
ExtendedGrassfire Transform onMedial Axes of 2D Shapes

Lu Liu a Erin W. Chambers b David Letscher b Tao Ju a

aDepartment of Computer Science and Engineering, Washington University in St. Louis
bDepartment of Mathematics and Computer Science, Saint Louis University

Abstract

The medial axis is an important shape descriptor first introduced by Blum [2] via a grassfire burning analogy. However, the medial
axes are sensitive to boundary perturbations, which calls for global shape measures to identify meaningful parts of a medial axis.
On the other hand, a more compact shape representation than the medial axis, such as a “center point”, is needed in various
applications ranging from shape alignment to geography. In this paper, we present a uniform approach to define a global shape
measure (called extended distance function, or EDF) along the 2D medial axis as well as the center of a 2D shape (called extended
medial axis, or EMA). We reveal a number of properties of the EDF and EMA that resemble those of the boundary distance
function and the medial axis, and show that EDF and EMA can be generated using a fire propagation process similar to Blum’s
grassfire analogy, which we call the extended grassfire transform. The EDF and EMA are demonstrated on many 2D examples, and
are related to and compared with existing formulations. Finally, we demonstrate the utility of EDF and EMA in pruning medial
axes, aligning shapes, and shape description.
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1. Introduction

1.1. Motivation

The medial axis is an important shape descriptor first
introduced by Blum [2]. Given a 2D shape, the medial axis
is the collection of interior points with at least two closest
points on the boundary. Blum uses an intuitive grassfire
analogy to describe the formation of the medial axis. Sup-
pose the shape is a field of grass with uniform density. Fire
is ignited on the border of the field, and propagates inward
at uniform speed. The medial axis is where the different fire
fronts meet and quench. In addition, the grassfire analogy
associates each point in the shape with a “burning time”,
which is the distance to the shape boundary. The genera-
tion of the boundary distance function and the medial axis
is sometimes called the grassfire transform.

Medial axes often contain branches that do not represent
meaningful features, such as small boundary perturbations.
As a result, much effort has been devoted to formulate sig-
nificance measures on medial axes that identify meaning-
ful subsets (see review in Section 2.1). While many local
measures exist (e.g., based on distances to the boundary
or closest points on the boundary), well formulated global
measures that reflect shape properties in a larger region are

scarce.
On the other hand, an even more compact shape repre-

sentation than the medial axis, such as a “center point”, is
needed in certain applications. For example, registering or
matching two shapes often requires an initial translation
alignment, which can be established based on their center
points. Also, the center point of a geographical region can
be useful both for mapping drawing and for motion plan-
ning. The mostly commonly used center point definition,
centroid, is often unsuitable for these applications. The cen-
troid can easily get outside a shape, and can be unstable
under transformations such as isometric deformations. De-
spite previous efforts (see review in Section 2.2), a charac-
terization of the center point that is interior, stable, and
uniquely defined is still lacking in the literature.
We would like to note that the higher-dimensional ver-

sion of these problems - computing global shape measures
over the 3D medial axis or defining “center curves” of the
3D shape - is significantly more challenging. On the other
hand, a sound solution in 2D may lay the foundation for
approaching these harder problems.
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1.2. Contributions

The theoretical contributions of this paper are presenting
a uniformway to define a global shapemeasure along the 2D
medial axis as well as the center of a 2D shape, and studying
their properties. Our formulations are motivated by and
closely follow those of the boundary distance function and
the medial axis. Intuitively, the shape measure, called the
extended distance function (EDF), measures the radius of
the longest “tube” centered at a medial axis point that fits
in the shape. The shape center, called the extended medial
axis (EMA), is where the longest fitting tubes are confined
at both ends. We show that EDF and EMA are similar
to the boundary distance function and the medial axis in
several ways. In particular, EDF is upper semi-continuous
over the medial axis and has constant gradient wherever it
is continuous. Also, the EMA preserves the homotopy of
the medial axis, and is a unique, interior center point for
any simply connected 2D shapes.

We further show that EDF and EMA can be generated
using a fire propagation process similar to and continuing
from Blum’s grassfire analogy. In this extended grassfire
analogy, the fire is ignited at the ends of the medial axis
and propagates geodesically along the medial axis at uni-
form speed. The EDF at a medial axis point is the burn-
ing time of this extended grassfire, while the quench site
of the fire fronts is the EMA. This analogy, which we call
extended grassfire transform, allows us to devise a simple
discrete algorithm for computing EDF and EMA over dis-
crete approximations of the medial axis.

We demonstrate the EDF and EMA on many 2D shapes,
and empirically observe that they are stable under bound-
ary perturbations. We also compare EDF with two existing
global significance measures on the medial axis, one for-
mulated via a heuristic (the Erosion Thickness (ET) mea-
sure [15]) and one mathematically defined (the Potential
Residue (PR) measure [12]). We show that EDF is closely
related to ET by giving an explicit definition of ET, and
demonstrate several advantages of EDF over PR in terms
of analytical continuity and stability.

Finally, we show several ways in which EDF and EMA
can be utilized in the realm of shape modeling. First, we
introduce a new medial axis significance measure based on
EDF, called Shape Tubularity, that measures the sharpness
of protrusion, and demonstrate the advantage of combining
ST with ET in medial axis pruning over using ET alone.
Second, we use the EMA for translational shape alignment,
and demonstrate its superiority over alignment using alter-
native center definitions such as centroid. Finally, we in-
troduce a new shape signature over the boundary curve,
called Boundary Eccentricity (BE), which robustly high-
lights shape extremities, and use it for shape matching.

2. Related works

2.1. Significance measures on medial axes

A variety of significance (or salience, importance, etc.)
measures have been proposed for identifying portions of the
medial axis that depict prominent shape features, in 2D
[15] and 3D [17], which can be classified into local or global
ones [14,16]. Local measures rate a medial axis point by the
boundary geometry in its immediate neighborhood, such
as the angle formed by the medial axis point and its two
closest boundary points [2,7,17,9] or the Euclidean distance
between the two boundary points [1,6]. However, without
knowledge of the shape in a larger neighborhood, local fea-
tures cannot easily distinguish between noisy features on
the boundary and a meaningful shape part that is thin.
On the other hand, global measures capture shape prop-

erties in a larger region. Global measures are much more
scarce than local ones. Shaked and Bruckstein proposed a
suite of global measures over 2D medial axes using a prop-
agation heuristic [15]. A particular notable measure formu-
lated in their approach is the Erosion Thickness (ET) mea-
sure, which approximates the area of the 2D shape eroded
in response to the loss of a skeleton branch [15]. However, an
explicit definition of ET is still lacking. Ogniewicz and Ilg
proposed several global measures with explicit mathemati-
cal definitions, which are based on measuring the length be-
tween the closest boundary points over the boundary curve
(Potential Residue (PR)) [12]. The PR measure has been
extended to evaluate 3D surface skeletons using lengths
of geodesic curves on surfaces [5,14], and even further to
evaluate 3D curve skeletons using approximated areas of
geodesic patches [14].

2.2. Center points of 2D shapes

The most common way of defining a shape center is the
“center of mass” or centroid, which minimizes the sum
of squared Euclidean distances to all points either on the
boundary of the shape or over the entire shape. However,
centroid may lie outside the shape if it is non-convex, and
can be unstable under large shape deformations (see dis-
cussion in Section 6.2).
In the computational geometry literature, there are a

number of alternative definitions that utilize geodesic dis-
tances within the shape to prevent the center from going
outside. The geodesic center [13] minimizes the maximum
geodesic distance to any point in the shape. The link center
[10] in a polygonal region minimizes the maximum num-
ber of straight line segments in the geodesic path to any
point in the shape. The geodesic median [8] minimizes the
average geodesic distance in the L1 norm to any point in
the shape. However, these center locations may lie on the
boundary (e.g., a concave vertex in a non-convex shape),
and hence are not always strictly interior. Note that, among
these definitions, the link center is not uniquely defined.
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In geography, one way to define the center of a geograph-
ical region is the furthest point from the boundary (or cen-
ter of the largest inscribed disk). Although strictly interior,
such center is obviously not unique. This and other centers
are compared with our extended medial axes (EMA) in a
simple 2D shape in Figure 1.

Centroid Geodesic center Geographic center EMA

Fig. 1. Comparison of several center definitions.

Ogniewicz and Ilg [12] showed that the PR measure has
a unique local maximum on the medial axis for a simply
connected shape. This maximum is a unique, interior cen-
ter point. However, as we demonstrate in Section 5, this
local maximum can be sensitive to non-uniform boundary
perturbations.

3. Formulation

3.1. Motivation

Our definitions of the extended distance function and the
extended medial axis is motivated from those of the bound-
ary distance function and the medial axis. In a 2D shape
O, the distance from an interior point x to the boundary
of O can be defined as the radius of the largest circle cen-
tered at x and inscribed in O. A point is on the medial
axis if its largest inscribed circle touches the boundary of
O at two or more points. Due to the isotropic nature of the
circle, the distance function at x captures the amount of
uniform shape expansion around x, and the medial axis is
where such expansion is constrained at two or more sites,
and hence “maximal”.

To capture the elongation, or “side-way” expansion, of a
shape around a point x on the medial axis, our extended
distance function essentially measures the half-length of the
longest “tube” centered at x and inscribed in O. This tube
extends longitudinally along the medial axis, rather than
uniformly as in the case of the circle. The extended medial
axis consist of those points on the medial axis whose longest
inscribed tubes are confined at both ends, and hence are
where the elongation is maximal.

3.2. Definitions

We assume the 2D shape O is a closed set bounded by
piece-wise C2 smooth curves. The medial axis M of O are
the closure of those points with two or more closest points
on the boundary of O (or the “cut loci”) [18]. The regular-
ity of the boundary implies a number of important proper-
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Fig. 2. Axes (blue) and their tubes (gray): (a) an axis with a single
constrained end z, (b) an inscribed axis of x with a constrained end
y, (c) an inscribed and maximal axis of x with two constrained ends

y, z, (d) an inscribed and maximal axis of x ∈ M̃ .

ties of M , such as its homotopy equivalence to O [18], its
low-dimensionality (1) [18], and its finite structure [4]. We
denote the boundary distance function at x ∈ O as R(x).
We first introduce the notion of “axes” and “tubes”:

Definition 1 Let f : R1 → R2 be a local embedding of
the real interval D = [0, 1] onto M . The image f(D) ⊆ M
(noted simply as f hereafter) is called an axis.

An axis is a path on M so that each interior point on
the path has a manifold neighborhood. By local embed-
ding (i.e., immersion), we allow an axis to be non-simple
and hence containing loops. This relaxation is crucial to
obtain some important properties later, such as the homo-
topy equivalence between the extended medial axis and the
medial axis.
We call the union of all largest inscribed circles centered

at points on an axis f the tube of f . Intuitively, the tube
is formed by “rolling” a circle along f , while changing its
radius according to the boundary distances on f . Note that
when the axis is a non-simple path, the tube can “wrap
around” itself.
Given some point x on an axis f , we are interested in

the radius of f with respect to x, which is defined as the
distance from x to the shorter end of the tube of f :

Definition 2 Given an axis f and a point x ∈ f ,

rf (x) = min
y∈∂f

(df (x, y) +R(y))

is called the radius of f with respect to x, where df (x, y) is
the geodesic length of segment [x, y] on f . An end y ∈ ∂f
is called a constrained end with respect to x if it attains
the minimum in this equation, and an unconstrained end
otherwise.
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Figure 2 (a,b,c) illustrate three different axes and their
radii for a same point x on the medial axis. The first two
axes each has one constrained end (z in (a) and y in (b)),
where the radius of the axis is attained. The third axis has
two constrained ends (y, z) due to symmetry of the shape,
both attaining the radius of the axis.

The extended distance function at x is the largest radius
of any axis containing x:

Definition 3 Given a point x ∈ M ,

R̃(x) = sup
f∋x

rf (x)

is called the extended distance function (EDF) at x. The
axis f that attains the supremem is called the inscribed axis
at x.

Intuitively, the EDF captures the maximum amount of
“side-way” shape expansion on both sides of x. In Figure 2,
axes in (b,c) are inscribed axes of x and attaining the EDF
R̃(x), which is the sum of the geodesic distance between x
to the top-left end of the medial axis y and R(y). The EDF
can be understood as the half-length of the longest tube
that can be centered at x.

The extended medial axis is the loci where the inscribed
axis cannot be further expanded:

Definition 4 An axis f is called maximal if both of its ends
are constrained. A point x ∈ M lies on the extended medial
axis (EMA) M̃ if every inscribed axis of x is maximal.

Note that all inscribed axes of an EMA point need to be
maximal. This requirement is important for distinguishing
the center of the shape from the local symmetry centers. For
example, even though the axis in Figure 2 (c) is an inscribed
axis of x and is maximal, x has some other inscribed axis
that is not maximal (e.g., (b)), and hence x /∈ M̃ . On the
other hand, the point x in (d) is on M̃ since all its inscribed
axes are maximal (one is shown in the picture). Observe
that x in (d) is more “centered” with respect to the entire
shape than the x in (c), the latter being centered only with
respect to two symmetric shape parts.

We make a final note of the scenario in which the ra-
dius rf (x) is infinity, which happens when f is a non-simple
path that travels infinitely on both sides of x. By the above
definitions, both ends of f are constrained, hence f is max-
imal. On the other hand, R̃(x) = ∞ = rf (x), hence f is
an inscribed axis of x, and all inscribed axes of x have in-
finite radius. As a result, x is on the EMA M̃ , since all its
inscribed, infinite-radius axes are maximal.

3.3. Properties

EDF and EMA, defined on the medial axis, share sev-
eral important properties as the boundary distance func-
tion and medial axis, which we examine in this section (the
proofs are provided in Appendix A,B,C).

We start by examining the range of values of EDF, show-
ing that it is lower bounded by the boundary distance func-
tion and is finite away from loops in the medial axes:

Proposition 1 Let x ∈ M :
(i) R̃(x) ≥ R(x), and the equality holds only when x ∈

∂M .
(ii) R̃(x) = ∞ iff there is some subset S ⊂ M containing

x such that ∂S = ∅.

The result in (i) aligns with the intuition that the “side-
way” expansion of the shape around x (captured by R̃(x))
is no smaller than the uniform expansion there (captured
by R(x)). An immediate corollary of (ii) is that R̃ is finite
everywhere on the medial axis M of a simply connected
shape O (i.e., one without interior holes), since M is a tree
and so is any of its subset. If O contains interior holes, the
proposition implies that R̃(x) is infinite over the largest
subset of M that does not have open boundaries (similar
to the 1-core of a graph), and finite everywhere else.
Next, we examine the local behavior of EDF, and show

that the EDF behaves like a geodesic function over the
medial axis, similar to the boundary distance function over
the 2D shape. We consider the local behavior separately at
the boundary of the medial axis, on the EMA, and on the
rest of the medial axis:

Proposition 2 Let x ∈ M :
(i) If x ∈ ∂M , R̃ has a directional gradient of 1 along M

leaving x.
(ii) If x /∈ ∂M and x /∈ M̃ , R̃(x) has a directional gradient

of 1 on exactly one of the out-going branches of M at
x, and a directional gradient of −1 on one or more of
the out-going branches.

(iii) If x ∈ M̃ and R̃(x) ̸= ∞, R̃(x) has a directional gra-
dient of −1 on two or more of the out-going branches
at x.

(iv) If x ∈ M̃ and R̃(x) = ∞, R̃ is infinite on two or more
of the out-going branches at x.

(v) In all three cases (ii,iii,iv), R̃ on the remaining out-
going branches are bounded strictly below R̃(x), and
have constant gradient −1.

In short, any point on the medial axis that is not a bound-
ary or part of the EMA has some neighborhood where EDF
is continuous and has constant gradient of 1. As immediate
corollaries, the function R̃ is upper semi-continuous over all
M , has no local minima except at the boundary ∂M , and
is locally maximal at each point on M̃ where R̃ is finite.
The last statement also implies that the part of M̃ where
R̃ is finite consists of isolated points.
Finally, we show that the EMA preserves the topology

of the medial axis, which in turn preserves the topology of
the 2D shape:

Proposition 3 M̃ is homotopy equivalent to M .

If the shape O is simply connected, the proposition im-
plies that M̃ has the homotopy of a point. Combined with
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Fig. 3. An illustration of intermediate states in the extended grassfire burning on the medial axis. Yellow dots are the fire fronts, arrows
indicate the burning direction, and the red, blue, and green squares are where fire fronts are ignited, annihilated, and quenched.

the argument above that M̃ consists of only isolated points,
one can conclude that M̃ is a unique point on the medial
axis (e.g., a center point). If O contains interior holes, M̃
has the homotopy of a system of loops. Hence M̃ consists
entirely of the part of M where R̃ = ∞ without additional
isolated points.

4. A grassfire analogy for computation

While explicitly defined, the EDF and EMA cannot be
directly computed from their definitions, which involve ex-
ploring an infinite set of axes at each point. On the other
hand, the properties of the EDF established by Proposition
2, particularly its lack of local minima and constant gra-
dient, suggests that the function can be obtained by prop-
agating values geodesically along the medial axis from its
boundary points. In the following, we design a propaga-
tion method for computing EDF and EMA guided by their
local properties. The propagation bears close resemblance
with (and in some sense “continues”) Blum’s grassfire, and
hence is called the extended grassfire transform.

4.1. Extended grassfire transform

Akin to Blum’s grassfire analogy, imagine the medial axis
M are made up of a thin thread of grass of the same ma-
terial. Each end z ∈ ∂M is ignited at time R(z), that is,
when Blum’s grassfire reaches there. The fire propagates
from those ends geodesically along M at a uniform speed.
When a fire front comes to a junction, it continues onwards
if there is exactly one remaining un-burned branch, and
annihilates if there are two or more branches remaining.
When multiple fire fronts meet at a same location, and if
there is no remaining un-burned branches, the fire fronts
quench against each other. The process terminates when
no fire front is active. A simple example illustrating this
grassfire burning is shown in Figure 3.

In this extended grassfire analogy, the EDF at a point
on M is the time at which the point is burned by the fire,
and infinity if the point is never burned. If the shape O is
simply connected, the entireM will be burned out, and the
EMA is the quench site of the fire fronts. Otherwise, if O

contains interior holes, EMA is the remaining un-burned
portion of M .
Note that our extended grassfire can be combined with

Blum’s grassfire to a single fire-burning process, since the
arrival time of Blum’s grassfire at amedial axis point (R(x))
is always earlier than the arrival time of the extended grass-
fire (R̃(x)). In this combined burning, the fire front starts
from the boundary of the shape, quenches along the inte-
rior of the medial axis, and continues onto the medial axis
from their boundaries.

4.2. Discrete algorithm

The analogy gives rise to a simple, thinning-based algo-
rithm that can compute R̃(x) and M̃ over a discretely rep-
resented medial axis M in time linear to the number of ele-
ments in M . The algorithm assumes that M is represented
as a weighted graph that captures a piece-wise approxima-
tion of the medial axis. The graph nodes are vertices on the
medial axis, and the weight of an arc between two nodes is
the length of the line or curve segment connecting the two
vertices. In addition, the distance to the shape boundary is
given at each degree-1 node (the “end”) of M .
The algorithm iteratively reduces the graph M to com-

pute R̃i at each node i, which are initialized to be the
boundary distance at each degree-1 node and infinity else-
where. At each iteration, the degree-1 node iwith the small-
est R̃i is removed with its incident arc. If the removal ex-
poses a new degree-1 node, j, then R̃j is updated as the

sum of R̃i and the weight of arc {i, j}. Iteration terminates
when the graph is reduced to with either a single node or
a set of cycles, which are output as the EMA M̃ .
In our experiments, we compute the discrete medial axis

M as the subset of the Voronoi diagram of points sampled
on O, consisting of the interior Voronoi vertices and their
connecting Voronoi arcs. This subset is a provenly good
approximation of the 2D medial axis, and converges to the
medial axis as the sampling density increases [3].

5. Examples and comparisons

We start with two simple examples in Figure 4 computed
using our discrete algorithm. One of the two shapes is sim-
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Fig. 4. EDF and EMA in a simply connected shape (left) and a
shape with an interior hole (right). The medial axis is colored by

the EDF in (a) while the EMA is drawn in black, (b) shows the
boundary distance function in the background, and (c) plots both
EDF and the boundary distance function as a 3D height map. The
heat coloring scheme is used (blue is low and red is high).

ply connected, while the other contains an interior hole.
We can observe the properties of the EDF and EMA dis-
cussed in Section 3 in this picture. In particular, the EDF
is identical with the boundary distance at the ends of the
medial axis, and increases at a constant gradient away from
the ends (most notably in the 3D height map in (c)) while
staying above the boundary distance function (as seen in
the overlay in (b)). At each junction, the EDF is contin-
uous along at least two branches. The EMA is the global
maximum of EDF in the simply connected shape (the gray
dot), and a loop on the medial axis in the other shape (the
gray loop) where the EDF is infinite.

Observe from Figure 4 that the medial axis points with
higher values of EDF lie in more elongated parts of the
shape. The infinite EDF over a medial axis loop describes
an infinite elongation there, since a tube can wrap around
the loop for infinitely many times. More importantly, ob-
serve that EDF is not sensitive to minor boundary pertur-
bations in elongated shape parts. Intuitively, the EDF cap-
tures the half-length of a longest fitting tube, which is a
global measure that does not change significantly by small
protrusions.

The noise-insensitivity of EDF is most notable in a com-
plex example like the one in Figure 5, which contains a sig-
nificant amount of boundary noise. Observe that the EDF
along medial axis branches corresponding to small bound-
ary noise are very close to the boundary distance function
(which is most notable in the overlaying picture in (b)),
whereas branches corresponding to prominent shape pro-
trusions have much higher EDF than the boundary dis-
tance function. Intuitively, EDF and boundary distance at
a medial axis point capture respectively the “length” and

Fig. 5. EDF (a) and overlayed on the boundary distance function

(b) for a shape with boundary noise.

“thickness” of the local shape, and hence their difference
is a good measure of how protruded the shape is. In fact,
this measure has been widely used for identifying signifi-
cant parts of the medial axes, although without an explicit
formulation (see discussion below).
We further examine the stability of EDF and EMA under

synthetic boundary perturbations in Figure 6 (top row).
Here we perform a uniform perturbation of a square shape
(a,b) and a non-uniform perturbation on one side of a key
shape (c,d). Note that neither EDF nor EMA changes sig-
nificantly, despite the change in the topology of the medial
axis near the EMA (b) and the addition of a significant
amount of medial axis branches (d).
We next compare EDF with two existing global measures

on the medial axis, one based on heuristics (the Erosion
Thickness) and the other formulated mathematically (the
Potential Residue). In the first case, we show that the mea-
sure behaves similarly as EDF by giving an explicit char-
acterization of the measure. In the second case, we demon-
strate several advantages of EDF in terms of analytical
property and stability.

5.1. Erosion Thickness

The Erosion Thickness (ET) measure captures the loss of
the shape due to the pruning of a medial axis branch. For a
point x located on a medial axis branch directly connected
to an end of the medial axis y, ET is formulated as:

ET (x) = d(x, y) +R(y)−R(x)

Shaked and Bruckstein [15] proposed an extension of the
measure to the entire medial axis using a rate pruning
paradigm, where ET (x) is determined as the time at which
the pruning front reaches x. In this paradigm, the pruning
front propagates similarly to the fire fronts in our extended
grassfire analogy, with two differences. First, the pruning
fronts start simultaneously from all medial axis ends at time
0. Second, the pruning front propagates at a non-uniform
speed 1/(1−Rα(x)), where Rα(x) is the gradient of R at x.
While the rate pruning paradigm can be implemented

in a discrete algorithm (just like the extended grassfire),
an explicit formulation of ET (x) is not known. As a con-
sequence, the meaning of ET (x) beyond the medial axis
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Fig. 6. Comparing EDF (top row) and the Potential Residue (PR) measure (bottom row) on the medial axis under boundary perturbation:
the EDF and EMA is stable under both uniform (a,b) and non-uniform (c,d) perturbations, while PR can have sudden jumps (e,f), and both
PR and its local maximum can exhibit significant drift (g,h). Each picture is colored by the EDF or PR normalized by the maximum value

of EDF or PR present on the medial axis. The inserts in (a,b,e,f) zoom in on the middle of the medial axis where there is a connectivity
change after perturbation. The closest boundary points to the local maximum of PR are shown as crosses.

branches directly connected to the ends is not clear. Here
we give an explicit definition of ET (x), which reveals its
link to shape properties. In fact, ET is the residue of EDF
after subtracting the boundary distance function, that is,

ET (x) = R̃(x)−R(x)

This equivalence of this definition and the pruning time of
the rate pruning paradigm can be verified by examining the
property of the residue based on those of R̃(x) (as discussed
in Section 3) and R(x) (i.e., continuous over M and has
bounded derivative within (−1, 1)). As mentioned earlier,
the difference of EDF and the boundary distance captures
how much “longer” the shape is over its “thickness” around
a medial axis point. As a result, medial axis points with
higher ET values represent more prominent shape protru-
sions.

The definition of ET implies that it has very similar
behavior as EDF. In particular, both functions share the
same continuity and gradient direction over the entire me-
dial axes. Also, both ET and EDF share the same set of
local maxima, the EMA. From the practical point of view,
the definition offers a simpler way of computing ET: rather
than using the original rate pruning paradigm in [15] which
requires a pruning rate that varies with a differential quan-
tity (Rα), ET can be equally obtained by a uniform-speed
propagation (which gives R̃(x)) followed by subtraction of
R(x).

5.2. Potential Residue

The Potential Residue (PR) measures, at each medial
axis point x of a simply connected shape, the shortest dis-
tance along the shape boundary between the two bound-
ary points closest to x [12]. The intuition is that the closest
boundary points for medial axis branches reaching to small
boundary bumps are typically close together, hence PR is
small on those branches. Ogniewicz and Ilg showed that PR
increases monotonically from the ends of the medial axis in-
ward, and that there exists a unique local maximum of PR
on the medial axis [12]. Note that the recently introduced
definition of the curve skeleton of a 3D shape by Dey and
Sun [5] is in fact a 3D extension of the local maximum of
the PR measure. The extended measure, called the Medial
Geodesic Function (MGF), is the geodesic distance on the
boundary surface between the two closest boundary points
to a medial axis point.
We show several notable differences between EDF and

PR through analysis and experiments. First, although be-
ing monotonic like EDF, PR in general is not continuous at
the junctions of the medial axis, which have three or more
closest boundary points. In contrast, EDF is continuous
along at least two branches at any junction.
Second, and more importantly, PR and its local maxima

can change dramatically under boundary perturbations.
We perform the same perturbation tests we had for EDF
in Figure 6 for PR (bottom row). Observe that a slight
change in the connectivity in the middle of the medial axis
(see insert of (f)) causes a big increase in PR there after

7



Fig. 7. The Erosion Thickness (ET) measure (a) and Shape Tubularity (ST) measure (b) over a 2D shape, and pruning using a low ET

threshold (c), a high ET threshold (d), and the combination of a low ET threshold with a ST threshold (e).

perturbation (note that the coloring of PR in both (e,f) is
after normalization by the maximum PR over each medial
axis). This is because the pair of closest boundary points to
that part of the medial axis (shown as cross marks) change
dramatically after perturbation. Also, both PR and its lo-
cal maxima are strongly affected by non-uniform boundary
perturbations. In (g,h), perturbations on one part of the
key shape cause PR and its local maximum to shift signifi-
cantly towards that part, where the curve lengths increase
greatly. Note that EDF and EMA are much more stable in
both examples.

6. Utility

As demonstrated above, EDF offers stable, global mea-
sures of shape elongations, and EMA is a stable choice of
shape center (for a simply connected shape). In this sec-
tion, we show several ways that these descriptors can be
utilized for shape modeling.

6.1. Pruning medial axes

Since meaningful parts of the medial axis should capture
elongated shape parts, we can use EDF to define signifi-
cance measures for pruning the medial axis. As shown in
Section 5.1, the difference between EDF and the boundary
distance function is equivalent to the Erosion Thickness
(ET) measure. Here we present another EDF-based mea-
sure called Shape Tubularity (ST), defined as:

ST (x) =
R̃(x)−R(x)

R̃(x)
= 1− R(x)

R̃(x)

The measure is a scalar between [0, 1], reaching 0 only at
the boundary of the medial axis (where R̃(x) = R(x)) and
1 only at the EMA of a non-simply-connected shape (where
R̃(x) = ∞).

Intuitively, ST captures the ratio (rather than the differ-
ence, as in ET) of the “thickness” over the “length” of the
shape around a medial axis point. A high ratio implies a
“sharply” protrusion (e.g., a needle), while a low ratio indi-
cates a “blunt” one. Figure 7 compares ET (a) with ST (b)
in a synthetic shape that contains both blunt (e.g., corners
of the rectangles) and sharp (e.g., the smaller rectangle)
protrusions. Note that ET treats the medial axis branches
reaching diagonally to the corners of the bigger rectangle

as important as those lying centered in the small rectangle.
In contrast, ST along the diagonal branches is much lower
than in the small rectangle, indicating that the later is a
sharper protrusion.
While capturing “sharpness” of protrusion, ST does not

reflect the “size” of protrusion, and hence can be high
around boundary noise (see the tip of the small bump in
Figure 7 (b)). We therefore combine both ET (which cap-
tures the scale of protrusion) and ST for pruning, which re-
moves parts of the medial axis representing shape features
that are either small in size or weak in sharpness.
The advantage of using this combination over using ET

alone is demonstrated in Figure 7 (c,d,e). Note that using
ET alone with a low threshold (0.05 of the dimension of the
shape in this example) is sufficient for removing branches
caused by boundary noise (see (c)), but branches represent-
ing blunt features remain (e.g., the diagonal ones). While
these branches can be removed using a high ET threshold
(see (d)), branches representing sharp features are signif-
icantly shortened (e.g., the center axes of the small rect-
angle). The result in (e) is produced by using the same
ET threshold as in (c) in combination with a suitable ST
threshold (1 − 1/

√
2 ≈ 0.3) (that is, a medial axis point

has to satisfy both ET and ST thresholds to be retained),
which removes the diagonal branches but retain the length
of the center axes in the small rectangle as in (c).
Note that the subset of the medial axis satisfying both

ET and ST thresholds may not preserve the connectivity of
the medial axis. For applications that require a topology-
preserving curve skeleton, we may need to expand this sub-
set to retain the original topology of the medial axis. This
can be easily done by slightly modifying the discrete thin-
ning algorithm presented in Section 4.2. Instead of remov-
ing all degree-1 nodes, we shall preserve those with ST
and ET values greater than or equal to the given thresh-
olds. Since removing degree-1 nodes preserve the homotopy
of the initial medial axis, the remainder after thinning is
a topology-preserving subset. We show more examples of
combined pruning with topology preservation in Figure 8,
all computed using the same sets of thresholds as in Figure
7 (e).

6.2. Shape alignment

Aligning two shapes is an important step for matching
and recognition. Oftentimes, the first step of alignment is
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Fig. 8. More pruning examples combing ET and ST. Examples in (a,b,c) include the original medial axes, the EDF and the boundary distance

functions, and the pruned medial axes. Only pruned medial axes are shown in (d).

translating two shapes so that their centroid coincide. How-
ever, when two shapes that differ by a large variance such
as isometric deformations (body movement in a human fig-
ure), centroid can often change drastically (e.g., pink dots
in Figure 9), and aligning the shape by their centroid would
lead to unsatisfactory results (e.g., Figure 9 (b)).

In contrast, EMA, defined by the structure of the me-
dial axes, is stable under a range of deformations including
similarity transforms and isometric deformations. Hence
EMA offers a good alternative to “centroid” for transla-
tional alignment of shapes undergoing these deformations.
In the examples on the top of Figure 9, the EMAs are drawn
as red dots. Note that they all lie roughly at the waist loca-
tion of the human body. Alignment using EMA therefore
achieves much better overlap between shapes, as shown in
(d). We also compare with the local maxima of Potential
Residue (PR) measure, which are drawn as blue dots in
the pictures. Note that these local maxima can sometimes
drift significantly (see the last green figure), a phenomena
that we already observed in the previous section. Hence the
alignment using the PR local maxima (shown in (c)) does
not look as good as the one produced by the EMA.

6.3. Shape signature

While EDF offers a global shape metric over the medial
axes, many applications such as shape matching require
a descriptor (or signature) over the boundary of the 2D
shape. An ideal boundary signature should not only high-
light local geometry, such as concavity or convexity, but
also global shape properties, such as shape parts and ex-
tremities.

Common boundary signatures include curvature maps
and local feature size (LFS), both providing only local
shape information. As illustrated in Figure 10, the local cur-
vature is homogenous on most parts of the boundary other
than a few places where the curve bends strongly (see (a)).

Fig. 9. Top: several human shapes and their centroid (pink), local
maximum of PR (blue), and EMA (red). Bottom: alignment using
the centroids (b), local maximum of PR (c), and the EMAs (d).

The LFS offers more information as the “thickness” of the
local shape, as it measures the distance to the closest me-
dial axis point. But LFS cannot differentiate parts with a
common thickness. Also, note that the local nature of these
descriptors make them very sensitive to boundary noise.
We introduce a new boundary signature for a simply

connected shape, calledBoundary Eccentricity (BE), which
captures how far a boundary point is away from the EMA
along the medial axis. For a point x on the medial axis M ,
let E(x) be the geodesic distance from x to the EMA. For
any boundary point p, let Xp ∈ M be the set of points on
the medial axis whose closest boundary point is p. BE is
defined as:

BE(p) = min
x∈Xp

(E(x) +R(x))

Both BE and the function E(x) over M are plotted in
Figure 10 (c). Observe that, despite the nosiness of the
shape, BE is a smoothly varying function that highlights
shape parts and extremities that are away from the shape
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Fig. 10. Boundary signatures: local curvature (a), local feature size (b) showing also the medial axis, Boundary Eccentricity (BE) (c,d)
showing also E(x) over the medial axes, and a matching result using BE (e).

center. As shown in a different shape in (d), BE is also stable
under isometric deformations. With these properties, BE
is a good descriptor for matching 2D shapes that may be
noisy and undergoing large deformations. We demonstrate
this by matching the two curves in (c,d) guided by the
BE values using a simple dynamic algorithm. The resulting
correspondence for several critical points of BE on the first
shape (c) is shown in (e).

7. Conclusion

In this paper, we define a global shape measure (EDF)
over the medial axis that capture shape elongation, a shape
center (EMA) where the elongation is maximal, and rigor-
ously study their properties. Both the EDF and EMA can
be obtained using an extension of Blum’s grassfire analogy
onto the medial axis. The EDF and EMA are demonstrated
by examples, compared to related formulations, and used
in several shape modeling applications.

We have experimentally observed that both EDF and
EMA (as well as the Boundary Eccentricity descriptor) are
stable under boundary perturbations. As a future work, we
would like to theoretically characterize such stability. We
are also confident that the work here opens a new path
for solving the harder problem in 3D - finding global mea-
sures on the 3D medial axis and defining center curves of
3D shapes. Note that the grassfire analogy applies easily
to medial axes of 3D shapes. The extended grassfire propa-
gates geodesically from the border of the medial axis sheet
at uniform speed. The EDF is the burning time at a medial
axis point, and the EMA (the curve skeleton) consists of
the quench sites of the fire. This analogy has already led to
a simple grid-based thinning algorithm that is capable of
extracting significant parts of the 3D medial axis as well as
clean curve skeletons [11]. We plan to study explicit math-
ematical definitions of EDF and EMA in 3D, which will
allow us to investigate their theoretical properties and bet-
ter understand their relation to shape description, as done
in 2D in this work.

Appendix A. Proof of Proposition 1

Proof:
(i) By triangle inequality, for any axes f containing dis-

tinct points x, y, we have R(x) < df (x, y) + R(y).
Hence rf (x) ≥ R(x) with the equality attained iff x
is an end of f . If x ∈ ∂M , all axes containing x will
have x as an end, and hence R̃(x) = R(x). Otherwise,
there is some axes that does not have x as an end,
and so R̃(x) > R(x).

(ii) First, suppose there a subset S ⊂ M containing x
such that ∂S = ∅. Then it is possible to obtain an
axes f where rf (x) = ∞ by extending a path from x
in both directions infinitely without encountering a
boundary. Hence R̃(x) = ∞.
Next, suppose R̃(x) = ∞, which implies rf (x) =

∞ for some axes f . Since O is bounded, R is finite,
and hence both the geodesic distances from x to both
ends of f need to be infinite. Note that O is bounded
by piece-wise analytic curves, hence M contains a
finite set of analytic curve arcs [4], and so M does
not contain an infinite simple path. As a result, both
segments of the axes f on the two sides of x need
to overlap with themselves. It is easy to see that the
subset ofM covered by the segments of f on each side
of x up to the first overlapping event is one without
boundary.

�

Appendix B. Proof of Proposition 2

We begin by showing several lemmas that lead to the
proof.

Lemma 1 Extending an axes f from its ends does not re-
duce its radius with respect to some fixed x ∈ f .
Proof: Denote the ends of f as z0, z1, and the ends of the
extended axes f ′ as z′0, z

′
1. For each i ∈ {0, 1}, we have:

df (x, zi) +R(zi) = df ′(x, zi) +R(zi)

≤ df ′(x, zi) + df ′(zi, z
′
i) +R(z′i)

= df ′(x, z′i) +R(z′i)
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Hence rf ′(x) is no smaller than rf (x). �

Let f be an axes containing two points x, y, we say y
is on the constrained side (or unconstrained side) of x if y
lies on the segment of f between x and a constrained (or
unconstrained) end of f with respect to x. We have:

Lemma 2 Let f be a non-maximal inscribed axes of x /∈
M̃ , or a maximal axes of x ∈ M̃ and R̃(x) ̸= ∞. The
following holds for any y ∈ f that lies on the constrained
side of x,

R̃(y) = R̃(x)− df (x, y)

Proof: Since f is an axes containing y, and since y is on
the constrained side of x, we have

rf (y) = rf (x)− df (x, y) = R̃(x)− df (x, y).

We next show that there exists no other axes f ′ such that
rf ′(y) > rf (y), and hence R̃(y) = rf (y). Suppose such f ′

exists. Denote the two ends of f as z0, z1, so that y lies
on the segment [z0, x] on f . Denote the two ends of f ′ as
z′0, z

′
1, so that the segment [y, z′0] on f ′ does not share the

same half-disk neighborhood of y as the segment [y, x] on
f (see Figure B.1 (a)). Consider a new axes f ′′ made up by
segments [z′0, y] on f ′ and [y, z1] on f . Note that x ∈ f ′′,
and

df ′′(x, z′0) +R(z′0) = df (x, y) + df ′(y, z′0) +R(z′0)

≥ df (x, y) + rf ′(y)

> df (x, y) + rf (y) = rf (x)

(B.1)

On the other hand,

df ′′(x, z1) +R(z1) = df (x, z1) +R(z1) ≥ rf (x) (B.2)

If the last equality in Equation B.2 holds, f is a maximal
axes of x whereas f ′′ is an inscribed axes of x (because of
the strict inequality in Equation B.1), which contradicts to
the assumption of the lemma. Otherwise, f ′′ has a greater
radius than f with respect to x, which contradicts with the
fact that f is inscribed. �

xyz0 z1

z0’

z1’

yxz0 z1

z0’

z1’

f
f’
f’’

x

y

z0 z1

z0’

z1’

w

(a) (b)

(c)

Fig. B.1. Notations used in the proofs.

Let us further denote a junction of a set of curves as a
point whose local neighborhood on the set contains more

than two 1-D half-disks. We have a similar result as the
previous lemma but concerning the unconstrained side of
an axes:

Lemma 3 Let f be an inscribed, non-maximal axes of x /∈
M̃ . The following holds for any y ∈ f that lies on the un-
constrained side of x,

R̃(y) = R̃(x) + df (x, y),

if the half-open interval (x, y] does not contain any junction
on M , and if

df (x, y) <
∥df (x, z0) +R(z0)− df (x, z1)−R(z1)∥

2
(B.3)

where z0, z1 are the two ends of f .
Proof: Using Lemma 2, we only need to show that f is an
inscribed axes of y, is not maximal, and x lies on the con-
strained side of y on f . The last two properties are assured
by the inequality in Equation B.3, which also implies that
rf (y) = rf (x) + df (x, y).
To show inscribedness, suppose on the contrary there

exists f ′ containing y such that rf ′(y) > rf (y). Since the
segment (x, y] of f is free of junctions on M , and since we
can always extend an axes without reducing its radius by
Lemma 1, we can always find an f ′ that shares the segment
(x, y] with f , and hence x ∈ f ′. Denote the two ends of f
as z0, z1, so that y lies on the segment [x, z1] on f . Denote
the two ends of f ′ as z′0, z

′
1, so that the segment [y, z′0] on

f ′ contains x (see Figure B.1 (b)). Consider a new axes f ′′

made up by segments [z′0, x] on f ′ and [x, z1] on f . Using
a similar argument as in Lemma 2, and since f is not a
maximal axes of x, one can conclude that f ′′ has a greater
radius than f with respect to x, reaching a contradiction
with the fact that f is inscribed. �

Now we are ready to prove Proposition 2:

Proof: We consider each case as follows:
(i) If x ∈ ∂M , any axes f with one end at x is an in-

scribed, non-maximal axes of x (due to Proposition
1(i)). By Lemma 3, and due to the finite structure of
M [4], there is some finite segment [x, y] on f where
R̃ increases with constant gradient 1.

(ii) If x /∈ ∂M and x /∈ M̃ , x has at least one inscribed,
non-maximal axes. Note that the unconstrained side
of x in all these axes share the same half-disk neigh-
borhood of x, or otherwise a longer axes could be
constructed by concatenating two unconstrained seg-
ments on two inscribed axes. By Lemmas 2 and 3,
R̃ increases with gradient 1 along the shared un-
constrained segment, and decreases with gradient -1
along the constrained segment of each inscribed axes.

(iii) If x ∈ M̃ and R̃(x) is finite, x has at least one
inscribed axes and all such axes are maximal. By
Lemma 2, R̃ decreases with a gradient of -1 on both
sides of each of its inscribed axes.

(iv) If x ∈ M̃ and R̃(x) = ∞, by Proposition 1, x lies in
a subset S ⊂ M such that ∂S = ∅. Hence all points
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on the neighborhood of x in S have infinite R̃.
(v) Consider a branch at x that is not part of any in-

scribed axes of x, and take a point y on the branch
so that the segment (x, y) is free of junctions on M .
Consider an inscribed axes f of x and denote its two
ends as z0, z1 where z1 is constrained. Consider an
inscribed axes f ′ of y and denote its two ends z′0, z

′
1,

so that the segment [y, z′1] on f ′ contains the segment
(y, x) (see Figure B.1 (c)). Again, such an axes f ′ can
always be found due to Lemma 1. It is easy to see
that the new axes f ′′ by joining segment [z′0, x] on f ′

and [x, z1] on f is an inscribed, non-maximal axes of
y, and that

df ′′(y, x) <
df ′′(y, z1) +R(z1)− df ′′(y, z′0)−R(z′0)

2
.

By Lemma 3, for any point w on the open interval
(y, x), R̃(w) increases with a constant gradient 1 as w
moves from y to x. Combining with the above equa-
tion, we have:

R̃(w) = R̃(y) + df ′′(y, w)

< df ′′(y, z′0) +R(z′0) + df ′′(y, x)

< df ′′(y, z1) +R(z1)− df ′′(y, x)

= df (x, z1) +R(z1) = R̃(x)

Hence the limit of R̃(w) as w → x is bounded below
R̃(x).

�

Appendix C. Proof of Proposition 3

Proof:To show homotopy equivalence, we use the common
technique of constructing a deformation retract from M to
M̃ . We will find amapping h(t, x) that is continuous in both
t ∈ [0, t0] for some t0 > 0 and x ∈ M , so that h(0,M) = M
and h(t0,M) = M̃ .

We do so by establishing a “direction” field overM which
will be followed by h. At each point x ∈ M that does not
belong to M̃ , Proposition 2 implies that there is a unique
out-going branch at x where R̃ increases with the gradient
of 1. This out-going direction is said to be the flow direction
at x, v(x). For x ∈ M̃ , its v(x) is set to null. Note that the
flow directions are continuous. By Proposition 2, v(y) at a
point y in the neighborhood of x points away from x only
when v(x) points towards y, and points towards x if v(x)
is either null or points away from y.

We define h(t, x) as the point on M that has travelled t
time away from x at the geodesic speed of 1 following the
field v. By the continuity of v, h(t, x) is continuous in both
t, x. Let T = supx∈M,x/∈M̃ R̃(x) + 1. Since R̃ increases at
least with the gradient of 1 along v (with possible jumps
at junctions), h(T, x) for x /∈ M̃ must be at M̃ , otherwise
R̃(h(T, x)) would be greater than supx∈M,x/∈M̃ R̃(x). Since

h(t, M̃) = M̃ for t ∈ [0, T ], h is a deformation retract, and
M̃ is homotopy equivalent to M . �
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