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Abstract

Skeleton structures of objects are used in a wide variety of applications such as shape analy-
sis and path planning. One of the most widely used skeletons is the medial axis, which is a thin
structure centered within and homotopy equivalent to the object. However, on piecewise linear
surfaces, which are one of the most common outputs from surface reconstruction algorithms,
natural generalizations of typical medial axis definitions may fail to have these desirable prop-
erties. In this paper, we propose a new extension of the medial axis, called the medial residue,
and prove that it is a finite curve network homotopy equivalent to the original surface when
the input is a piecewise linear surface with boundary. We also develop an efficient algorithm
to compute the medial residue on a triangulated mesh, building on previously known work to
compute geodesic distances.

1 Introduction

The medial axis of an object is a skeletal structure originally defined by Blum [1]. It is the
set of points having more than one closest points (under the Euclidean distance metric) on the
boundary of the object. The medial axis is centered within the object, homology equivalent to
the object if it is an open bounded subset of Rn [11], and (at least) one dimension lower than
that of the object. These properties make the medial axis ideal for many applications including
shape analysis and robotic path planning.

We are interested in defining a similar skeletal structure on a surface S (with boundary) that
inherits the properties of the medial axis. Such a structure could then be used for applications
such as shape analysis of surface patches as well as path planning in non-planar domains. We
are particularly interested in the case when S is piecewise smooth, which is more representative
of typical outputs of discrete surface reconstruction algorithms (e.g., triangulated meshes) than
globally smooth surfaces.

A natural approach would be to replace the Euclidean distances in the medial axis definition
by geodesic distances over S [18]. Interestingly, as we will show in this paper (Section 3), several
equivalent definitions of the medial axis may yield different structures when S is only piecewise
smooth, and none of these definitions guarantees the two essential properties of the medial axis,
namely being homotopy equivalent to the original surface and codimension one.

In this paper, we propose a new extension of the medial axis onto a piecewise linear surface
S with boundary, which we call the medial residue (Section 4), and prove that the structure is
a finite curve network that is always homotopy equivalent to S (Section 5). We also describe a
quadratic-time algorithm to compute this structure on a piecewise flat surface with boundary
embedded in Euclidean space (Section 6).
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Figure 1: Left: Illustration of left and right curve angles. Right: at a concave vertex p, there may
be infinitely many geodesic paths to the boundary (such as γ1, γ2, γ3) sharing a common outgoing
direction, but only one of them (γ2) can be straight. Shaded region is the shadow rooted at p,
made up of points whose shortest paths to the boundary go through p.

2 Background and Definitions

We assume the reader is familiar with classical definitions of manifold topology, which can be
found in books such as [8, 14, 3]. We shall only review definitions that are specifically relevant
to our work.

A piecewise linear surface is a 2-manifold (with boundary) with a piecewise linear structure,
whose presentation consists of a finite number of triangles glued together along with an intrinsic
distance metric on each triangle that is a linear map. Our algorithmic results work in a more
restricted class of piecewise flat surface, where the piecewise linear structure comes from an
embedding of a triangulation of M into R3, so that each triangle will be isometric to a triangle
in R2.

Given a vertex v of a piecewise linear surface which is contained in more than two triangles,
let {f1, f2, . . . , fk} be the faces to which v belongs, where θi(v) is the interior angle of fi at
vertex v. The total angle is the sum of all of these angles, θ(p) =

∑
i θI(v). The curvature at v

is the value 2π − θ(p). A vertex is said to be convex, flat or concave if its curvature is positive,
zero or negative.

A curve (or path) is (the image of) a map p : [0, 1]→M ; the length of the curve is generally
the length of the image in M . A curve is a geodesic if it is locally shortest; in other words, no
perturbation of the curve will result in a shorter curve. On a piecewise linear surface, geodesics
and shortest paths are themselves piecewise linear maps. We say a curve γ bisects a piecewise
differentiable curve X at time t if γ(t) ∈ X and the two angles bounded by γ and the tangent
of X at γ(t) are equal. The curve angles θl and θr of a point p on a piecewise linear curve γ are
the two angles to the left and right of the curve at p, where θl + θr is the total vertex angle at
that point p (see Figure 1 left).

A curve γ is considered straight if for each point p ∈ γ, the left and right curve angles are
equal. This definition was introduced by Polthier and Schmies [15]. It is worth noting that
Polthier and Schmies used the term “straight geodesic”, and not simply straight. However,
their straight geodesics might in fact not be geodesic (for example, it can go through a convex
vertex). In this paper, the term straight geodesic will be used to denote a curve that is both
straight and geodesic. Note that although there may be infinitely many geodesic paths to the
boundary that go through a concave vertex p, only one of them is straight (see Figure 1 right).
We call the region made up of points whose shortest paths to the boundary go through p the
shadow rooted at p (shaded region in Figure 1 right).

3 The Medial Axis

Let X be a shape in Euclidean space. There are a variety of equivalent ways in which the medial
axis of X could be defined. We will consider the following three:
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1. Most commonly, the medial axis is defined as the set of points without a unique closest point
on the boundary of the shape: MCP = {x ∈ X |@ unique y ∈ ∂X with d(x, ∂X) = d(x, y)}

2. Alternatively, the medial axis is the set of points without a unique shortest path to the
boundary of the shape: MSP = {x ∈ X | ∃ shortest paths γ1 6= γ2 from x to ∂X}

3. The medial axis is also the set of points without a unique direction for shortest paths to the
boundary of the shape. We say two paths γ1 and γ2 with γ1(0) = γ2(0) start in the same
direction if there exists some ε > 0 such that for all t < ε, γ1(t) = γ2(t) (or the curves can be
reparameterized so that this holds): MSPD = {x ∈ X | ∃ shortest paths γ1, γ2 from x to ∂X
that do not start in the same direction}

The above definitions are all equivalent when X is a smooth manifold in any dimension:

Lemma 3.1. If X is a smooth manifold then MCP = MSP = MSPD.

Proof. We first consider MSP and MSPD. On a smooth manifold, given any point and any
direction, there is a unique geodesic in that direction [3]. Therefore, no point can have two
geodesics that begin in the same direction, so MSP =MSPD.

Now considerMCP . We know thatMCP ⊆MSP , since any point with two distinct closest
points on the boundary must have two distinct shortest paths to the boundary. To show that
MSP ⊆ MCP , we consider a point x ∈ MSP . If x 6∈ MCP , then it must have two shortest
paths to the same point closest on the boundary. But since we are on a smooth manifold (so
the boundary is also smooth), both curves must meet ∂X perpendicularly, which means they
must be the same curve, giving a contradiction.

However, when X is piecewise smooth, these three definitions yield different structures. More
precisely, if X is any path metric space (where distances are realized by shortest paths), then
we have the following relationship:

Lemma 3.2. If X is any path metric space (where distances are realized by shortest paths),
then MCP ⊂MSP and MSPD ⊂MSP .

Proof. The first inclusion follows from the fact that any point with at least two different closest
points on the boundary will necessarily have at least two distinct paths to the boundary. The
second inclusion follows because any point with at least two shortest paths that begin in different
directions also have two different shortest paths to the boundary.

More importantly, however, we will demonstrate that there are situations where none of the
three definitions satisfy the desired properties of being one dimension lower than and homotopy
equivalent to X.

First, consider the heart-shaped surface in Figure 2, which has an interior hole on top of a
cylindrical protrusion. Note thatMCP excludes points like x in the picture, which has a single
closest point q on the boundary (a C0 corner point) but two shortest paths to q that go around
the cylinder. As a result, MCP consists of two disconnected components. On the other hand,
x is included in MSP and MSPD.

Next, consider the oval-shaped surface in Figure 3 (a). The surface has a concave vertex v
with a large negative curvature that happens to have two shortest paths to two distinct boundary
points (a non-generic situation). Since each point in the shadow rooted at v (shaded region in
(b)) would have two distinct shortest paths to the boundary, both MCP and MSP include the
2-dimensional shadow region. On the other hand, since any point in the shadow has a unique
shortest path direction (that follows the geodesic to v), the entire shadow is excluded inMSPD,
and MSPD has an isolated vertex v that is disconnected from the rest of MSPD.
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Figure 2: An example where MCP (red) is not homotopy equivalent to the surface, but MSP and
MSPD are.

4 The Medial Residue

We now define our structure, called the medial residue, which is equivalent to existing definitions
of the medial axis on a smooth manifold but possesses the desired properties of homotopy
equivalence and co-dimension one on a piecewise linear surface. To make it clear that we are
considering surfaces and not arbitrary manifolds from now on, we will use S instead of X to
represent the shape.

We note that our medial residue is well defined on piecewise smooth manifolds, and that
the majority of our results hold in these settings. However, our proof about homotopy and
dimension holds only for piecewise linear surfaces, although we conjecture that the properties
hold in more general settings as well.

The starting point of our definition is MSPD, which is more complete than MCP in our
first example (Figure 2) and remains low dimension in the second example (Figure 3). Our goal
is to add low-dimensional components toMSPD to restore the homotopy equivalence. Observe
that, in our second example, the disconnection in MSPD takes place in the shadow rooted at
a concave vertex v ∈ MSPD, where the shortest paths from a point x in the shadow to the
boundary would agree for some time and then diverge at v. Since we cannot include the entire
shadow, which is 2-dimensional, we wish to keep one representative curve. A natural choice of
such curve would be one that is “centered” with respect to the two diverging shortest paths at
v. More precisely,

Definition 4.1. The medial residue, MR consists of any point x ∈ S such that either x ∈
MSPD or where there are two distinct shortest paths from x to the boundary, γ1 and γ2, param-
eterized by arc length, which first intersectMSPD at v = γ1(t) = γ2(t) such that γ = γ1([0, t]) =
γ2([0, t]) is straight and bisects the angle between the tangents of the two shortest paths from v
to the boundary that are nearest to γ on its left and right side.

The definition for a point x ∈ MR \MSPD is illustrated in Figure 4 (a). Note that, by
definition, every point on the common segment γ of the shortest paths from x to the boundary
is also included inMR\MSPD. In fact,MR\MSPD consists of straight geodesics that bisect
shortest path directions at concave vertices of MSPD. Figure 4 (b) gives a generic picture
of MR at a concave vertex of MSPD. The multiple shortest path directions divide the local
neighborhood of the vertex radially into sectors. Each sector is bisected either by a curve in
MSPD (solid red line), if the sector’s interior angle is less than 2π, or otherwise by a curve in

4
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Figure 3: Top: a surface with a highly concave central vertex (a) and a zoom-in view (b). Bottom:
different medial axis extensions (red): MCP and MSP are 2-dimensional, MSPD has an isolated
vertex, and MR is 1-dimensional and homotopy equivalent to the surface.

MR\MSPD (dotted red line).
Since any point in MR\MSPD has two distinct shortest paths, we have MSPD ⊂MR ⊂

MSP . Since both MSPD and MSP are equivalent when S is a smooth manifold, this implies
that our medial residue is also equivalent to the other definitions we mentioned earlier in a
smooth manifold.

5 Medial Residue on Piecewise Linear Surfaces

In this section, we state and prove the central result in the paper, that the medial residue is a
finite graph and is homotopy equivalent to the original surface. As previously mentioned, while
we only prove this for piecewise linear surfaces (the main focus of this work), we conjecture that
it also holds for piecewise smooth surfaces and higher dimensional manifolds as well.

Theorem 5.1. If S is a piecewise linear surface with boundary then the medial residue of S is
a finite graph that is a deformation retract of S.

To prove this theorem, we will construct a deformation retract by incrementally “eroding”
from the boundary, stopping at potentially interesting points along the way. To begin this
process, we must understand what a neighborhood of the boundary of S looks like. Let St =
{x ∈ S | d(x, ∂S) ≥ t}; in other words, St is the set of points whose distance from the boundary
of S is no less than t. The boundary of St is precisely the points with distance t to ∂S.

Our first step is to prove that shortest paths to the boundary are of finite complexity; in
other words, they cannot cross the triangulation an unbounded number of times. If our PL
surface is a flat embedding in R3, this will follow easily since edges in the triangulation are
shortest paths (and no two shortest paths can cross twice), but we must also have a bound for
arbitrary PL surfaces. We note that variants of the following proof have been used in the normal
surface community for at least 20 years; however, we are unaware of any published reference for
such a bound on the number of possible intersections, so we have included it for completeness.
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Figure 4: (a): illustration for the definition of a point x ∈ MR \MSPD. (b): a generic picture
of MR at a concave vertex with multiple shortest path directions (solid line is MSPD and dotted
lines are MR\MSPD).

Proposition 5.2. The number of intersections between any shortest paths and the underlying

triangulation of an arbitrary PL-surface is ≤ |E| · 2πδ · maxe∈E
l(e)
ce

, where δ is the minimum
angle at any vertex of the triangulation, l(e) is the length of the edge e, and c(e) is the minimum
distance between any pair of points on opposite edges of the quadrilateral formed by the two faces
adjacent to an edge e.

Proof. Consider any geodesic path γ. If we unfold the PL triangles that γ intersects into
the plane, γ must unfold to a straight line since it is a geodesic. Therefore, γ cannot wind
around a single vertex more than π radians, since such a path could not unfold to a straight
line. Therefore, γ must cross some diagonal after at most 2π/δ edge crossings, where δ is the
minimum angle in any of the triangles of our PL surface.

Now consider a shortest path α. We will divide α up into diagonal crossings and crossings
which wind around a vertex (similar to the streets, ports, and junctions in [5]). Since a shortest
path is a geodesic, we already know that there are at most 2π/δ crossings between each diagonal
crossing; it remains only to bound the total number of diagonal crossings that α can have.

Fix an edge e. The path α can cross e diagonally many times. However, each such crossing
adds a length ≤ ce to the total length of α, since it must cross opposite edges of the rectangle
formed by unfolding the triangles adjacent to e. Since α is a shortest path, this means that each
such crossing must be at least ce apart on e, or else we could form a shorter path by instead
following along e. So the shortest path α can cross e at most l(e)/ce times.

Putting this together, we have at most l(e)/ce diagonal crossings of each edge, and at most
2π/δ crossings between each diagonal crossing, yielding the desired bound.

Next, we want to understand what the boundary of the surface looks like at each stage of
the erosion process. Locally, ∂St consists of a union of straight edges and circular arcs. The
straight edges correspond to points whose shortest paths to the boundary do not pass through
a vertex of the triangulation, and the circular arcs to points whose shortest paths pass through
a vertex. The previous proposition can be used to show that there are finitely many arcs and
lines segments in ∂St:

Lemma 5.3. Given a piecewise linear S, for all but finitely many values of t, ∂St is a curve.
In the cases where ∂St is not a curve, ∂St is a graph.

Proof. Consider a shortest path from a point x to the boundary of S where d(x, ∂S) = t. If the
shortest path does not pass through a vertex, then there is some segment of ∂St around x that
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is a straight line running “parallel” to an edge of ∂S; to see this, simply unfold the triangles
that the shortest paths crosses into a planar strip. If the shortest path passes through a vertex
then, near x, there is a circular arc contained in ∂St. This gives a piecewise structure to ∂St
since it is built from straight line segments and circular arcs. Each portion corresponds to a
combinatorial type of shortest path to the boundary. The previous proposition implies that
there are finitely many segments and arcs, directly implying that ∂St is a graph.

The straight lines correspond to solutions to equations of the form d(x, L) = s for some line
L, and the circular arcs correspond to equations of the form d(x, v) + d(v, ∂S) = s for some
vertex v of the triangulation. The vertices of the graph correspond to the intersection of three
or more combinatorial types of shortest paths. The intersection of any such family consists of
a unique point, which means that there are only finitely many possible vertices in the graph.
Thus there are finitely many values of t where St is not a curve. Note these graph vertices have
multiple directions for shortest paths to the boundary, so they lie in MSPD.

Notice that MSPD consists of points that have multiple shortest paths directions to the
boundary. The above results allow us to bound the combinatorial types of these shortest paths.
The points equidistant from the boundary in each shortest path direction are built locally from
lines segments and circular arcs. So in a small neighborhoodMSPD consists of the intersection
of two curves that are either lines or circles. Hence, MSPD is built from lines, circles and
parabolas. This leads to the following result:

Lemma 5.4. If S is piecewise linear, then MSPD is a finite graph.

Proof. As observed in the proof of the previous lemma, there are finitely many combinatorial
types of shortest paths to the boundary. MSPD is built from intersections between multiple
types of curves. The vertices come from the intersection of three or more as seen in the previous
lemma. The rest come from the intersection of two curve types, which are at worst quadratic
curves.

Now we are ready to describe the deformation retract, which immediately implies thatMR
is homotopy equivalent to the original PL surface. We will build our deformation retract based
on an erosion process which intuitively “pauses” at times {t1, . . . , tk}, where each ti corresponds
to one or more of these three possibilities:

1. There is a vertex v of the triangulation of S with d(v, ∂S) = ti.

2. ∂Sti is not a disjoint union of curves but instead forms a graph.

3. There is a vertex v of MSPD with d(v, ∂S) = ti.

The previous lemmas imply that the set of ti’s is finite. We will consider the sets Sti based
on our level sets at times {t1, . . . , tk} described above, as well as the “slice” between two of our
level sets, Ci = (Sti \ Sti+1). The following lemma actually shows how we can construct the
deformation retract.

Lemma 5.5. For each ti, Sti+1 ∪MR is a deformation retract of Sti ∪MR.

Proof. Consider the slice region Ci between two level curves. One of several cases could occur
depending on what happens on the boundaries of this region, as illustrated in Figure 5.

The first case is that portions of the boundary ∂Sti meet at a convex corner. This is shown
in Figure 5(a), where the shortest paths are shown on the left and the deformation retract on
the right. At such a corner point v, there is a segment of MSPD going from ∂Sti to ∂Sti+1

,
which bisects the convex corner at v. Shortest paths from points on this segment hit ∂Sti near
v. The deformation retract follows these curves.

The second case is that portions of the boundary ∂Sti meet at a concave corner, see Fig-
ure 5(b). Note that the concave corner v must contain a shadow rooted at v where there is a
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Figure 5: The shortest paths (black arrows), medial residue (red lines) and deformation retract
(blue arrows) at the points in the slice region.

cone of shortest paths going through v. By definition of MR, if v ∈ MR then the bisector of
the shadow will be inMR\MSPD. However, the deformation retract cannot simply follow the
shortest paths exactly, as this would not be continuous at v; observe in the figure that points
near v are taken to opposite sides of the bisector and do not move continuously. Instead, very
near this point, the deformation retract will take points to either the bisector or the full shadow,
as shown on the right in Figure 5(b). Note that the reparameterization continuously deforms
points from ∂Sti onto the union of ∂Sti+1

and MR.
In the third case, consider points v ∈ ∂Sti where the ∂Sti is smooth. A single shortest path

passes through v. If v /∈ MR, the deformation retract simply follows this path backwards, as
shown in Figure 5(c). Otherwise, if v ∈ MR, there is a segment of a bisector in MR that
contains v and continues in a direction that is perpendicular to ∂Sti . In this situation (as in
the second case above), the shortest paths cannot be used as a deformation retract as it would
not be continuous at that v. However, a similar re-parameterization as in the second case can
be used in a local neighborhood of this portion of MR to construct a deformation retract, as
shown in Figure 5(d).

Note that it is possible that ∂Sti is a graph, in which case the deformation retract described
in the three cases above can be applied to individual components of Ci that are incident to a
point v ∈ ∂Sti .

Finally, to show that MR is a finite graph, we observe that the set of concave vertices in
MSPD and the set of sectors around each such vertex are both finite on a PL surface, which
implies thatMR\MSPD consists of a finite number of straight geodesic paths that bisect these
sectors. Together with our previous lemma that MSPD is a finite graph, this completes the
proof of Theorem 5.1.
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Figure 6: (a): A simple surface consisting of 5 triangles incident to a concave vertex (v1). (b): the
surface is cut open along {v5, v1, v2} and the subdivision is shown on each part after flattening onto
the plane. The root and last edge sequence of each labelled cell is listed below. (c): the medial
residue consisting of MSPD (red solid lines and red dots) and a bisector (red dotted line). Green
arrows indicate shortest path directions for some segments in MSPD.

6 Algorithm

We next give an overview of our algorithm to compute the medial residue on a piecewise flat
surface with triangle faces in R3, a commonly used discretization in many applications.

We first recall some essential properties of shortest paths on a triangulated surface S [12, 7].
We assume the boundary ∂S consists of vertices and edges of some triangle faces. A shortest
path p that connects any point x ∈ S to the boundary ∂S originates either from a vertex or an
interior point of an edge. In the latter case, p is orthogonal to that originating edge. The path
p may go through some vertex of S, and if it does, both the left and right curve angles made
by p at that vertex are greater than or equal to π. Away from the vertices, p is a straight line
segment after unfolding the triangles that p goes through onto a plane. We call the last vertex
visited by p before reaching x the root of p. If p does not go through any vertex, the root is the
originating vertex or edge on ∂S. The last edge sequence of p is the (possibly empty) sequence
of edges that p goes through between the root and x.

The starting point of our algorithm is a subdivision of each triangle face into regions where
the shortest paths have a common combinatorial structure. Given a face f , a root r (being
either a vertex or edge), and an edge sequence E, a cell is the set of points x ∈ f such that
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some shortest path from x to ∂S has root r and last edge sequence E. The curve segments
that bound the cells (including both interior segments on f and the segments on the edges of
f) form a graph, which is called the subdivision graph. An example subdivision graph is shown
in Figure 6 (b) for the surface in (a). The subdivision can computed using an easy extension of
existing methods [13, 12, 7] in O(n2 log n) time and O(n2) space. This is described in Section
6.1.

Given the subdivision graph, our algorithm first identifies a subset of the graph as MSPD,
then adds in the bisectors to form the complete MR. Both steps can be done in O(n2) time
and space, where n is the number of triangles of the surface. The overall process, taking into
account the creation of the face subdivision, can be done in O(n2 log n) time and O(n2) space.
The two steps are described in Section 6.2 and 6.3. We assume exact arithmetic is used to
precisely compute distances and angles.

6.1 Face subdivision

The subdivision graph can be obtained in two phases. In the first phase, we subdivide each
triangle edge into intervals such that points within one interval share the same root and last
edge sequence in their shortest paths to the boundary. This can be done in O(n2 log n) time
and O(n2) space using a “continuous Dijkstra” algorithm that was introduced by Mitchell et
al. [12] for distance to point sources and later extended to both point and edge sources by Fort
and Sellares [7].

In the second phase, the edge intervals are propagated into the interior of each triangle to
form cells. Mount [13] gave an algorithm with O(n) time and space within each triangle, which is
a modification of the divide-and-conquer algorithm for computing generalized Voronoi diagram
[16]. He also showed that the total number of cells, as well as the number of segments in the
subdivision graph, on S is bounded by O(n2) (O(n) for each face). Although the algorithm was
presented for distances to point sources, it only needs to be slightly modified to work for edge
sources as well. First, the “spokes” [16], which are used in the algorithm for efficient tracing of
segments that bound a cell, are slightly different between a cell whose shortest paths are rooted
at a vertex and a cell whose shortest paths are rooted at an edge. While the spokes emanate
from the root vertex in the first case, they are parallel and orthogonal to the root edge in the
second case. Second, the kinds of segments in the subdivision graph will include parabolas in
addition to straight lines and hyperbolas. Neither adjustment increases the complexity of the
algorithm or of the resulting subdivision graph.

6.2 Computing MSPD

First, we observe the following relation between MSPD and a subdivision graph:

Lemma 6.1. MSPD is a subset of the subdivision graph.

Proof. We first show that cells have disjoint interiors. Consider a cell c in a triangle f with
root r and last edge sequence E. The distance to the boundary over the interior of c is either a
linear or quadratic function, since it is defined by a distance function in an unfolded sequence
of planar triangles where r (the root of the unfolded sequence of triangles) is either an edge or
a point in the sequence of triangles. This function is unique for each pair of {r, E}. Since two
distinct polynomial distance functions cannot have a region of points with non-zero area where
the two functions are equal, c cannot share a non-trivial region with another cell that has a
different root or last edge sequence.

Since cells have disjoint interiors, the shortest paths from any interior point x in c to the
boundary all have root r and last edge sequence E. These paths have to follow a common
direction at x, as the distance function over c has no critical points. Hence x is not inMSPD.
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For a point x on the subdivision graph, the set of possible directions of shortest paths to the
boundary starting at x can be obtained by examining the cells that x is incident to. For each
incident cell on a face f whose root is r and last edge sequence is E such that x is away from
r, the straight line direction from x to r (or the orthogonal direction to r if r is an edge) in
the plane of f after unfolding the triangles along E is a shortest path direction of x. It follows
that x is inMSPD if there are two incident cells of x that give different shortest path directions
at x. However, there are infinitely many points on the subdivision graph, and point-by-point
checking for shortest path directions would be impractical. Fortunately, we only have to do the
checking once for each segment in the subdivision graph, as ensured by the following lemma:

Lemma 6.2. Let h be a segment in the subdivision graph, then either all interior points of h
lie in MSPD or none of them does.

Proof. Suppose x ∈ h has a unique shortest path direction to the boundary. We will show that
all points on h have a unique shortest path direction as well.

Let the two cells c1, c2 on the two sides of h have roots r1, r2 and last edge sequences
E1, E2. Unfold triangles respectively along E1 and E2 onto a common plane L that contains
h, and let the locations of the two roots on the respectively unfolded triangles be r∗1 and r∗2 .
Denote the distance function defined by these two unfolded roots over L as f1, f2, such that
fi(z) = di+‖z−r∗i ‖ if ri is a vertex with distance di to the boundary and fi(z) = n∗i ·(z−q∗i ) if ri
is an edge on the boundary whose normal and midpoint location after unfolding are respectively
n∗i and q∗i . Note that the shortest path direction at x given by cell ci after unfolding is opposite
to the gradient direction of fi at x. We consider two cases, and in each case we show that both
f1, f2 have the same gradient direction at any point on h:

1. If r∗1 = r∗2 , we have f1 = f2 (in case of vertex roots, d1 = d2 because f1, f2 are identical
on x which is away from r∗1 and r∗2).

2. If r∗1 6= r∗2 , f1 6= f2 but they have the same value and gradient direction at x. The only
possible scenario would be either 1) both r1, r2 are vertex roots and {r∗1 , r∗2 , x} are co-
linear, or 2) (without loss of generality) r1 is a vertex root and r2 is an edge root and the
line connecting x and r∗1 is orthogonal to r∗2 . In both cases, the loci where f1 = f2, which
contains h, is a straight line and the gradient direction of both functions at any point on
that line follows the line.

The algorithm simply goes through each element (a vertex or a segment open at its ends) of
the subdivision graph. For each element l, it picks an arbitrary point x ∈ l and gathers shortest
path directions at x by examining each incident cell of l. l is included inMSPD as soon as two
distinct shortest path directions are found. An example output of the algorithm is shown in
Figure 6 (c), which also shows the shortest path directions for several segments in MSPD.

Since computing the shortest path direction given a cell takes constant time, the complexity
of the algorithm is proportional to the number of pairs of an element and an incident cell, which
is linear to the number of elements in the subdivision graph. The algorithm uses a data structure
that maintains adjacency between cells and subdivision graph elements, which is again linear to
the complexity of the graph. Hence computing MSPD can be done in O(n2) time and O(n2)
space.

6.3 Computing MR\MSPD

We use a tracing algorithm to compute bisectors that make up MR \MSPD. For each sector
bounded by shortest path directions at some concave vertex v ∈ MSPD, we start tracing a
straight and shortest path from v in the bisecting direction of the sector. Note that each such
bisector also bisects a shadow rooted at v. Tracing proceeds in a cell-by-cell manner, creating
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straight line segments within each cell and maintaining straightness while marching to the next
cell. Tracing ends when the path hits a segment or vertex of the subdivision graph that belongs
toMSPD. An example bisector is shown in Figure 6 (c). Note that in this example, the bisector
connects the two disconnected components of MSPD.

To efficiently identify the shadows, we first observe that the set of shadows rooted at v
are precisely covered by those cells incident at v whose shortest paths to the boundary have
v as their root (e.g., the shaded cell J in Figure 6 (b)). In general, each shadow is covered
by a sequence of such cells {c1, c2, . . . , ck} such that ci and ci+1 share a common segment in
the subdivision graph. Given the adjacency structure between cells in the subdivision graph,
detecting all shadows at v takes time linear to the number of cells incident to v, and hence
detecting all shadows at all vertices can be done in O(n2) time. Since the number of shadows
is no more than the number of cells, the storage needed is bounded by O(n2).

Tracing within a cell involves intersecting a line with several low-degree algebraic curves.
Since the intersection of a cell with a shortest path to the boundary is a single line segment [13],
tracing in a cell can be done in time linear to the number of segments of the cell. Marching from
one cell to the next can be done in constant time using an adjacency structure. To bound the
complexity of tracing all bisectors, the key is to observe that each cell can contain a non-trivial
portion of at most one bisector. This is because only a cell whose shortest paths to the boundary
are rooted at some vertex may contain a bisector rooted at the vertex, and the angle made by
any two bisectors rooted at a vertex is at least 2π. So the total tracing time for all bisectors is
bounded by the sum of number of segments over all cells, which is O(n2). Tracing uses O(n2)
space since it adds only a constant amount of additional data per element of the subdivision
graph.

7 Future Directions

As an extension, we are exploring a similar “residue” definition for the cut locus, which is closely
related to the medial axis. The cut locus of a point x is formally defined in terms of the tangent
space, but it can be thought of as the set of points where minimizing geodesics starting at x are no
longer minimizing. On piecewise linear surfaces even defining the cut locus is a challenge, since
the tangent space is not well defined in a non-smooth setting. In practice, the most commonly
used definition of the cut locus of a point x in a non-smooth setting is the closure of the set of
points which have two distinct geodesics to x. This simple definition has the same difficulties
as the medial axis on piecewise linear surfaces, since it can contain 2-dimensional sheets. As
a result, algorithms for computing cut locus on a triangulated mesh either use approximation
[2], remain limited to convex surfaces [10], or compute a variation (often called the cut graph)
where only edges of the triangulation may be used [4, 6].

There is an obvious connection between the cut locus of a point and the medial axis, since the
cut locus can be thought of as the medial axis of the surface with a puncture around the point;
see for example Wolter’s work connecting the two [19]. The cut locus is homotopy equivalent to
the space minus the source point, and so it is useful for getting information about the topology
of a space. However, just like the medial axis, the cut locus may fail to be a low-dimensional
structure on a piecewise smooth surface; in fact, even on smooth Riemannian manifolds, the cut
locus can form any infinite graph [9], so computing it in this setting is impossible. However, by
replacing ∂S in Definition 4.1 with a point source x, we can similarly define a cut residue from
x. The homotopy and curve network properties in Theorem 5.1 should hold for cut residue when
S is a piecewise linear surface. Since the face subdivision on a piecewise flat surface in R3 can
be computed from any set of vertex or edge sources, our algorithm for computing the medial
residue should be directly applicable (with the same complexity) to compute the cut residue on
such surfaces.

Another future direction for work is extending our medial residue definition to higher dimen-
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sional piecewise linear manifolds. In fact, the definitions of straight curves and bisectors can be
generalized to higher dimensions. Essentially, a straight curve is one where at every point the
angle between the incoming and outgoing curve is maximized. Bisectors generalize to curves
whose angle to the boundary is as large as possible. With these ideas, the medial residue can be
defined for any piecewise-linear manifold in any dimension. We in fact conjecture that in every
dimension the medial residue has the correct dimension and remains homotopy equivalent the
the manifold.

Last but not least, we are also working on an implementation of the medial residue algorithm
described here. The implementation will allow us to evaluate the practical performance of the
algorithm on real inputs. Since the practical performance of the “continuous Dijkstra” algorithm
by Mitchell et al. [12] has been shown to be much better than the theoretical bounds [17], we
are hopeful that the same observation can be made with our algorithm.
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