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On the Height of a Homotopy
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Abstract

Given 2 homotopic curves in a topological space, there
are several ways to measure similarity between the
curves, including Hausdorff distance and Fréchet dis-
tance. In this paper, we examine a different measure
of similarity which considers the family of curves repre-
sented in the homotopy between the curves, and mea-
sures the longest such curve, known as the height of the
homotopy. In other words, if we have two homotopic
curves on a surface and view a homotopy as a way to
morph one curve into the other, we wish to find the
longest intermediate curve along the morphing.

We prove that given a pair of disjoint embedded ho-
motopic curves, among minimal height homotopies on
the surface, there exists an ambient isotopy; in other
words, the homotopy with minimum height never makes
a “backwards” move and results in disjoint simple inter-
mediate curves.

1 Introduction

There are many ways of measuring similarity between
curves. Hausdorff distance is one common measure,
which is (intuitively) the maximum distance that an
adversary can force by picking a point on one curve
and allowing you to choose any point on the other
curve. While Hausdorff distance does measure close-
ness in space, it does not take into account the flow of
the curve in space; two curves may have small Hausdorff
distance but still not be “similar”.

A second metric for measuring similarity between
curves in Euclidean space is the Fréchet distance, which
is the minimum length of a leash required to connect
a man and dog as they travel, from one endpoint to
the other, without backtracking, along the two curves.
Fréchet distance is used in different applications as a
more accurate measure of similarity, and algorithms
have been developed to compute Fréchet distance in sev-
eral different settings[1, 8, 9]. Several variants, such as
geodesic Fréchet distance [3] and homotopic Fréchet dis-
tance [2], have also been introduced to generalize the
notion of Fréchet distance to more general settings.

∗Department of Mathematics and Computer Science, Saint

Louis University, echambe5@slu.edu
†Department of Mathematics and Computer Science, Saint

Louis University, letscher@slu.edu

b

a

Figure 1: The height of the homotopy measures the
maximum length of the curves “parallel” to α and β,
while Fréchet distance measures the maximum length
of the “transverse” curves.

In this paper, we examine a metric for measuring
similarity between curves which is in many ways or-
thogonal to standard Fréchet distance. Any homotopy
H : I × I → S between two curves yields two families
of curves: one set H(s0, t) (for fixed s0) that run “be-
tween” the two curves being examined and the other
H(s, t0) (for fixed t0) that run “parallel” to the the
curves being examined, see figure 1. Fréchet distance is
the maximum length curve in the first family of curves,
H(s, ·), while the height of the homotopy is the maxi-
mum length curve in the second family, H(·, t).

Borrowing the concept of thin position from 3-
manifold topology, we will show that among the min-
imal height homotopies between disjoint paths there is
one that never “reverses direction” or “collides with it-
self”. Thin position was developed by Gabai[6] and used
by Thompson in the 3-sphere recognition algorithm[10].
The technique focuses on studying local properties of
a sequence and then using local optimality conditions
to prove global properties. We use this concept to
prove the main theorem of the paper and also provide a
characterization of move sequences that are of minimal
“complexity”.

2 Definitions

We will be working on a triangulated surface M , where
curves lie along the edges of the triangulation and the
edges of the triangulation are unweighted. In general, a
path is a continuous map p : [0, 1] → M . However, we
restrict paths to follow the edges of the triangulation,
where each edge is oriented consistently with traversing
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starting at p(0) and ending at p(1). The length of a path
p, written |p|, is the number of edges (with multiplicity)
in the path.

A path is a geodesic if it is impossible to perform a
local reduction in its length. In other words (since the
underlying graph is unweighted), a path is a geodesic if
no edge in the path is immediately followed by its re-
versal and if no two cofacial edges appear consecutively
along the path. Note that this is not the same as being
a shortest path, as it is a purely local condition.

A path on a surface is simple if it is 1-1. Since (in
a combinatorial sense) the same edge or vertex may be
appear many times in a path, we will often examine
paths that have been perturbed in an infinitesimally
small neighborhood of the edges of the triangulation.
We will say a path is simple if there exists such a per-
turbation to an embedded curve. Likewise, two paths
will be considered disjoint if, after an infinitesimal per-
turbation, there have no points in common.

Two curves γ1, γ2 : [0, 1] → M are homotopic if there
is a continuous map H : [0, 1] × [0, 1] → M such that
H(0, t) = γ1(t) and H(1, t) = γ2(t). Essentially, this
says that you can continuously deform one curves to
another. However, since our paths lie completely in
the edges of the triangulation, we will use an alternate
mechanism to move from one path to another. We will
study a move sequence from one path to another where
each move is one of the following elementary moves.

• Face lengthening : A move from a single edge e0

across a face to two edges e1 and e2.

• Face shortening : A move from two consecutive
cofacial edges e0 and e0 across a face to a single
edge e2.

• Spike : Move across a single edge, so that an edge e
followed by its reversal is included in the new path.

• Reverse spike : A reverse spike move, where an
edge and its immediate reversal is removed from
the path.

We will refer to the set of paths obtained by applying
elementary moves one at a time as intermediate paths.

We can connect a move sequence with k moves to
an obvious implied homotopy H : [0, 1] → M , where
H(s, 1/i) is equal to the ith intermediate path in the
sequence; the homotopy remains fixed between these
paths except where the elementary move is being per-
formed. If each of these intermediate paths is embedded
then we will refer to the move sequence as simple. This
is equivalent to saying that the implied homotopy can
be perturbed to be an isotopy.

We would like to be able to say that, under appro-
priate conditions, moves sequences never backtrack and
proceed monotonically from one path to another. To
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Figure 2: Elementary moves (top to bottom): face
lengthening, face shortening, spike and reverse spike.

Figure 3: Two forward moves. Locally both move away
from the region previous visited. Globally, the second
results in a non-simple path.

be precise, consider a transverse orientation on a path
that (locally) indicates where the path was previously.
A move is considered (locally) forward if the move re-
spects the transverse orientation. Figure 3 shows a for-
ward move applied to a path where the transverse ori-
entation is represented by shading; here, the shading is
“behind” the curve, so the forward move goes away from
the shaded side. Note that since this is purely local, a
forward move may still cause the intermediate path to
be non-simple. Also, note that move sequences consist-
ing of only locally forward moves can have “spirals.”

A move sequence is embedded if it is simple and only
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uses forward moves. This is equivalent to saying that af-
ter a perturbation, its associated homotopy is an isotopy
that is an embedding everywhere except at the preim-
age of the two endpoints of the paths. Essentially, an
embedded move sequence has intermediate paths that
move smoothly across the disk, never crossing them-
selves or other intermediate paths.

The height of a homotopy is the maximum length
of any intermediate curve: maxt∈[0,1] |H(·, t)|; similarly,
the height of a move sequence is the length of the longest
curve in the sequence. We wish to determine the mini-
mum height homotopy between two curves which form
the boundary of a planar, unweighted triangulation; in
other words, we want the morphing between these two
curves that keeps the maximum length of an interme-
diate curve as small as possible. However, it is not im-
mediately obvious that this homotopy is embedded or
forward; our main result, stated formally and proven
in the next section, is that some minimum height move
sequence is embedded and proceeds uniformly from one
path to another without spirals or other degeneracies.

To accomplish this, we need a more precise way to
compare two move sequences. Given a sequence of
moves, the length spectrum is the set of all lengths of the
intermediate paths in the sequence. Two length spec-
trums can be compared by ordering each in decreasing
order and comparing the two lists lexicographically. A
move sequence is said to be in thin position if its length
spectrum is lexicographically minimal among all possi-
ble move sequences between the same paths. A move
sequence that is in thin position has minimal height.
Furthermore, every subsequence of moves also has min-
imal height.

A move sequence is locally thin if you cannot decrease
the lengths in its length spectrum by any of the following
local improvements:

1. Remove a pair of sequential moves where the inter-
mediate curves before and after the pair of moves
are combinatorially identical.

2. Reverse the order of a path lengthening move fol-
lowed by a path shortening move that are indepen-
dent of each other.

3. Replace a pair of moves that accomplish the result
as a single move. For example, a spike move fol-
lowed by an adjacent face shortening move can be
replaced by a single face lengthening move.

We will see that embedded locally thin move sequences
share many properties with move sequences that are in
thin position.

3 Unweighted Planar Triangulations

The setting for all our results in the next two sections is
a planar, unweighted triangulation (so our underlying

manifold is a disk), with two distinguished vertices a
and b on the outer face of the graph. Our goal is to
characterize the minimum height homotopy from one
side of the outer face (a path from a to b along the
outer face) to the other side of the outer face.

At each stage of a homotopy from one boundary curve
to the other, we have a connected curve between a and
b. Our goal is to argue that in a minimum height homo-
topy, these intermediate paths never move backwards -
namely, once an elementary move occurs, it will never
be in our interest to move back across that face or edge.
We will show that any move sequence that contains a
backwards move is not in thin position (which immedi-
ately implies that it cannot be a minimum height ho-
motopy). Furthermove, the move sequence must be em-
bedded or, equivalently, the homotopy induced by the
move sequence can be infitensimally perterbed to be an
embedded isotopy.

Theorem 1 Given a move sequence from one side of
the boundary of an unweighted planar triangulation to
the other side, if the move sequence is in thin position,
then it is embedded.

Corollary 2 There exists a minimum height moves se-
quences that is embedded.

The proof of theorem 1 will follow from the follow-
ing two propositions. The first shows that there are no
backwards moves, and the second shows that any move
sequence consisting of only forward moves is embedded.

Proposition 3 Any move sequence in thin position will
never contain a backwards move.

The proof of this proposition relys on the observation
that if there is a backwards move for a move sequence
in thin position, then the move immediately prior to it
must share an edge with the backwards move. In a case
by case analysis, this pair of moves can be replaced by
different moves that reduce the complexity of the move
sequence.

Proposition 4 A forward move sequence from an arc
on the boundary of a disk to the complementary arc in
the boundary is embedded.

This can be proved using arguments involving covers
of topological spaces.

4 Characterizing Move Sequences in Thin Position

In applications of thin position to 3-manifold topology,
the local maximums and minimums of sequences that
are in thin position have particularlly nice properties.
The same is true for move sequences.
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Figure 4: The configurations of paths at the local max-
imimums of a move sequence in (locally) thin position.
The paths from a to x and y to b are geodesics.

Theorem 5 If a move sequence is either in thin posi-
tion or is embedded and locally thin then:

1. A path in the move sequence whose length is a local
minimum is a geodesic.

2. A path in the move sequence whose length is a lo-
cal maximum is geodesic everywhere except two or
three points, and at these points the path has, up
to symmetry, one of the configurations shown in
Figure 4.

5 Extensions and Open Questions

The case analysis used in the proof proposition 3
will also extend to weighted triangulations where the
weights on each face satisfy the triangle inequality.
Moreover, the same case analysis plus a few additional
arguments can be used to prove similar results about
move sequence between the boundary components of a
triangulated annulus.

In sections 3 and 4, we have characterized the move-
ment of any minimum height homotopy. The primary
remaining open question, of course, is to find a polyno-
mial time algorithm which, given two cycles on a com-
binatorial surface, computes a homotopy of minimum
height (or at least the height of the minimum homo-
topy). Some initial work in this area has been done for
the planar version of the problem, where the graph it-
self is a series parallel graph whose edges do not need
to satisfy the triangle inequality [5]. One possible strat-
egy for an algorithm in more general settings would rely
on proving that the shortest path appears in a move se-
quence in thin position, and then recursively computing
the minimum height homotopy in each half of the graph
using our characterization of local minimum and max-
imum intermediate paths. However, our proofs do not
give that the shortest path will appear in the minimum
height homotopy, although we conjecture that it does.

It is not even clear that the problem is not NP-
Complete, since it bears a close resemblance to finding

the cut width of the dual graph. In fact, if we only allow
face lengthening and face shortening moves, the problem
is entirely equivalent to finding the cut width of the dual
graph, which is NP-Hard even in planar graphs. (See [4]
for a survey of cut width and other similar graph layout
problems.)
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Appendix

In the proof of proposition 3, we will use more than
just the length spectrum of the move sequence to
show that there are no backwards moves. For a move
sequence s, define the complexity as the vector C(s) as
the quadruple

C(s) = (height spectrum, number of moves,
number of backwards moves,
time of first backwards move)

We will examine move sequences where C(s) is minimal
when ordered lexicographically.

Lemma 6 In the move sequence s minimizing C(s),
the elementary move immediately preceding the first
backwards move must involve some edge which is used
in the first backwards move.

Proof. If the move directly before the first backwards
move did not involve an edge involved in the first back-
wards move, then we may form s′ by swapping the order
of the these two moves without changing anything else.
This gives a complexity C(s′) with the first three co-
ordinates identical but the time of the first backwards
move earlier, which contradicts our choice of s. �

Lemma 7 A move sequence minimizing C(s) contains
no backwards moves.

Proof. Consider a move sequence s minimizing C(s).
If it contains a backwards move, we will show that C(s)
can be made smaller by modifying or removing the first
backwards move.

Case I: The first backwards move is a face lengthen-
ing move, which replaces an edge e0 with two edges e1

and e2 that share common face with e0. By Lemma 6,
the move immediately preceding the first backwards
move must involve e0.

If the elementary move directly before the first back-
wards was a Face I move, we may suppose without loss
of generality that it moved from e1 across the face to e0

and e2. The first backwards move must then go from
e0 to e2, e1, so the sequence of edges in the leash after
the move will be e2, e2, e1. To simplify this, we elimi-
nate these two moves, and replace them with an Edge
I move, which inserts a spike along edge e2. This mod-
ification does not increases any lengths of the interme-
diate curves and reduces the number of moves overall,
which contradicts our choice of s as minimizing C(s).
See Figure 5.

If the elementary move immediately before the first
backwards move is a face shortening move, then we must
go from e1, e2 to e0 and then immediately have the back-
wards move from e0 to e1, e2. We can simply cancel
both of these moves out, which does not increase the
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Figure 5: If the first backwards is a face lengthen-
ing move which occurs immediately after a face length-
ening move (top), we can replace the two moves with an
Edge I move (bottom) and get a better move sequence.
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Figure 6: If the first backwards is a face lengthen-
ing move which occurs immediately after a face shorten-
ing move, we can simply cancel the two moves to get a
move sequence which is shorter and has one fewer back-
wards move.

any of the path lengths but which decreases the num-
ber of moves, again contradicting our choice of s. See
Figure 6.

It is not possible for the move immediately preced-
ing the first backwards move to be an spike or reverse
spike move, since the move must involve the copy of e0

which will move backwards, and any copy of e0 inserted
by an spike or reverse spike move will not border the
face which the first backwards move goes across.

Case II: Suppose the first backwards move is a face
shortening move, which replaces the edges e0 and e1

with the cofacial edge e2. By Lemma 6, the previous
move must involve either e0 or e1.

Again we have several possible choices for the move
immediately preceding our first backwards move. If the
previous move is a face lengthening move, we have two
possibilities, both of which can be improved: see Fig-
ures 7. If the previous move is face shortening , then
we can reduce the number of moves; see Figure 8. The
previous move cannot be a spike move, since the there
would be no face adjacent to one of the edges for a back-
wards face shortening move to go across. If the previous
move is a reverse spike move, then we can simply swap
the order of the two moves to make the first backwards
move occur earlier; see Figure 9.
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Figure 7: If the first backwards move is a face shorten-
ing move which occurs immediately after a face length-
ening move, we have two possibilities (row 1 or row 3);
in either case, we can switch the moves to make the first
backwards move occur earlier (row 2) or to decrease the
total number of moves.
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Figure 8: If the first backwards move is a face shorten-
ing move which occurs immediately after a face short-
ening move (top), we can replace the two moves with
a single backwards reverse spike move, decreasing the
number of moves and moving the first backwards move
earlier (bottom).

Case III: Suppose the first backwards move is a
spike move, which introduces two copies of some edge
e2. By Lemma 6, we know that the move immediately
preceding the first backwards move must introduce the
point which the backwards spike move comes from.

If the move immediately preceding the first backwards
move is a face lengthening move, then we can simply re-
place it with a forwards move that results in the same
sequence, reducing the number of backwards moves; see
Figure 10. If the previous move was a face shorten-
ing move, we have three possibilities, any of which can
be modified to make C(s) smaller; see Figure 11. If the
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Figure 9: If the first backwards move is a face short-
ening move which occurs immediate after an reverse
spike move (top), then we can replace with a backwards
reverse spike followed by a reverse face shortening move,
which moves the first backwards move ealier (bottom).

e
2

e
0

=

e
2

e
0

=

Figure 10: If the first backwards move is a spike move
which immediately follows a face lengthening move
(top), we can reduce the number of backwards moves
(bottom).

move was a spike move, then we can replace the first
backwards move by a forwards spike move instead, re-
sulting in the same intermediate path. If the previous
move was a reverse spike move, then we must be simply
introducing and then removing a spike, so we can cancel
the two moves out.

Case IV: Suppose the first backwards move is a reverse
spike move, which takes two consecutive copies of an
edge e on the intermediate path and removes them. By
Lemma 6, we know that the move immediately before
must have created one of the copies of e which will be
removed.

Consider the edges immediately before and after the
two copies of e on the intermediate path. If either of
those edges is another copy of e, we can replace the back-
wards move with a forward reverse spike move which
results in an equivalent intermediate path. So we may
assume that the edge before and after the copies of e on
the curve are different than e.

Now consider the move immediately preceding the
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Figure 11: If the first backwards move is a spike move
which is preceded by a face shortening move, we have
3 possible cases; see rows 1, 3, and 5 for the initial
sequence and 2, 4, and 6 for the modified sequences.

first backwards move. Neither a face lengthening or
face shortening move can result in this configuration,
since either move would need to be a backwards move
in order to leave such a spike. If the preceding move
is a spike move, then we can simply cancel the two
moves out. The only remaining case, where the pre-
ceding move is a reverse spike move, also cannot hap-
pen, since a move which removes a spike cannot leave
duplicate copes of an edge involved afterwards. �

Proof of proposition 3. Suppose that a move se-

quence s is in thin position. Assume that s contains
a backwards move. Then C(s) is not minimal and one
of the cases in the proof of the previous lemma can be
used to reduce the complexity. These simplifications
can be repeated until there are no backwards moves.
Somewhere is this sequence of simplifications, a back-
wards move must be removed. All of the simplifications
in the previous lemma that remove a backwards move
reduce the length spectrum or reduces the number of
moves. Note that the simplifications reduce the number
of moves do so by removing values from the length spec-
trum, which reduces its length. So if a move sequence
has backwards moves, then its length spectrum can be
lowered. This contracts the assumption that s is in thin
position. �

Note that the simplication moves used in proving that
there are no backwards moves can be turned into an al-
gorithm to simplify any move sequence. In particular,
the cases above can be used to move the first backwards
move earlier and eventually eliminate it; iterating this
process will remove all backwards moves. At the same
time, move sequences that are not locally thin can be
simplified. This yields an algorithm to turn an arbitrary
move sequence into one that is locally thin and embed-
ded. In the original move sequence has n moves than
this algorithm runs in O(n2) time.

To prove that the move sequence without backwards
moves is embedded we need to use a couple of concepts
from topology; see [7] or any other introductory text
for a more detailed discussion of these issues. First,
a map f : X → Y is a local homeomorphism if for
every x ∈ X there exists an open neighborhood U of
x such that f |U is a homeomorphism. A covering map
is a continuous map p : C → X such that for every
x ∈ X there exists an open neighborhood U of x such
that p−1(U) is a disjoint union of open sets such that
p restricted to any component maps homeomorphically
onto U . In this situation C is called a covering space or
cover of X.

Proof of proposition 4. Consider the homotopy con-
structed from a move sequence consisting of only for-
ward moves. Using the construction discussed in the
second section, this fails to be an embedded isotopy is
several ways. To remedy this, we can modifiy the homo-
topy so that it is a local homeomorphism. When per-
forming each move, we can perturb each curve towards
their “right” in a arbitrarily small neighborhood of the
paths. Figure 12 illustrates this pertubation. Note that
this change is purely local and turns the homotopy into
a local homeomorphism away from the start and end
verticies. However, it is plausible that the curve could
sprial back upon itself while still being a local homeo-
morphism.

The homotopy H : [0, 1]× [0, 1] → S obtained by this
proceedure is not a homeomorphism since H(s, 0) =



21st Canadian Conference on Computational Geometry, 2009

Figure 12: Perturbing the homotopy associated with a
move sequence to a local homeomorphism. (Top) Mov-
ing across a face (Bottom) A local homeomorphism that
is a not a homemophism.

H(0, 0) and H(s, 1) = H(0, 1) for all s. However,
it induces a continuous map [0, 1] × [0, 1]/{(s, 0) ∼
(s′, 0), (s, 1) ∼ (s′, 1)∀s} → S. This induced map is a
local homeomorphism from a disk onto itself and hence
is a covering map. There are no non-trivial covers of
a disk. Hence this map is a homemorphishm, which
implies that H is an embedded isotopy and the move
sequence must be embedded. �

Proof of theorem 5. If a locally minimum intermedi-
ate path is not a geodesic, then the move sequence can
be simplified, reducing the lengths of the intermediate
curves (and contradicting the fact that it is a local min-
imum).

At any locally maximum intermediate path, there
must be adjacent edges that either form the tip of a
spike or are edges of the same face. In fact, since we
are at a local maximum in a move sequence, there have
to be at least two of these configurations: one that sim-
plifies the curve forwards and the other backwards. If
any of these two configurations do not share an edge
in common then the move sequence can be modified to
interchange the order that these moves are done. This
would reduce the complexity of the length spectrum,
which cannot happen to a move sequence that is thin or
locally thin. This also implies that there can be at most
three points where the path fails to be a geodesic, as
the existence of a forth point would allow two disjoint
moves to opposite sides of the curve.

The previous arguement shows that there are either
two or three points where the path fails to be a geodesic.
These points are adjacent on the path, and the simpli-
fications alternate sides of the path. There are are a
total of 24 possible configurations. The cases differ on
whether spike or face moves are involved and to which
side they occur. Up to symmetry there are 9 possibil-

ities that can be distinguished as you follow the path
and see either spike moves or faces moves at these ex-
ceptional points. Note that reversing the sequence or
swapping the sides that the moves occur on result in
equivalent configurations and use the same arguments
as below.

Case I (Spike-Spike): For this to occur a spike move
followed by a reverse spike move must occur and they
share an edge in common. The paths immediately be-
fore and after the local maximum would be combina-
torially identitical. This pair of moves can be removed
reducing the complexity of the length spectrum.

Case II (Spike-Face): Here, a spike move must occur
followed by a face shortening move. These two moves
share an edge in common. This pair of moves can be
replaces by a single face lengthening move reducing the
complexity of the length spectrum.

Case III (Face-Face): This is the first allowable case
in the statement of the theorem; see Figure 4.

Case IV (Spike-Spike-Spike): This case is similar to
case I above; again a pair of the spike moves can be
removed, simplifying the move sequence.

Case V (Spike-Spike-Face): Either a spike move or
a face move occurs immediately before the local maxi-
mum and a spike occurs immediately after. The same
arguments as in case I and II can be used to remove a
move in either case.

Case VI (Spike-Face-Spike): One of the spike moves
occurs immediately before the local maximum, and the
face shortening must occur after. These two moves can
be removed and replaced by a single move as was done
in case II.

Case VII (Spike-Face-Face): Either a spike or face
lengthing move occurs immediately before the local
maximum and a face shortening follows. Using the same
arguments as in case I and II, both cases can be resolved.

Case VIII (Face-Spike-Face): A face lengthing occurs
prior to the local maximum and is followed by a spike re-
versal. The same argument in case II can replace these
two moves by a single one, simplifying the move se-
quence.

Case IX (Face-Face-Face): This can happen and is
the second of the two allowable configurations in the
statement of the theorem; see Figure 4.

�


