexity, and with I intersection points between them, we can compute the optimal homotopy and its area
in O(I2 log I + n log n) time and O(I2 + n) space.

The case where we have two simple cycles P and Q in the plane is discussed in Appendix F, and we
obtain the following extension:

Corollary 4.5 Given two polygonal cycles P and Q in the plane of n total complexity and with I intersec-
tion points, we can compute the optimal homotopy and its area in O(I(I2 log I + n log n)) time if I > 0;
and compute the optimal homotopy area in O(n log n) time if I = 0.

5 Minimum Area Homotopies on 2-Manifolds

In this section, we consider optmial homotopy between curves P and Q on an orientable and triangulated
2-manifold M without boundary. Our input is a triangulation K of M with complexity N , and two simple
homotopic polygonal curves P and Q sharing endpoints. Edges in P and Q are necessarily edges from the
triangulation K. The total complexity of P and Q is n, and there are I number of intersections between
them. Note that in this setting, I = O(n). Below we discuss separately the cases when M has non-zero
genus and when M is a topological sphere.

5.1 Curves on a Surface with Non-zero Genus

Given an orientable 2-manifold M , let U(M) be a universal covering space of M with φ : U(M) → M
the associated covering map. Note that φ is continuous, surjective, and a local homeomorphism. For any
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path γ in M , if we fix the lift (pre-image) of its starting point, then it lifts to a unique path γ̃ in U(M), such
that φ(γ̃) = γ [20, 33]. Since P and Q are homotopic with common endpoints, the closed curve formed
by C = P ◦ Q is contractible on M , and the lift of C, denoted by C̃, is a closed curve in U(M). More
generally, by the Homotopy Lifting Property of the universal cover [32], we have the following observation:

Observation 5.1 Once we fix the lift of the starting point of P and Q in U(M), there is a one-to-one
correspondence between homotopies between P and Q in M and those between P̃ and Q̃ in U(M).

We now impose an area measure in U(M) by lifting the area measure in M ; this can be done via the
map φ, which is a local homeomorphism. Now the area of a homotopy in M is the same as the area of
its lift in U(M). As such, we can convert the problem of finding an optimal homotopy in M to finding
one in U(M). Furthermore, for any orientable compact 2-manifold with genus g > 0, its universal cover
is topologically equivalent to IR2. We can thus apply algorithms and results from previous section to the
universal covering space. Specifically, given two homotopic paths with n edges from a triangulation K of a
surface M with N simplices, the entire algorithm takes O(I2 log I + n log n+ n log g+N) time. Roughly
speaking, we construct the portion of the universal covering space that the lift ofC will traverse (and enclose
in some sense), which consists of O(n) copies of some polygonal schema of M [20]. The main observation
is that only the combinatorial structure of C̃ is needed, so we can avoid filling in each copy of the polygonal
schema with all triangles from K. Details are in Appendix G.

5.2 The Case of the Sphere

We now consider the remaining case where the input M is a (topological) sphere S (that is, genus is zero).
All paths on S are homotopic. The universal cover of a sphere is itself, hence compact. However, the
previous algorithm in Section 4.2 works for a domain homeomorphic to IR2 and cannot be directly applied.
We sketch how we handle the sphere case here; see Appendix H for the full discussion.

p p

We observe that the results in Section 3 still hold. How-
ever, as the sphere is compact, the winding number is not well-
defined. For example, see the right figure, where there are two
ways that the curve γ winds around the point p. In the first case,
the winding number is 0, while in the second case, the winding
number is −1. In order to use a dynamic programming frame-
work as before to compute the optimal homotopy between P
and Q, we need to develop analogs of Lemma 4.1 and 4.3 for curves on the sphere.

To this end, observe that if we remove one point, say z ∈ S from the sphere S, then the resulting
space Sz = S − z is homeomorphic to IR2, and the concept of the winding number is well defined for
Sz. Specifically, z can be considered as the point of infinity in IR2. The winding number of x ∈ Sz w.r.t.
C and z, denoted by wn(x; z, C) (C omitted when its choice is clear), is simply the summation of signed
crossing number for any path connecting x to z. As in the planar case, we say that C is consistent w.r.t. z
if wn(x; z, C) is either non-negative, or non-positive for all x ∈ Sz. Let σ(P,Q; Ω) denote the best cost to
morph P to Q within domain Ω.

Observation 5.2 If there is an optimal homotopy between P and Q that does not sweep through some point
z, then σ(P,Q;S) = σ(P,Q;Sz).

Observation 5.3 Suppose H∗ is an optimal homotopy between P and Q with no anchor points. For any
cell R in Arr(P +Q), if H∗ sweeps through one point in its interior, then it sweeps through all points in R.
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The simple proof for the above observation is in Appendix H.1. The key result is the following lemma,
the proof of which can be found in Appendix H.2.

Lemma 5.4 If there is an optimal homotopy H∗ of P and Q with no anchor point, then the image of this
optimal homotopy cannot cover all points in S.

Given two homotopic paths P and Q from S sharing common endpoints, Lemma 5.4 and Observation
5.2 imply that if P can be morphed toQ optimally without anchor points, then there exists some point z ∈ S
such that σ(P,Q;S) = σ(P,Q;Sz). For this choice of z, it is necessary that the closed curve P ◦ Q has
consistent winding numbres. Once this z is identified, σ(P,Q;Sz) is simply the total winding number of
P ◦ Q w.r.t. z, as suggested by Lemma 4.3, because Sz is homeomorphic to the plane. Furthermore, by
Observation 5.3, we only need to pick one point from each cell of Arr(P +Q) to check for the potential z.
Specifically, let {z1, . . . , zl} be a set of such representatives, where l = O(I). The optimal homotopy area
σ(P,Q) is simply the smallest of all Tw(P ◦Q; zi) for those zis with respect to whom the curve P ◦Q has
consistent winding numbers. Hence if we assume that if there is an optimal homotopy between P and Q
with no anchor points, then the results in this section provide an algorithm to compute σ(P,Q).

The algorithm for sphere. To compute the optimal homotopy between P and Q, we follow the same
dynamic programming framework as before. If there is no anchor point in an optimal homotopy, then we
use the discussion above to compute the optimal homotopy area. Otherwise, we identify the intersection
point that serves as next anchor point, and recurse. The main difference lies in the component of computing
σ(i, j) := σ(P [xi,xj ], Q[xi,xj ]), assuming that there is an optimal homotopy from P ′ = P [xi,xj ] to
Q′ = Q[xi,xj ] with no anchor points. Previously, this is done by checking whether P ′ ◦Q′ has consistent
winding numbers. Now, we need to check the same condition but against l = O(I) number of potential
representatives {z1, . . . , zl} as the potential point of infinity. This gives a linear-factor blow-up in the time
complexity compared to the algorithm for the planar case. However, we show that this linear blow-up can
be tamed down and we can again compute all σ(r, j)s for all rs and all j > r in O(I2 log I) time, after
O(n log n + N) pre-processing time. See Appendix H.3 for details. Overall, the total time complexity
remains the same as before.

Putting both cases (g > 0 and g = 0) together, we conclude with the following main result.

Theorem 5.5 Given a triangulation K of an orientable compact 2-manifold M with genus g, let N be the
complexity of K. Given two homotopic paths P and Q of total complexity n with I intersection points, we
can compute an optimal homotopy and its area σ(P,Q;M) in O(I2 log I + n log n+ n log g +N) time.

6 Conclusion

In this paper, we propose a new curve similarity measure which captures how hard it is to deform from one
curve to the other based on the amount of total area swept. It is robust to noise (as it is area-based), and
can be computed efficiently; to our knowledge, there is no other efficiently computable similarity measure
for curves on surfaces. Our algorithm can be extended for cycles in the plane (see Appendix F). It appears
that our algorithm can also be extended to cycles on the surfaces. Indeed, if the optimal free homotopy has
an anchor point, then we can break cycles into curves that share a common start and end point, which then
reduces to the problem of comparing curves on surfaces. However, on a surface the analog of Lemma F.1 no
longer holds, so that two curves may intersect inM but not have an anchor point in the optimal homotopy; in
this case, it is not clear in this case how to bound the size of the universal cover necessary for our algorithm.

Measuring similarity of curves on surfaces is an interesting problem, and many open areas remain. One
interesting new idea would be to develop an area-based curve similarity measure that allows topological
changes, such as allowing a region to be swept as long as it has trivial homology.
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ACM-SIAM Sympos. Discrete Alg. (SODA), 2009.
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A Proof for Observation 3.1

P

Q

s

t

q1 q2 q3

p3p2

p1

Note that H∗ is a map from 2 → M , where 2 = [0, 1]× [0, 1] is the unit square
and a point (s, t) ∈ 2 will be mapped toH∗t (s). See the right figure for an illustration.
(Since P andQ share starting and ending endpoint, the left and right sides of 2 should
be contracted to a point. We use the square view for simpler illustration.) The top and
bottom boundary edges of this square are mapped to Q and P , respectively. Given an
anchor point bi, let pi and qi be the parameters of bi inH∗0 andH∗1 , respectively; that
is, H∗0 (pi) = H∗1 (qi) = bi. By definition of anchor points, the pre-image of bi under
the map H∗ necessarily includes a curve in 2 connecting pi on the bottom edge to qi on the top boundary
edge of 2. Since bi 6= bj , the pre-images of bi cannot intersect with that of bj . Hence no two such curves
can intersect each other, which means that pis must be ordered in the same way as qis.

B Proof for Lemma 3.2

γ

γ+ p

γ

γ++

p
γ+

γ

γ++

p
γ+

γ

γ++

p
γ+

γ

γ+

γ−

(a) (b) (c) (d) (e)

Figure 2: (a) and (b) p is fixed from γ to γ+, but not so in γ++. Sweeping γ to γ++ directly through the shaded
region in (c) has a smaller area than first to γ+ then to γ++ (see shaded region in (d)). The darker shaded region in (d)
is swept twice. (e) If the deformation changes orientation at γ, then there is a local fold in the regions swept.

Consider a time t in the homotopy, and let γ = Ht. We first show that H deforms γ consistently, so that
every point on γ is either fixed or deforms to the same side of γ.

First note that if some portion of γ is left sense-preserving at time t and then reverses its direction and
becomes right sense preserving at time t+ a small amount later, some portion of the domain has been swept
twice. Hence this homotopy cannot have minimal area, since we can create a smaller one which stops at
time t and moves directly to some intermediate curve at a time greater than t+ without sweeping any portion
twice. See Figure 2 (e).

Now suppose that some portion of γ is deforming to one direction and another is morphing in the
opposite direction. Since H is a homotopy and is therefore continuous, this means that there is at least one
interval of fixed points between these two regions (which may possibly consist of a single point). Let p be
an extremal point on this interval; see Figure 2 (a) for a picture when p is the only fixed point. In addition,
since p is a fixed point but not an anchor point, where know there is some t+ = t + dt where p is still on
ht+ = γ+ and another t++ = t+ + dt where p is not on ht++ = γ++.

Now we have several cases to consider. First, consider if H has directly reversed the direction of either
portion of the curve (before p or after p), we are in a similar situation to the one previously discussed, since
the curve goes from locally forward to locally backward (or vice versa). In this case, we again know that
some area of the domain has been swept twice, which means γ++ has been swept over once and then was
returned to, so we can reduce the area swept by H by reparameterizing H to move directly to γ++ without
passing it and then reversing. (See Figure 2 (b),(c), and (d) for an illustration.)

Now if neither portion directly reverses, then γ++ must also be deforming to two different directions.
Also, we know that γ++ must intersect γ at some point q 6= p, since we are essentially rotating around a
central set of fixed points on these curves. In this case, we can again alter H to attain a smaller area swept
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Figure 3: (a) The cell R with highest positive winding number. It boundary consists of alternating P -arcs (red) and
Q-arcs (green). The two cases of relations between P [p, q] and R are shown in (b) and (d), respectively. For case (b),
we can deform P to sweep through Ω as shown in (c), and reduce the number of intersections by 2. Similarly, for case
(d), we can identify any bigon R′ and deform P to reduce the number of intersections by 2 as well.

by simply sweeping directly from γ to γ++; this will reduce the area since the triangular region in the center
bounded by γ, γ+, and γ++ will be swept only one time instead of twice.

The claim thus follows, since any homotopy with no anchor points that is not sense preserving cannot
be minimal.

C Proof for Lemma 4.1

Without loss of generality, assume that the mapH is right sense-preserving, always deforming an intermedi-
ate curve to its right. Consider the time-varying function F : [0, 1]× IR2 → Z, where F (t, x) = wn(x;Ht)
is the winding number at x ∈ IR2 with respect to the curve parameterized by Ht. Obviously, F (0, x) =
wn(x;P ◦ Q), and F (1, x) = 0. During the deformation, F (t, x) changes by either 1 or −1 whenever
the intermediate curve sweep over it. Since the homotopy is right sense-preserving, when an intermediate
curve sweeps x, x always moves from the left side of the intermediate curve to its right side. Hence the
winding number x decreases monotonically. Since in the end, the winding number at each point is zero,
wn(x;P ◦Q) = F (0, x) ≥ 0.

If the map H is left sense-preserving, then a symmetric argument shows that wn(x;P ◦Q) ≤ 0 for all
x ∈ IR2.

D Proof for Lemma 4.3

We prove the claim by induction on the number of intersections between P and Q. The base case is when
there is no intersection between P and Q. In this case, Γ is a Jordan curve which decomposes IR2 into two
regions, one inside Γ and one unbound. By orienting Γ appropriately, every point in the bounded cell has
winding number 1 and the claim follows.

Now assume that the claim holds for cases with at most k−1 intersections. We now prove it for the case
with k intersections. Let an X-arc denote a subcurve of curve X . Consider the arrangement Arr(Γ) formed
by Γ = P ◦ Q. Since P and Q are simple, every cell in this arrangement has boundary edges alternating
between P -arcs andQ-arcs. Assume without loss of generality that Γ has all non-negative winding numbers.
Consider a cell R ∈ Arr(Γ) with largest (and thus positive) winding number. Since its winding number is
greater than all its neighbors, it is necessary that all boundary arcs are oriented consistently as shown in
Figure 3 (a), where the cell R (shaded region) lies to the right of its boundary arcs.
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If R has only two boundary arcs, e from P and e′ from Q, respectively, then we
can morph P to another simple curve P ′ by deforming e through R to −e′ (where
‘−’ means reversing the orientation). See the right figure for an illustration. The
area swept by this deformation is exactly the area of cell R. Furthermore, after the
deformation, every point x ∈ R decreases their winding number by 1, and no other
point changes its winding number. Since points in this cell initially has strictly positive
winding number, the resulting curve Γ′ = P ′ ◦ Q still has all non-negative winding
number. The number of intersections between P ′ and Q is k − 2. By induction hypothesis, σ(P ′, Q) =
Tw(Γ′). Since Tw(Γ)−Tw(Γ′) = Area(R), we have that Tw(Γ) = σ(P ′, Q) + Area(R). It then follows
from Observation 4.2 and the fact σ(P,Q) ≤ σ(P ′, Q) + Area(R) that σ(P,Q) = Tw(Γ).

Otherwise, the cell R has more than one P -arc. Take the P -arc e1 with the smallest index along P ,
and let p be the ending endpoint of it. Let e2 be the next P -arc along the boundary of R, and q its starting
endpoint, andQ[p, q] theQ-arc between e1 and e2, denoted by ē in Figure 3. Obviously, the subcurve P [p, q]
cannot intersect R, and P [p, q] and −Q[p, q] bound a simple polygon, which we denote by Ω. Either Ω is
on the opposite side of the Q-arc ē from the interior of R (Figure 3 (b)), or they are on the same side (Figure
3 (d)).

Case (1): R and Ω are on the opposite side of ē. In this case, the region Ω is to the right of the oriented
arc P [p, q]. Note that P does not intersect the interior of Ω; as otherwise, P will either intersect itself or
intersect ē, neither of which is possible. Hence only Q can intersect Ω. Since Q is also a simple curve, there
is no vertices of Arr(Γ) contained in the interior of Ω. As a result, every cell of Arr(Γ) contained in Ω must
have at least one boundary edge coming from P [p, q]. This implies that each cell contained in Ω has strictly
positive winding number; that is, wn(x; Γ) > 0 for any x ∈ Ω. This is because if a cell ξ ⊆ Ω has winding
number 0, then its neighbor across its boundary on the other side of P [p, q] will have winding number −1,
as Ω is to the right of P [p, q]. This violates the condition that Γ has all non-negative winding numbers and
thus cannot happen.

We now deform P to P ′ by sweeping P [p, q] through Ω to Q[p, q]. See Figure 3 (c). The cost of
this sweeping is Area(Ω) and Tw(Γ) − Tw(P ′ ◦ Q) = Area(Ω). P ′ is still simple, and the number
of intersection points between P ′ and Q is now k − 2. Since wn(x; Γ) > 0 for any x ∈ Ω, we have
wn(x;P ′ ◦ Q) ≥ 0 for x ∈ Ω. No other point will change their winding number after this deformation.
Thus the curve P ′◦Q has all non-negative winding numbers as well. Hence by induction hypothesis, we have
that σ(P ′, Q) = Tw(P ′◦Q). Since σ(P,Q)−σ(P ′, Q) ≤ Area(Ω) and Tw(Γ)−Tw(P ′◦Q) = Area(Ω),
it then follows from Observation 4.2 that σ(P,Q) = Tw(Γ).

Case (2): R and Ω are both from the same side of ē. We now consider the remaining case as shown
in Figure 3 (d). Take the unbounded region Ω := IR2 \ Ω which is the complement of Ω. This unbounded
region lies to the right of the oriented curve P [p, q]. Since both P and Q are simple, only Q can intersect
Ω and there is no vertices of Arr(Γ) contained in the interior of Ω. First, observe that it is not possible that
Ω ∩ Q = ∅. This is because otherwise, Ω is the unbounded face of Arr(Γ) and thus the winding number
for all points in Ω is 0. This however is not possible as this will imply that any point y to the immediate
left of P [p, q] has winding number −1, violating our assumption that all cells in Arr(Γ) have consistent
(non-negative) winding numbers.

Hence Ω ∩ Q 6= ∅, and there are set of arcs from Q intersecting P [p, q]. Then there must exist a bigon
cell R′ bounded by only two arcs, one P -arc P [a, b] ⊆ P [p, q] and a Q-arc β. See Figure 3 (d). Similar
to the argument from the previous paragraph, we can show that points in R′ must have strictly positive
winding number. Now deform P to P ′ by sweeping P [a, b] through R′ to β as shown in Figure 3 (e). P ′

is still simple, the number of intersection points between P ′ and Q is now k − 2. Only points in R′ reduce
their winding number by 1, and the resulting arrangement still has consistent winding numbers. As such, by
induction hypothesis, we have that σ(P ′, Q) = Tw(P ′ ◦ Q). Since σ(P,Q) − σ(P ′, Q) ≤ Area(R′) and
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Tw(Γ)− Tw(P ′ ◦Q) = Area(R′), it then follows from Observation 4.2 that σ(P,Q) = Tw(Γ).

E Computing the Area of Ru for All u ∈ [1, I]

Î5
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We can pre-compute the area of Ru’s for all
u ∈ [1, I] in O(n log n+ I) time as follows. First,
we compute the arrangement of Arr(P + Q̂) and
the area of all cells in it in O(n log n + I) time.
Each Ru is the region bounded between a P -arc
P [x̂i, x̂i+1] and a corresponding Q̂-segment Q̂[x̂i, x̂i+1]. Since no two P -arcs intersect, the containment
relationship between such P -arcs satisfies parentheses property. In particular, we can use a collection of
trees to represent the containment relation among all regions Rus. See the right figure for an illustration.
The difference between the region represented at a parent node and the union of regions represented by all
its children is a cell in Arr(P +Q). For example, the shaded cell in the right figure is the difference between
R0 and its children R2 and R4. We can thus compute the area of all Rus by a bottom-up traversal of these
trees. Computing these trees take O(I log I) time by first sorting all intersection points with respect to their
order along Q̂. Traversing these trees to compute all Rus takes O(I) time. Putting everything together, we
need O(n log n+ I log I) time.

F Cycles in the Plane

We now consider the case where we have two simple cycles P and Q in the plane. We have the following
characterization:

Lemma F.1 If the two simple cycles P and Q intersect, then there is an anchor point in the optimal homo-
topy between them.

Proof: Suppose that P and Q intersect but there is no anchor point in the optimal homotopy H∗. By
Lemma 3.2, we know that H∗ must be sense preserving. However, this means that H∗ continually moves
one curve to the other in one local direction, which means that one curve must be entirely contained within
the other, contradicting the assumption that they intersect.

At this point, the algorithm for cycles which intersect each other reduces to the one for curves: if we
know which intersection point between P and Q is the anchor point, we can simply “break” the cycles into
two curves at this point; this will become the start and end point for each of the two curves. Hence our
algorithm for cycles will take a multiplicative factor of O(I) extra time than the algorithm for curves, since
we need to try each possible intersection point as the required anchor point.

It then follows from Theorem 4.4 that:

Corollary F.2 Given two polygonal cycles P and Q in the plane of n total complexity and with I > 0
intersection points, we can compute the optimal homotopy and its area in O(I(I2 log I + n log n)) time.

The remaining case is that when the two polygonal cycles P and Q are disjoint. If one of the cycle
contains the other, then the area of the optimal homotopy is simply the area sandwiched between these two
simple cycles. This can be computed in O(n log n) time easily.

However, if the cycles are disjoint but neither contains the other, then in a sense the “optimal” free
homotopy between them will simply be the area bounded by each curve, since the homotopy can collapse
each curve separately to a point and then deform the points to each other. Indeed, that the sum of area
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bounded by the two Jordan cycles P and Q is the minimum possible homotopy area follows from a similar
argument as the proof of Observation 4.2. However, in this case, the free homotopy described above is not
regular since it collapses a curve to a single point. Nevertheless, one can argue that there exists a sequence
of regular homotopies whose areas converge to this sum. In other words, the optimal area homotopy is still
well-defined (as the infinum of the area of regular free homotopies between P and Q), although there does
not exist a regular homotopy to achieve this optimal area. (This is analogous to similar issues that arise in the
general case, and is the reason for introducing more restricted integrals in the mathematical literature [27].)

G Algorithm for the Cases with Non-zero Genus

We now explain our algorithm to compute the optimal homotopy for two polygonal chains P and Q from a
triangulation K of a compact orientable surface M with genus g > 0. There are n total edges in P and Q,
each being an edge of K. The two homotopic paths P and Q share the same starting and ending points. Let
I be the number of intersection points between P and Q; obviously, I = O(n) in this scenario. Denote by
N the complexity of K.

The high level idea is to compute a lift of the curve C = P ◦ Q in the universal covering space, which
we denote as C̃ = P̃ ◦ Q̃, and then apply the algorithm from Section 4 to the lifted curves. We now detail
the steps involved and their complexity.

Step 1: Compute relevant portion of a universal covering space. Eventually, we will construct a portion
of a univeral covering space U(K) by tiling the so-called polygonal schema of M [34, 20]. We use the
algorithm from [20] to construct a polygonal schema T (and a reduced version of it) in O(N) time. The
universal covering space will consist of infinite copies of this polygonal schema glued together appropriately.
In what follows, we call each copy of the polygonal schema in the constructed univesal covering space a
tile.

For g ≥ 1, the universal covering space U(K) is homeomorphic to IR2. By fixing the lift of the starting
endpoint of P and Q in U(K), we obtain a specific lift P̃ and Q̃ for P and Q respectively. Since P and Q
are homotopic, P̃ and Q̃ form a closed curve, denoted by C̃ = P̃ ◦ Q̃. Note that the number of intersection
points between P̃ and Q̃ is at most I , as every intersection point in the lift necessarily maps to an intersection
point of P and Q under the covering map, but not vice versa. Consider the arrangement Arr(C̃) in U(K),
and we want to construct the portion of the universal covering space U ⊆ U(K) such that all bounded cells
in Arr(C̃) will intersect (either along the boundary of these cells or enclosed in their interior).

As shown in [20], the lifted curve C̃ passes through O(n) number of tiles in U(K). However, while the
total number of tiles intersecting all bounded cells in Arr(C̃) is O(n) for the case where g > 1, it can be
Θ(n2) for the case when g = 1. Hence to this end, we will separate the case for g = 1 and g > 1 and handle
them differently.

For the case g > 1, we again use the algorithm by Dey and Schipper [20] to compute the relevant
portion U of the universal covering space in O(n log g + N) time. The output contains all O(n) copies
of the polygonal schema intersecting U , where each tile is represented by a reduced 4g-gon without being
explicitly filled with triangles from K. Once these are known, we can compute the combinatorial structure
of the arrangement of C̃ in U , as well as the description of the set of tiles each bounded cell in Arr(C̃)
intersects, in O(n+ I log I) time.

For the case g = 1, the input manifold is a torus, and the canonical polygon schema for it is a rectangle
with oriented boundary arcs aba−1b−1. Imagine now that we give the base polygonal schema T0 (which
is the tile that contains the lift of the starting point of P and Q) a coordinate (0, 0), and the coordinate for
every other copy of the polygon is shown in Figure 4 (a). Specifically, a copy of polygonal schema T has
coordinate (i, j) if those closed loops whose lift starting from T0 and ending in T have the same homotopy
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Figure 4: (a) A combinatorial view of the universal covering space U(M). a and b are the generators and we can
give each cell a coordinate. (b) The lift of P (solid curve) and the lift of Q (dashed curve). The heavily shaded region
are copies of polygonal schema contained inside cells of Arr(C̃), and their total number can be easily computed by a
scanning algorithm. R1 is an essential cell; R2 and R3 are two non-essential cells.

type as aibj . We can easily obtain the sequence of the rectangles (and their coordinates) that the curve C̃
will pass through in O(n + N) time [20]. Once these coordinates are known, the combinatorial structure
of the arrangement of C̃ in U can also be computed in O(n + I log I) time. Note that in this case, we do
not explicitly enumerate the set of tiles fully enclosed within a bounded cell of Arr(C̃) (the shaded tiles in
Figure 4 (b)), whose number can be Θ(n2) instead of O(n) as in the case when g > 1.

Step 2: Area of cells in Arr(C̃). In order to perform our algorithm introduced in Section 4 to the lifted
curves P̃ and Q̃, in addition to the combinatorial structure of Arr(C̃), we also need the area of each cell in
Arr(C̃). We first describe how to compute it for the case g = 1.

Take any cell X in Arr(C̃) and assume the boundary of X intersects m copies of polygonal schema.
Even though that X may contain Θ(m2) copies of polygonal schema in its interior, we do not need to
enumerate these interior tiles explicitly to compute their total area.

Indeed, by a scanning algorithm from left to right, we can compute in O(m) time how many tiles are
completely contained inside X (heavily–shaded regions in Figure 4 (b)) (note that the coordinates of each
rectangle traversed by the boundary of X are known). Since the area of every polygonal schema is simply
the total area of the input triangulation, we can compute the total area of rectangles contained inside X in
O(m) time.

Now let R be the collection of tiles that intersect the boundary ofX . It remains to compute the total area
of R ∩X . Call T ∩X a sub-cell, for each tile T ∈ R. Let G denote the boundary curves of the polygonal
schema T . There are two types of sub-cells: the essential ones which contain at least one intersection point
between P̃ and Q̃ as their vertices, and the non-essential ones which are bounded either by arcs from G and
arcs from P , or bounded by arcs from G and arcs from Q. See Figure 4 (b) for examples.

First let us consider all non-essential sub-cells (for all cells X of Arr(C̃)) formed by boundary arcs of
a tile and arcs from P . If we plot all these P -arcs within one tile, no two P -arcs in this tile intersect, as
P is a simple curve. Imagine that we pick an arbitrary but fixed point on the boundary G of the polygonal
schema T as the origin o. Each P -arc α subdivides T into two regions, and let Tα denotes the canonical
one excluding o. Note that since P is a simple curve, the set of canonical regions Tαs for all P -arcs again
satisfy the parenthesis property, and these regions and their areas can be computed in O(n log n+N) time
using a data structure similar to one used in Section E to compute the area of Rus. See Figure 5 for an
illustration. Once these areas are known, the area of each non-essential sub-cell can be computed in O(s)
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Figure 5: (a) We overlay all non-essential sub-cells involving P -arcs into one copy of the polygonal schema.
(b) An example of the canonical region Tα is shown for arc α (shaded region in the top-right corner). The
shaded region in the middle is a sub-cell X which is computed as Tβ0 − Tβ1 − Tβ2 − Tβ3 , where βis are
the boundary P -arc for X . Among these P -arcs, β0 is the top-most arc in the data structure as described in
Section E.

time where s is the number of P -arcs on the boundary of this sub-cell. See Figure 5 (b). Hence the areas of
all non-essential sub-cells can be computed inO(n) time once all Tαs are known. The total time complexity
required here is thus O(n log n + N). The areas for all non-essential sub-cells (for all cells X of Arr(C̃))
formed by G and Q-arcs can be computed in a symmetric manner.

What remains is to compute the area of all essential sub-cells. Again, let G denote the boundary of the
polygonal schema T . We use a PQ-arc to refer to an arc that starts and ends with points onG and consists of
alternating P - and Q-arcs. Note that an essential sub-cell is either completely contained within a polygonal
schema, or its boundary consists of PQ-arcs, G-arcs, P -arcs and Q-arcs. In particular, no two PQ-, P -
or Q-arcs can be consecutive: they are separated by G-arcs. Now collect all P -arcs and Q-arcs that are
involved in PQ-arcs. Plot them within the same tile T and compute their arrangement A as well as the area
for each cell in A. This can be done in O(n log n + N) time and A has only O(I) (not O(n)) number of
cells. If an essential sub-cell X is completely contained within a polygonal schema, then it is a union of a
set of cells from A. We can simply spend O(I) time to go through cells in A, identify those contained in
X and return their total area. If an essential sub-cell X has G-arcs on its boundary, then we need a slightly
more complicated way to handle it.

Specifically, for all the remaining essential sub-cells, there can be O(I) number of PQ-arcs along their
boundaries. (Note that two PQ-arcs can share common P -arcs or Q-arcs among them). Each P -arc or
Q-arc from the arrangement A can appear in at most O(I) PQ-arcs. Hence it takes O(I2) times to compute
and enumerate all PQ-arcs. Similar to before, each PQ-arc α divides the tile T into two regions, and we
define Tα to be the canonical one that excluding a specific origin o on G. Take an essential sub-cell X that
has s number of P -,Q-, or PQ-arcs along its boundary, denoted by α1, α2, . . . , αs. Let α1 be the arc (which
can be P -, Q- or PQ-arc) whose endpoints along G spans the largest interval. Then, X can be represented
as X = Tα1 −

⋃
i∈[2,s] Tαi , where Tαi is the canonical region defined by an arc αi. Since the area of all

canonical regions are known (for P -arcs or Q-arcs, we have computed them before), the area of X ts area
can be computed in O(s) time. Computing the area of all remaining essential sub-cells thus takes O(I2)
time.

Putting everything together, the total time needed to compute the area of all cells in Arr(C̃) takes
O(n log n+N + I2) time for the case of g = 1.

The case when g > 1 is similar and simpler. Indeed, we now can afford to compute all the tiles contained
within any cell of Arr(C̃) explicitly, as their total number is bounded byO(n) [20, 33]. The areas of essential
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and non-essential sub-cells are computed using the same algorithm as above. The total time complexity is
O(n log n+ n log g +N + I2).

Step 3: Putting everything together. With the combinatorial structure of Arr(C̃) and the area of each cell
computed, we now apply the algorithm from Section 4.2 to compute the optimal homotopy in O(I2 log I +
n log n) time in U(M), which, by 5.1, gives the optimal homotopy between P and Q in M in the same time
bound. The total time complexity for the entire algorithm is O(n log n+ n log g + I2 log I +N).

H Missing Details for the Sphere Case

Observation H.1 Given a closed curve Γ and any two points z,w ∈ S, we have that: wn(x;w) =
wn(x; z) + wn(z;w) (all winding numbers are w.r.t the curve Γ). In particular, for any two points z1, z2
from the same cell of Arr(Γ), we have that wn(x; z1) = wn(x; z2) for all x 6= z1, z2.

Proof: Let γ(x, y) be a path connecting point x to y. Note that the concatenation between γ(x, z) and
γ(z,w) is a path from x to w. Since wn(x;w) is simply the summed signed crossing number of any path
from x to w with respect to Γ, the claim follows immediately.

H.1 Proof for Observation 5.3

Suppose x and y are two points from the interior of R such that H∗ sweeps through x, but not y. Connect
x with y by any path γ in the interior of R. This path has to intersect the boundary of the region swept by
H∗, and let z be one such intersection point on γ. Obviously, there is a local fold in the optimal homotopy
as it sweeps through z; namely, some intermediate curve will touch z and immediately trace back. Thus the
input homotopy H∗ cannot be sense-preserving. Contradiction. Hence H∗ sweeps y as well.

H.2 Proof for Lemma 5.4

We prove the lemma by induction on the number of intersections between P and Q. When there is no
intersection between P andQ (other than the common endpoints), the Jordan curve P ◦Q divides the sphere
into two connected components, and the optimal homotopy is the smaller area of the two. The lemma holds
for this base case.

Now assume that the lemma holds for P and Q with at most k intersection points. We wish to show the
result for the case where P andQ have k+1 intersection points. SinceH∗ has no anchor points, this optimal
homotopy is sense-preserving by Lemma 3.2. Assign an orientation to the closed curve C = P ◦Q so that
locally, every point on the curve P will continuously deform to its right during the optimal homotopy. Now
pick an arbitrary point z not on P and Q, and compute the winding number for each cell of Arr(P + Q)
w.r.t. z. Take the cell R with the largest winding number. We assume that z /∈ R. Suppose this is not the
case and that z ∈ R. Then we show that we can change the choice of z to make this hold.

Specifically, if z ∈ R, then the cellR must have winding number 0. Now take the cellR′ of Arr(P +Q)
with the smallest winding number, and let w be a point from R′. Obviously, wn(w; z) ≤ wn(x; z) ≤ 0 for
any x ∈ S. Now we consider the winding numbers w.r.t. to w instead of z. By Observation H.1 we have
that wn(x;w) = wn(x; z) + wn(z;w). On the other hand, we have that wn(z;w) = −wn(w; z). Hence
wn(z;w) ≥ wn(x; z) ≥ 0 for any x ∈ S. In other words, for this new choice of point w, we have that R
still has the largest winding number and in this case, w /∈ R.

Similar to the proof of Lemma 4.3, the boundary of this cell consists of alternating arcs from P and from
Q, and they necessarily have the orientation as shown in Figure 1 (a) (otherwise, one of the neighboring cell
if R will have a larger winding number). Choose the P -arc e1 that appears earliest along P , with p being its
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Figure 6: (a) Take Ω as the region to the left of Q[p, q]. (b) There always exists a bigon Ω′ (possibly Ω is no
Q-arc intersects P [p, q].

ending endpoint. Let P [q] be the next intersection between P and R. We have that P [p, q] and ē = Q[p, q]
do not intersect each other. The Jordan curve P [p, q]◦ (−Q[p, q]) bounds two regions on the sphere (instead
of a bounded one and an unbounded one in the planar case as shown in Figure 1 (b) and (d)). We consider
the region that lies to the right of P [p, q] (thus left of ē), and denote it by Ω. See Figure 6 (a). Since R is to
the right of ē, Ω ∩ R = ∅. As P is simple, only Q can potentially intersect the cell Ω. Hence there always
exists a bigon Ω′ in Ω which is a cell in Arr(P +Q). See Figure 6 (b). Note that it is possible that Ω′ = Ω.
Let P [a, b] denote the P -arc that bounds the bigon Ω′. Let P ′ be a new curve obtained by replacing P [a, b]
with (slightly above) Q[a, b]. Since P deforms always to the right in the optimal homotopy, and in the end,
P [a, b] needs to deform to some portion of Q (which is not necessarily Q[a, b] though), one can show that
there is an optimal homotopy between P and Q that consists of first sweeping P [a, b] to Q[a, b] through
Ω′, and then optimally morph P ′ to Q. On the other hand, by the induction hypothesis, there is an optimal
homotopy H ′ from P ′ to Q that does not sweep some point, say z1 in S. There are now two cases:

(i) If z1 ∈ S − Ω′, then there is an optimal homotopy from P to Q that does not sweep z1 as well. The
induction step then holds and the claim follows.

(ii) Otherwise, z1 ∈ Ω′. Consider the cellR′ ∈ Arr(P ′+Q) that contains z1. Note thatR′∩(S−Ω′) 6= ∅,
as there is no vertices of Arr(P ′+Q) contained neither on nor inside Ω′. Hence R′ must also contain
some point, say z2, that is outside of Ω′. It then follows from Observation 5.3 that z2 is not swept
either. This leads us back to case (i), and the induction step again holds.

The claim then follows by induction.

H.3 Details of Algorithm for Sphere Case

Dynamic programming framework. Similar to the planar case, let x0, . . . ,xI denote the intersection
points between P and Q, ordered by their indices along P , with x0 and xI being the beginning and ending
points of P and Q. Let T (i) denote the optimal homotopy area between P [0,xi] and Q[0,xi], and C[i, j]
the closed curve formed by P [xi,xj ] ◦Q[xj ,xi]. However, now we say that a pair of indices (i, j) is valid
as long as xi and xj have the same order along P and along Q. This is different from the definition of valid
pairs of indices as in the planar case.

Specifically, for any closed curve γ, it turns out that γ can always have consistent winding number for
some choices of the point of infinity z: that is, there always exists z ∈ S such that wn(x, z; γ) is con-
sistent for all x ∈ Sz. We call such choices of z consistent representatives w.r.t. γ. Let Tw∗(γ) :=
minz |Tw(γ;Sz)| where z ranges over all possible choices of consistent representatives w.r.t. γ. Then,
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Lemma 4.3 and 5.4 imply that if there is an optimal homotopy between P [xi,xj ] and Q[xi,xj ] with
no anchor points, then the optimal homotopy area is Tw∗(γ). However, different from the planar case,
Tw∗(C[i, j]) is defined for all valid pairs of i, js, and it may not in general be the optimal homotopy area
for P [xi,xj ] and Q[xi,xj ]. We now have the following recurrence:

T (i) =

{
0, if i == 0

min
j<i and (j, i) is valid { Tw∗(C[j, i]) + T (j) }, otherwise

As before, the final goal is to compute T (I) = σ(P,Q).

Computing Tw∗s. Here we describe how to compute Tw∗(C[i, j]) efficiently. Specifically, we show how
to compute all Tw∗(C[r, j])s for all j > r in O(I) time, for any fixed r, after O(n log n+ I log I +N) =
O(n log n+N) preprocessing.

P

Q̂

∗∗ ∗∗ ∗
∗

∗
∗

∗∗

First, let us choose the representatives by taking two points around each
intersection points xi between P and Q as shown in the right figure. Consider
only those representatives to the right of Q (which are those above Q in the
right figure), and denote them by Z = {z1, . . . , zI}. Z is sorted by their indices
along Q. Those to the left of it can be handled similarly. The first observation
is that for any two consecutive representatives, wn(x; zi) − wn(x; zi+1) is 1 or −1, depending on the
orientation of P -arc that separating them.

Now to compute which zi will give consistent winding numbers, we first compute the winding number
of each cell in Arr(P + Q) for z1. Next, take the cells R1 and R2 with minimum and maximum winding
numbers, and assume that zi1 and zi2 are their representatives. If there are more than one cells with largest
(or smallest) winding numbers, just pick an arbitrary one. By Observation H.1, the closed curve C[r, j] :=
P [xr,xj ] ◦ Q[xr,xj ] has all non-negative winding number w.r.t zi1 , and all non-positive winding number
w.r.t. zi2 . Hence we simply compute the total winding number Tw(C[r, j]; zi1) and Tw(C[r, j]; zi2), and
return the one with the smaller absolute value as Tw∗(C[r, j]). We refer to the indices i1 and i2 as the wn-
min and wn-max indices, respectively, and these two total winding numbers valid total winding numbers.
Basically, the smaller of the absolute values of the two valid total winding numbers is simply the best cost to
deform P [xr,xj ] toQ[xr,xj ] without using anchor points. This improves the time complexity of computing
each Tw∗(C[r, j]) to O(I) time, instead of the naive O(In) time by computing all Tw(C[r, j]; zi)s, for
i ∈ [1, I], from scratch.

To further improve the time complexity, we will start with C[r, r + 1], and update the winding number
information in each cell as well as the valid total winding numbers, as we traverse P and pass through each
intersection point xi. To this end, we use the same range tree data structure as in Section 4.2. Specifically,
we use this data structure to maintain the winding number information w.r.t z1. The wn-min and wn-max
indices can be easily maintained by storing at each internal node the minimum and maximum winding
number within its subtree. The time complexity for updates remains the same as before (i.e, O(log I) time
per update).

The remaining question is to maintain the valid total winding numbers. Consider the valid total winding
number corresponding to wn-min index (that for wn-max index can be maintained similarly). Let A denote
the total area of topological sphere S. First, observe that for anyC, Tw(C; zi+1) is simply Tw(C; zi)+αA,
where α = 1 or −1, depending whether P and Q forms a positive or negative crossing at xi (a positive
crossing means that P rotates in a clockwise manner to Q at the intersection point). Let κu denote the
wn-min index for C[r, u], and V [u] denote Tw(C[r, u];κu). Note that as we pass xu+1, the wn-min index
κu+1 either stays the same, or change from κu by 1 or −1. Let V ′ be the total winding number w.r.t. κu
after we pass through intersection xu+1. If κu = κu+1, then V [u + 1] = V ′. Otherwise, V [u + 1] =
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V ′+ (κu+1−κu)A. Hence the update of valid total winding numbers takes only O(1) time per intersection
point for each u > r.

Hence with O(n log n + N) pre-processing time, we can compute all σ(r, j)s for all j > r for any
fixed r, in O(I log I) time, and thus computing all Tw∗(C[r, u])s for all r ∈ [1, I] and all u < r, in
O(I2 log I) total time. Putting everything together, the dynamic programming problem can be solved in
O(n log n+ I2 log I +N) total time.
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