
Walking Your Dog in the Woods in Polynomial Time

Erin Wolf Chambers
Department of Computer Science

University of Illinois, Urbana-Champaign
erinwolf@uiuc.edu

Jeff Erickson
Department of Computer Science

University of Illinois, Urbana-Champaign
jeffe@cs.uiuc.edu

Francis Lazarus
CNRS, Laboratoire LIS

Institut National Polytechnique de Grenoble
Francis.Lazarus@lis.inpg.fr

Éric Colin de Verdière
CNRS, Département d’Informatique

Ecole Normale Supérieure, Paris, France
Eric.Colin.de.Verdiere@ens.fr

Sylvain Lazard
INRIA Lorraine, LORIA

Nancy, France
lazard@loria.fr

Shripad Thite
California Institute of Technology

Center for the Mathematics of Information
shripad@caltech.edu

ABSTRACT

The Fréchet distance between two curves in the plane is
the minimum length of a leash that allows a dog and its
owner to walk along their respective curves, from one end
to the other, without backtracking. We propose a natural
extension of Fréchet distance to more general metric spaces,
which requires the leash itself to move continuously over time.
For example, for curves in the punctured plane, the leash
cannot pass through or jump over the obstacles (“trees”).
We describe a polynomial-time algorithm to compute the
homotopic Fréchet distance between two given polygonal
curves in the plane minus a given set of obstacles, which are
either points or polygons.

Categories and Subject Descriptors: F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems—Geometrical problems and compu-
tations

General Terms: Algorithms, Performance

Keywords: Homotopic Fréchet distance, geodesic leash map

1. INTRODUCTION

Given two input curves, a natural question that arises is how
similar the curves are to each other. One common measure
is the Hausdorff distance, which simply takes the minimum
distance between any two points, one from each curve. While
the Hausdorff metric does measure closeness in space, it does
not take into account the flow of the curves, which in many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’08, June 9–11, 2008, College Park, Maryland, USA.
Copyright 2008 ACM 978-1-60558-071-5/08/06 ...$5.00.

applications, such as morphing in computer graphics, is an
important property of the curves.

The Fréchet distance, sometimes called the dog-leash dis-
tance, is defined as the minimum length of a leash required
to connect a dog and its owner as they walk without back-
tracking along their respective curves from one endpoint to
the other. The Fréchet metric takes into account the flow of
the two curves because the pairs of points whose distance
contributes to the Fréchet metric sweep continuously along
their respective curves. It is therefore possible for two curves
to have small Hausdorff distance but large Fréchet distance.
Fréchet distance is used as a more accurate measure of simi-
larity in many different applications [2, 1].

When the two curves are embedded in a general metric
space, the distance between two points on the curves (the
length of the shortest leash joining them) is not the Euclidean
distance but a geodesic distance. For instance, this is the
case if the two curves lie on a terrain (or any surface) [16] or
if the leash is constrained to the interior of a simple polygon
[9, 10]. The definition of the ordinary Fréchet distance allows
the leash to switch discontinuously, without penalty, from
one side of an obstacle or a mountain to another.

In this paper, we introduce a continuity requirement on the
motion of the leash. We require that the leash cannot switch,
discontinuously, from one geodesic to another; in particular,
the leash cannot jump over obstacles and can sweep over a
mountain only if it is long enough. We define the homotopic
Fréchet distance between two curves as the Fréchet distance
with this additional continuity requirement. This continuity
requirement is satisfied automatically for curves inside a
simple polygon, but not in more general environments like
convex polyhedra.

The motion of the leash defines a correspondence between
the two curves that can be used to morph between the two
curves—two points joined by a leash morph into each other.
The homotopic Fréchet distance can thus be thought as the
minimal amount of deformation needed to transform one
curve into the other.

In robotics, the two curves being compared may be two
trajectories in the work space which happens to be the plane

erinwolf@uiuc.edu
jeffe@cs.uiuc.edu
Francis.Lazarus@lis.inpg.fr
Eric.Colin.de.Verdiere@ens.fr
lazard@loria.fr
shripad@caltech.edu

with obstacles. The similarity between the two trajectories is
more accurately measured by the homotopic Fréchet distance
rather than the ordinary Fréchet distance which ignores
obstacles.

Efficiently computing the homotopic Fréchet distance in
general metric spaces is a new open problem. We present a
polynomial-time algorithm for a special case of this problem,
which is to compute the homotopic Fréchet distance between
two polygonal curves in the plane minus a set of point or
polygonal obstacles.

2. DEFINITIONS
Let S be a fixed Hausdorff metric space. A curve in S is
a continuous function from the unit interval [0, 1] to S. We
will sometimes abuse notation by using the same symbol
to denote a curve A : [0, 1] → S and its image in S. A re-
parameterization of [0, 1] is a continuous, non-decreasing,
surjection α : [0, 1]→ [0, 1]. A reparameterization of a curve
A : [0, 1] → S is any curve A ◦ α, where α is a reparam-
eterization of [0, 1]. The length of any curve A, denoted
len(A), is defined by the metric of S; in particular, two
reparameterizations of the same curve have the same length.

A leash between two curves A and B is another curve
λ : [0, 1] → S such that λ(0) = A(s) and λ(1) = B(t) for
some parameters s and t. A homotopy between curves A
and B is a continuous map h : [0, 1]× [0, 1] → S such that
h(·, 0) = A and h(·, 1) = B. For any t ∈ [0, 1], the one-
parameter function h(t, ·) is a leash from A to B. A leash
map between curves A and B is a homotopy between some
reparameterization of A and some reparameterization of B.
Intuitively, a leash map describes the continuous motion of a
leash between a dog walking along A and its owner walking
along B. The length of a leash map `, denoted len(`), is the
maximum length of any leash `(t, ·). Finally, the homotopic
Fréchet distance between two curves A and B, denoted
F(A,B), is the infimum, over all leash maps ` between A
and B, of the length of `:

F(A,B) := inf
leash map `:[0,1]2→S

„
max
06t61

len(`(t, ·))
«
.

In contrast, the classical (“leashless”) Fréchet distance is de-
fined directly in terms of reparameterizations and distances:

F(A,B) := inf
α,β:[0,1]→[0,1]

„
max
06t61

d(A(α(t)), B(β(t)))

«
.

In spaces where shortest paths vary continuously as their
endpoints move, such as Euclidean space or the interior of a
simple polygon, the two definitions are equivalent. In general,
however, the homotopic Fréchet distance between two curves
could be larger (but never smaller) than the classical Fréchet
distance.

A homotopy relative to A and B, or simply relative
homotopy, is a continuous function h : [0, 1] × [0, 1] → S,
such that h(·, 0) and h(·, 1) are respectively of the form
A(u(·)) and B(v(·)), where u and v are re-parameterizations
of [0, 1].

Two leashes λ and λ′ are relatively homotopic, denoted
λ ' λ′, if there is a relative homotopy h such that h(0, ·) = λ
and h(1, ·) = λ′. It is easy to prove that ' is an equivalence
relation over the set of leashes. Any leash map is (the
transpose of) a relative homotopy; thus, all leashes `(t, ·)
determined by a leash map ` lie in the same relative homotopy
class.

3. PRELIMINARIES

In this paper, we develop a polynomial-time algorithm to
compute the homotopic Fréchet distance between two polyg-
onal paths in E = E2 \ P , for some set P of closed polygons,
where the underlying metric is geodesic distance. The poly-
gons P act as obstacles; in any leash map in E , the moving
leash can neither touch nor jump over any obstacle.

Specifically, the input to our problem consists of two polyg-
onal curves A and B and a set P of polygons in the Euclidean
plane. Curves A and B may (self-)intersect, but neither
curve intersects any obstacle in P . To simplify our exposi-
tion, we assume that no three vertices of the input (vertices
of polygons in P or vertices of A and B) are collinear; this
assumption can be enforced algorithmically using standard
perturbation techniques [19].

Let a0, a1, . . . , am denote the sequence of vertices of A;
these points define a standard parameterization A : [0,m]→
E whose restriction to any integer range [i− 1, i] is an affine
map onto the corresponding edge ai−1ai. Similarly, the
vertices b0, b1, . . . , bn of B define a piecewise-affine param-
eterization B : [0, n] → E . Let P1, P2, . . . , Po denote the
obstacle polygons in P , and let k denote the total number of
vertices in all obstacle polygons. In the special case where ev-
ery obstacle is a single point, we obviously have k = o = |P |.
Finally, let N = n+m+ k + 2 denote the total complexity
of the input.

Figure 1 illustrates optimum leash maps for a few sample
inputs where P is a discrete set of points.

3.1 Geodesic Leash Maps

To simplify our presentation, we will allow ‘paths’ in E to
touch obstacles in P . Specifically, we consider geodesics:
piecewise-linear curves in the closure of E , whose interior
vertices are vertices in P . Although geodesics may run along
obstacle boundaries, they do not intersect the interior of any
obstacle.

In the special case where the obstacles are points (so the
closure of E is the entire plane), we need some additional
information to ensure that each geodesic lies in a unique
homotopy class. Specifically, we associate a turning angle
with each obstacle point that a geodesic touches. Let Cε be a
circle centered at obstacle point p and radius ε, small enough
to exclude every other obstacles in P . A turning angle of θ at
an obstacle point p indicates that replacing the portion of γ
inside Cε with a counterclockwise arc of length θε around Cε
yields a new path homotopic to γ. For example, a path with
turning angle zero makes a U-turn at p without enclosing p;
a path that goes straight through p with p on its left (resp.
right) has turning angle π (resp. −π); a turning angle of 10π
means the path makes a U-turn after winding around the
point five times counterclockwise. A geodesic could meet the
same obstacle point more than once; we associate a different
turning angle with each incidence.

It can be shown that for any two points x and y in E , the
shortest path from x to y in any relative homotopy class is
a unique geodesic, in which every turning angle at a point
obstacle is either at least π or at most −π. Conversely, every
geodesic in which every turning angle is either at least π or
at most −π is a shortest path in some homotopy class.

A geodesic leash map is a leash map ` : [0, 1]× [0, 1]→
E2 in which every leash `(t, ·) is a geodesic, and all these

1-1

1

1

2

2
3

3

4

4
5

5

1-1

4, 5, 6

2, 3, 4 5

6

1

1

3

7

7

2

1-1

1

1

4

42, 3

2

3

Figure 1. Optimum leash maps for three inputs. Dashed curves between matching numbers represent intermediate leashes.

geodesics are in the same relative homotopy class. We next
prove that for any leash map `, there is a shorter geodesic
leash map `′ in the same homotopy class, with the same
parameterizations of A and B.

Lemma 3.1. Suppose ` is a leash map between two curves A
and B. There is a geodesic leash map `′ between A and B
such that, for all t ∈ [0, 1], the leash `′(t, ·) is the shortest path
homotopic to `(t, ·) with the same endpoints. Additionally,
the length of `′ is at most the length of `.

Proof: We lift ` to the universal cover Ê of E , obtaining a
leash map ˆ̀between the lifts Â and B̂ of A and B respectively.
For each t ∈ [0, 1], let ˆ̀′(·, t) be the shortest path between

the endpoints of ˆ̀(t, ·) in the same homotopy class. The

universal cover Ê is a simply-connected space with a locally
Euclidean metric, so shortest paths in Ê vary continuously
as the endpoints move continuously. It follows that ˆ̀′ is
a continuous function in both arguments, and therefore a
(geodesic) leash map in Ê . The projection `′ of ˆ̀′ back
to S is a (geodesic) leash map between A and B. For all t,
the leash `′(t, ·) is the shortest path homotopic to `(t, ·), so
maxt len(`′(t, ·)) 6 maxt len(`(t, ·)). �

This lemma implies that the homotopic Fréchet distance
between A and B is the length of a geodesic leash map in some
homotopy class determined by some reparameterizations of
A and B. Thus, the homotopic Fréchet distance can be
redefined as the minimum, over all homotopy classes h, of
the classical Fréchet distance, where distances are defined
by shortest paths in relative homotopy class h:

Fh(A,B) := min
α,β:[0,1]→[0,1]

„
max
t∈[0,1]

Dh(A(α(t)), B(β(t)))

«
F(A,B) := min

homotopy class h
Fh(A,B)

(Here, Dh(u, v) denotes the length of the shortest path from
u to v in relative homotopy class h.)

We call a relative homotopy class h optimal if F(A,B) =
Fh(A,B).

For the rest of the paper, we restrict ourselves to geodesic
leashes and geodesic leash maps. In Section 4, we provide a
characterization of an optimal homotopy class, and we use
this characterization to enumerate possible optimal homotopy
classes in polynomial time. In Section 5, we describe a
polynomial-time algorithm to compute the Fréchet distance
within a particular homotopy class. Combining these two
subroutines gives us a polynomial-time algorithm to compute
homotopic Fréchet distance.

3.2 Homotopic Shortest Paths

Our algorithm relies on observations by Hershberger and
Snoeyink [13] about shortest homotopic paths in the punc-
tured plane; see also [12, 5, 11, 3, 4]. Suppose we already
know a shortest path (a leash) λ between points a ∈ A and
b ∈ B, such as, for instance, a straight-line segment ab. To
compute the geodesic leash between some other pair of points
in the same homotopy class as λ, we follow the continuous
evolution of the geodesic as the points a and b move along
their respective curves. The sequence of obstacle vertices
on the leash behaves like a double-ended queue or deque. A
new vertex is pushed onto one end of the deque whenever
the first or last segment of λ collides with an obstacle vertex.
Conversely, a vertex is popped off one end of the deque when
the first or last two segments of λ become collinear, and if
their common vertex is a point obstacle, the turning angle
at that point is either π or −π.

4. OPTIMAL HOMOTOPY CLASSES

4.1 Minimality

Let len(λ) denote the length of any geodesic leash λ, and
let turn(λ) denote the sum of the absolute values of the
turning angles at any point obstacles on λ. (Again, if λ
meets the same point obstacle more than once, each incidence
separately contributes to turn(λ). If none of the obstacles
are points, then turn(λ) = 0.) For any pair of leashes λ and
λ′, we write λ � λ′ if and only if either (a) len(λ) < len(λ′),
or (b) len(λ) = len(λ′) and turn(λ) ≤ turn(λ′). We write
λ ≺ λ′ whenever λ � λ′ but λ′ 6� λ.

We can extend this partial order to homotopy classes as
follows. For any relative homotopy class h and any s, t ∈
[0, 1], let σh(s, t) denote the shortest path in h between
points A(s) and B(t). For any two homotopy classes h
and h′, we write h � h′ if and only if σh(s, t) � σh′(s, t) for
all parameters s and t. We write h ≺ h′ whenever h � h′

but h′ 6� h.

Lemma 4.1. For any relative homotopy classes h and h′, if
h � h′, then Fh(A,B) 6 Fh′(A,B).

Proof: Let `′ be an optimum leash map in homotopy class h′,
so that len(`′) = Fh′(A,B). For some reparameterizations α
and β, we have `′(t, ·) = σh′(α(t), β(t)) for all t. Let ` be the
geodesic leash map in homotopy class h defined by the same
reparameterizations: `(t, ·) = σh(α(t), β(t)) for all t. The
definition of � implies that len(`(t, ·)) 6 len(`′(t, ·)) for all t.
It follows that Fh(A,B) 6 len(`) 6 len(`′) = Fh′(A,B). �

A relative homotopy class h is minimal if h′ � h implies
h � h′.

Lemma 4.2. For any relative homotopy class h, there is a
minimal relative homotopy class h′ such that h′ � h.

Proof: Assume, for the sake of contradiction, that there
is no minimal relative homotopy class h′ such that h′ � h.
Then, by induction, we can construct an infinite descending
chain of relative homotopy classes h = h0 � h1 � h2 � · · · .
To simplify notation, let σn = σhn(0, 0).

Consider the ordered list of obstacle points on each path σn.
There are finitely many such ordered lists, because len(σn) 6
len(σ0) for each n. Thus, up to taking a subsequence, we
may assume that every path σn visits the same sequence of
obstacle points. This assumption implies that all paths σn are
geometrically equivalent and thus have equal length. Thus,
by definition of �, we have turn(σn) < turn(σ0) for all n.
There are finitely many relative homotopy classes with a
given ordered list of vertices and with bounded total absolute
turning angle. (Specifically, since turn(σn) − turn(σ0) is
always a multiple of 2π, there are at most bturn(σ0)/2πc+ 1
such classes.) �

The two previous lemmas immediately imply that there is
a minimal optimal homotopy class.

In the next two subsections, we characterize minimal homo-
topy classes and describe how to enumerate them efficiently,
first for point obstacles and then for polygonal obstacles.

4.2 Point Obstacles

Suppose P is a fixed finite set of points. A proper line segment
is a line segment in E joining a point in A to a point in B.

Proposition 4.3. A relative homotopy class is minimal if
and only if it contains a proper line segment.

Proof: One direction of the proof is straightforward. Let
h be the relative homotopy class of the proper line segment
σ from A(s) to B(t). For any relative homotopy class h′ 6=
h, the shortest path σh′(s, t) must be longer than σ, so
σh′(s, t) 6� σ = σh(s, t), which implies that h′ 6� h. We
conclude that h is minimal.

Now let h be an arbitrary minimal homotopy class. Let
Â and B̂ be lifts of A and B in the universal cover Ê , such
that for all s and t, the shortest path σ̂h(s, t) between Â(s)

and B̂(t) is a lift of σh(s, t). Let P̂ denote the set of all
lifts of points in P ; these lifted obstacle points lie on the
boundary of Ê .

We prove that h contains a proper line segment in two
stages. First, we prove that no lifted obstacle point p̂ ∈ P̂
lies on every path σ̂h(s, t). Next, we construct a relative
homotopy from the initial leash σh(0, 0) to a proper line
segment.

Stage 1: No common corner. For the sake of deriving
a contradiction, suppose there is a lifted obstacle point p̂ ∈ P̂
such that for all s and t, the path σ̂h(s, t) passes through p̂.
For all s and t, the path σ̂h(s, t) is a shortest path, so its
turning angle at p̂ must lie outside the open interval (−π, π).
This turning angle is a continuous function of s and t, so
we can assume without loss of generality that it is always
greater than π. In other words, we assume that every path
σ̂h(s, t) winds counterclockwise around p̂.

Now p̂ is a lift of some obstacle p ∈ P , and σ̂h(s, t) similarly
projects to a geodesic σh(s, t). For each s and t, let τ(s, t)
denote the path with the same vertices and turning angles as
σh(s, t), except that the turning angle at p is reduced by 2π.
All paths τ(s, t) belong to a single relative homotopy class,
which we denote h′.

Fix parameters s and t, and consider the turning angles
of σh(s, t) and τ(s, t) at p. If the turning angle of σh(s, t)
at p is strictly between π and 3π, then the turning angle of
τ(s, t) at p is strictly between −π and π. In this case, τ(s, t)
cannot be the shortest path from s to t in this homotopy
class, so len(σh′(s, t)) < len(τ(s, t)) = len(σh(s, t)).

On the other hand, if the turning angle of σh(s, t) at p
is at least 3π, then the turning angle of τ(s, t) at p is at
least π, which implies that τ(s, t) is the shortest path from
s to t in h′. In this case σh(s, t) and σh′(s, t) = τ(s, t) are
geometrically equivalent and thus have equal length, but
turn(σh′(s, t)) = turn(σh(s, t))− 2π < turn(σh(s, t)).

Hence σh′(s, t) ≺ σh(s, t) for all s and t, which contradicts
our assumption that h is a minimal homotopy class. We
conclude that no lifted obstacle point p̂ lies on every shortest
path σ̂h(s, t).

Stage 2: Homotopy construction. If the shortest path
σ̂h(0, 0) is a proper line segment, then the geodesic σh(0, 0) is
also a proper line segment, and the proof is complete. Thus,
we assume that σ̂h(0, 0) passes through at least one point in

P̂ .
Let p̂1, . . . , p̂k be the sequence of lifted obstacle points

on the shortest path σ̂h(0, 0). (The points p̂i are distinct,
although their projections back into E might not be.) Our
previous argument implies that for each i, there is a pair of pa-
rameters (si, ti) such that σ̂h(si, ti) does not pass through p̂i.

We consider a continuous motion of the parameter point
(s, t), starting at (s, t) = (0, 0) and then moving successively
to each point (si, ti). Specifically, we define two continuous
functions s : [0, k] → [0,m] and t : [0, k] → [0, n] such that
s(0) = t(0) = 0, and for any integer i, we have s(i) = si and
t(i) = ti. To simplify our notation, we write σ̂(τ) to denote
the shortest path σ̂h(s(τ), t(τ)).

As the parameter τ (‘time’) increases, points in P̂ are
inserted into and deleted from the deque of vertices of σ̂(τ). If
the deque is empty at any time τ , then the shortest path σ̂(τ)
is a proper line segment, which implies that the projected
path σ(τ) is a proper line segment as well, concluding the
proof. Thus, we assume to the contrary that the deque is
never empty. Each vertex p̂1, . . . , p̂k must be deleted from
the deque at some time during the motion (but may be
reinserted later).

Suppose p̂ is the last point among p̂1, . . . , p̂k to be removed
from the deque for the first time. Without loss of generality,
we assume p̂ is first removed from the front of the deque at
time τ1. Let q̂ denote the second point in the deque just
before p̂ is removed; this point must exist, because the deque
is never empty. The point p̂ lies on the first segment âq̂ of
σ̂(τ1), where â = Â(s(τ1)).

By definition of p̂, point q̂ must have been pushed onto the
back of in the deque at some earlier time τ2 < τ1. Just after
q̂ is inserted, the last two points in the deque are p̂ and q̂, in
that order. Moreover, q̂ lies on the last segment p̂b̂ of σ̂(τ2),

where b̂ = B̂(t(τ2)).

Thus, there is an improper line segment âb̂ between a
point in Â and a point in B̂. Since all line segments in Ê are

shortest paths, âb̂ is the shortest path σ̂h(τ1, τ2). Thus, the
path σh(τ1, τ2) in E is an improper line segment in relative
homotopy class h. Finally, for sufficiently small ε > 0, one
of the four paths σh(τ1 ± ε, τ2 ± ε) is a proper line segment
(because no three vertices of the input are collinear). �

Proposition 4.3 implies that we can enumerate the set
of minimal relative homotopy classes in polynomial time
as follows. Call a line segment ab with a ∈ A and b ∈ B
extremal if it satisfies one of the following conditions:

(1) The endpoints of ab are vertices of A and B.

(2) One endpoint is a vertex of A or B and the segment
contains one point in P .

(3) The segment contains two points in P .

Every proper line segment is relatively homotopic to at least
one extremal line segment. Conversely, every extremal line
segment carries paths in at most four minimal relative ho-
motopy classes, distinguished by assigning turning angles
of π or −π at the obstacle vertices that lie on the segment.
Thus, to enumerate the minimal relative homotopy classes,
it suffices to enumerate the extremal line segments.

There are O(mn) extremal segments of type (1), which we
can easily enumerate in O(mn) time by brute force. Each
vertex a ∈ A and point p ∈ P determine at most n extremal
segments of type (2), one for each intersection between −→ap
and B. Similarly, each vertex b ∈ B and point p ∈ P
determine at most n extremal segments of type (2). Thus,
there are O(mnk) extremal segments of type (2); again, we
can easily enumerate these in O(mnk) time. Finally, any
two points p, q ∈ P determine O(mn) extremal segments of
type (3), distinguished by the intersection points of ←→pq with
A and B, so there are O(mnk2) type-(3) extremal segments
in total. For any obstacle points p and q, we can compute
the intersection points ←→pq ∩A and ←→pq ∩B in O(m+n) time,
and then enumerate the extremal segments that contain both
p and q in O(mn) time, again by brute force.

Altogether, we enumerate O(mnk2) extremal line seg-
ments, and therefore O(mnk2) minimal homotopy classes,
in O(mnk2) time.

There are polygonal curves and point sets that admit
Ω(mnk2) distinct minimal relative homotopy classes; see
Figure 2 for an example. Thus, any improvement in this
portion of the algorithm will require a finer characterization
of optimal relative homotopy classes.

Figure 2. An input with Ω(N4) minimal relative homotopy classes.

4.3 Polygonal Obstacles

The preceding argument breaks down if we allow polygonal
obstacles; indeed, it is easy to construct instances where

there are no proper line segments. Even if the instance
allows proper line segments, the optimal homotopy class
may not include one. Thus, we require a more complex
characterization of minimal homotopy classes in this case.

We say that obstacle vertices p and q pin a geodesic γ if
the globally shortest path from p to q (in the closure of E) is
a subpath of γ; note that p and q may be the same point. A
relative homotopy class h is pinned if some pair of obstacle
vertices pins every geodesic in h. The intersection of all
geodesics within a pinned homotopy class is a shortest path
between obstacle vertices, which we call the pinned subpath
of h.

Lemma 4.4. Every minimal relative homotopy class either
contains a proper line segment or is pinned.

Proof: As in the proof of Proposition 4.3, let h be an ar-
bitrary minimal homotopy class. Let Â and B̂ be lifts of
A and B in the universal cover Ê , such that for all s and t,
the shortest path σ̂h(s, t) between Â(s) and B̂(t) is a lift of

σh(s, t). Let P̂ denote the set of all lifts of the vertices of

obstacles in P ; again, every point in P̂ lies on the boundary
of Ê .

Let π̂h denote the intersection of all shortest paths σ̂h(s, t).
If π̂ = ∅, then by Stage 2 in the proof of Proposition 4.3, h
contains a proper line segment.

Otherwise, π̂h is a shortest path between some pair of
lifted obstacle vertices p̂ and q̂. (In the special case where π̂h
is a single point, we have p̂ = q̂ = π̂h.) Now p̂ and q̂ are lifts
of obstacle vertices p and q (which may be the same point,
even if p̂ and q̂ are not), and π̂h is similarly a lift of some
path πh from p to q.

Let σh denote the globally shortest path from p to q, and
suppose that πh 6= σh. For each s and t, let τ(s, t) be the
curve obtained from σh(s, t) by replacing πh with σh. All
paths τ(s, t) belong to the same relative homotopy class,
which we will denote h′. We now easily confirm that h′ ≺ h,
contradicting our assumption that h is minimal. We conclude
that πh is the shortest path from p to q, which implies that
h is a pinned relative homotopy class, and πh is its pinned
subpath. �

We call a geodesic γ direct if it consists of a proper line
segment from A to some obstacle vertex p, the shortest path
from p to an obstacle vertex q, and a proper line segment
from q to B.

Lemma 4.5. Every pinned relative homotopy class contains
a direct geodesic.

Proof: Let h be a pinned homotopy class, and let p and q
denote the start and end of the pinned subpath πh. Any
geodesic σh(s, t) consists of a geodesic αh(s) from A to p,
the pinned subpath πh, and a geodesic βh(t) from q to B.

If αh(0) is a proper segment, our claim is proved. Thus, we
assume that αh(0) is not a direct geodesic, which implies that
the lifted path α̂h(0) passes through at least one obstacle
vertex other than its endpoint p̂. Let p̂− be the last lifted
obstacle vertex on α̂h(0) before p̂. Let s0 be the largest value
such that α̂h(s) contains p̂− for all 0 6 s 6 s0. Because p̂− is
not on the pinned subpath, it is not on every geodesic α̂h(s),
which implies that s0 < m. For sufficiently small ε > 0, the
geodesic αh(s0 + ε) is a proper line segment.

A similar argument implies that βh(t) is a proper line
segment for some t. �

We can compute all homotopy classes of proper line seg-
ments using only a small modification our our earlier algo-
rithm. In fact, we begin by running the earlier enumerate
algorithm using only the vertices of polygons in P as obsta-
cles. We then discard any line segment that intersects the
interior of any obstacle polygon.

Lemma 4.5 implies that we can enumerate a superset of of
the minimal relative homotopy classes in polynomial time.
We begin by computing the shortest paths between every
pair of obstacle vertices [14]. Next, for every pair p and q of
obstacle vertices, we extend the ray −→pq until it reaches the
interior of an obstacle (or infinity), and then compute all
O(m+n) intersections between the resulting line segment and
the curves A and B. Finally, we concatenate all O(mk) initial
segments, O(k2) shortest paths, and O(nk) final segments to
obtain O(mnk4) pinned paths in O(mnk4) = O(N6) time.
Every pinned relative homotopy class contains one of these
paths.

Unlike Proposition 4.3, we do not have an exact character-
ization of minimal homotopy classes for polygonal obstacles—
direct geodesics do not necessarily lie in pinned homotopy
classes, and not all pinned homotopy classes are minimal.
However, there are problem instances with Ω(mnk4) pinned
homotopy classes; for example, replace each obstacle point
in Figure 2 with a small triangle.

4.4 Non-Polygonal Obstacles

We can further generalize our characterization of minimal
homotopy classes to arbitrary non-polygonal obstacles. If
we replace ‘obstacle vertex’ with ‘obstacle boundary point’
in the definitions, Lemmas 4.4 and 4.5 are still true in this
more general setting, although the proofs are somewhat more
involved. We omit details from this extended abstract.

5. ONE HOMOTOPY CLASS

In this section, we describe an algorithm to compute the
Fréchet distance Fh(A,B) in some relative homotopy class h.
Our algorithm is a direct adaptation of Alt and Godau’s al-
gorithm for computing the classical Fréchet distance between
polygonal paths in the plane [2].

As in the previous section, for any s ∈ [0,m] and t ∈ [0, n],
let σh(s, t) denote the shortest path from A(s) to B(t) in
homotopy class h, and let dh(s, t) = len(σh(s, t)). For any
ε > 0, let Fε ⊆ [0,m]× [0, n] denote the free space {(s, t) |
dh(s, t) 6 ε}. Our goal is to compute the smallest value of ε
such that Fε contains a monotone path from (0, 0) to (m,n);
this is precisely the Fréchet distance Fh(A,B).

The parameter space [0,m]× [0, n] decomposes naturally
into an m × n grid; let Ci,j = [i − 1, i] × [j − 1, j] denote
the grid cell representing paths from the ith edge of A to
the jth edge of B. Our generalization of Alt and Godau’s
algorithm requires that the restriction of the function dh to
any grid cell Ci,j is convex. We prove this fact in Section 5.1
(Proposition 5.3).

As input to our problem, we are given a path σh(s0, t0)
in relative homotopy class h; based on the results of the
previous section, this is either a proper line segment or
a direct geodesic. Without loss of generality, we assume
that the endpoints A(s0) and B(t0) are vertices of A and B;
otherwise, we insert them as new vertices and reparameterize.

5.1 Geodesic Distance Is Convex

Let A,B : [0, 1] → E be linear motions in the plane with

obstacles, with (constant) derivatives ~a and ~b respectively,
and let h be a relative homotopy class. For each t ∈ [0, 1],
let σ(t) be the shortest path from A(t) to B(t) in relative
homotopy class h, and let d(t) be the length of σ(t). The
goal of this section is to prove that the function d is convex.

We omit the easy proof of the following lemma.

Lemma 5.1. Let o be a fixed point in the plane, and let
ϕ : R2 → R be the function p 7→ ‖−→op‖. The function ϕ is
convex everywhere, and of class C1 everywhere except at o.
The gradient of ϕ at any point p 6= o is −→op/‖−→op‖.

Fix t ∈ [0, 1]. The shortest path σ(t) is a polygonal line.
Let ~u(t) be the unit vector representing the direction of the
first line segment of σ(t) (at its initial point A(t)). Similarly,
we denote by ~v(t) the unit vector representing the direction
of the last line segment of σ(t).

Recall that, as t increases, the shortest path σ(t) encoun-
ters a finite number of events, between which the set of
vertices of the obstacles at which it bends is the same.

Lemma 5.2. Between any two consecutive events, d is con-

vex and of class C1. In particular, d′(t) = ~b · ~v(t)− ~a · ~u(t),
where · denotes inner product.

Proof: Fix two consecutive events t0 and t1.

Assume first that for all t between t0 and t1, the path σ(t)
is not a line segment. Then for every t ∈ [t0, t1], σ(t) is the
concatenation of a line segment from A(t) to a fixed obstacle
vertex p, a geodesic from p to another fixed obstacle vertex q,
and the line segment from q to B(t). It follows that d(t)

equals a constant plus ‖
−−−→
pA(t)‖+ ‖

−−−→
qB(t)‖. Our result is now

a consequence of Lemma 5.1. Specifically, d is the sum of two
convex functions, and is therefore convex. Since A and B do
not meet the obstacle vertices M and N , the function d is
C1 in the interval [t0, t1]. The chain rule implies the claimed
expression for d′.

If σ(t) is a line segment whenever t0 6 t 6 t1, then

d(t) = ‖
−−−−−−→
A(t)B(t)‖. Since the function t 7→

−−−−−−→
A(t)B(t) is affine,

Lemma 5.1 also implies that d is convex and of class C1, and
that

d′(t) = (~b− ~a) ·
−−−−−−→
A(t)B(t)/‖

−−−−−−→
A(t)B(t)‖.

Finally, we observe that

~u(t) = ~v(t) =
−−−−−−→
A(t)B(t)

‹
‖
−−−−−−→
A(t)B(t)‖,

which completes the proof. �

Proposition 5.3. The function d is convex.

Proof: Lemma 5.2 implies that consecutive events, the func-
tion d′ is continuous and non-decreasing. Let t0 be an arbi-
trary event. Since the functions t 7→ ~u(t) and t 7→ ~v(t) are
continuous at t0, Lemma 5.2 implies that d′ is also continu-
ous at t0. Thus, d′ is non-decreasing over the entire interval
[0, 1], which implies that d is convex. �

Proposition 5.3 implies that the bivariate shortest-path
distance function D(u, v) between A(u) and B(v) is also

convex, as follows. For any u, u′, v, v′, t ∈ [0, 1] we denote by
du,v,u′,v′(t) the shortest-path distance between A((1− t)u+
tu′) and B((1− t)v + tv′). In other words, we define

du,v,u′,v′(t) = D((1− t)(u, v) + t(u′, v′)).

Proposition 5.3 implies that the univariate function du,v,u′,v′

is convex. It follows that

D((1− t)(u, v) + t(u′, v′)) = du,v,u′,v′((1− t) · 0 + t · 1)

6 (1− t)du,v,u′,v′(0) + tdu,v,u′,v′(1)

= (1− t)D(u, v) + tD(u′, v′),

which expresses the convexity of D.

The convexity of D immediately implies the following
corollary.

Corollary 5.4. For all integers i and j, the restriction of dh
to any grid cell Ci,j is convex.

5.2 Preprocessing for Distance Queries

The only significant difference between our algorithm and
Alt and Godau’s is that we require additional preprocessing
to compute several critical distances and an auxiliary data
structure to answer certain distance queries. (If there are no
obstacles, each critical distance can be computed, and each
distance query can be can be answered, in constant time.)

There are three types of critical distances:

• endpoint distances dh(0, 0) and dh(m,n),

• vertex-edge distances dh(i, [j−1, j]) = min{dh(i, t) |
t ∈ [j − 1, j]} for all integers i ∈ [0,m] and j ∈ [1, n],
and

• edge-vertex distances dh([i−1, i], j) = min{dh(s, j) |
s ∈ [i− 1, i]} for all integers i ∈ [1,m] and j ∈ [0, n].

Given integers i and j and any real value ε, a horizontal
distance query asks for all values of t ∈ [j − 1, j] such that
dh(i, t) = ε, and a vertical distance query asks for all
values of s ∈ [i− 1, i] such that dh(s, j) = ε. The convexity
of dh within any grid cell implies that any distance query
returns at most two values.

We first describe how to preprocess a single vertical edge in
the parameter grid to answer distance queries; computation
of the critical values will be done automatically during the
preprocessing. Obviously a similar result applies to horizontal
grid edges.

Lemma 5.5. Suppose we are given a point p and a line
segment ` = xy, parameterized over [0, 1], as well as the
geodesic σh(p, x) and its length dh(p, x). In O(k log k) time,
we can build a data structure of size O(k) such that for any ε,
all values t ∈ [0, 1] such that dh(p, `(t)) = ε can be computed
in O(log k) time. We also report the critical vertex-edge
distance dh(p, `), the path σh(p, y), and its length dh(p, y).

Proof: We first compute a constrained Delaunay triangula-
tion of the polygons P , the segment `, and point p in time
O(k log k). This triangulation includes ` and the edges of
polygons in P as edges.

We apply the following observations used in the funnel
algorithm for computing shortest homotopic paths [6, 15,

13]. The shortest homotopic paths σh(p, x) and σh(p, y) may
share a common subpath and then split at some vertex v;
this vertex is then the apex of two concave chains that form
a funnel with base xy. Each concave chain has complexity
at most k and intersects a given edge of the triangulation at
most twice.

The geodesic from p to x may have complexity greater than
O(k), but (as observed above) the concave chain from v to x
will have at most O(k) segments. Our goal is to find a vertex
w on σh(p, x) such that the path from w to x contains v. In
other words, the chain from w to x along σh(p, x) will be of
complexity O(k) and will contain the concave funnel path.

To find w, walk along the path from x to p. If we find a
vertex where the chain is not concave, we must have passed v,
so we mark the non-concave vertex as w. If we ever re-cross
a segment of the triangulation a second time, we again must
have passed the funnel apex v so we can mark the second
crossing as w. (We walked along O(k) edges of the chain to
find w.) Let π be the portion of σh(p, x) between p and w,
and τ1 be the portion of σh(p, x) between w and x.

We know that π is contained in σh(p, y), since w is before
the apex of the funnel v. Let τ2 be the portion of σh(p, y)
between w and y; this can be computed in O(k) time using
the funnel algorithm. Given τ2, we can then find the apex of
the funnel v in O(k) time.

Imagine extending each line segment on the concave chains
until it intersects `, the line connecting x and y. Between
the two concave chains, the combinatorial description of the
distance function changes only at points where the extended
lines meet `. To answer distance queries, we will record the
O(k) intersections of the extended lines with `. For each
of the resulting intervals, record the (fixed) length of the
geodesic up to the first vertex in the extended line, as well
as the equations of the two lines that bracket the interval.
In constant time per interval, we can also compute and
store the value t∗ ∈ [0, 1] such that dh(p, `(t∗)) is minimized,
along with the path σh(p, `(t∗)); this gives the desired value
dh(p, `).

The funnel data structure requires O(k) space to store
the O(k) combinatorial changes to the leash as its endpoint
sweeps ` = xy.

Now given this data structure, we answer distance queries
as follows. If the distance queried is smaller than dh(p, `),
we return the empty set. If it is equal to dh(p, `), we return
`(t∗). If it is larger than dh(p, `), we do two binary searches,
one on the intervals between x and `(t∗) and the other on
the intervals between `(t∗) and y. �

Lemma 5.6. InO(mnk log k) time and usingO(mnk) space,
we can compute all critical distances, as well as a data struc-
ture of sizeO(mnk) that can answer any horizontal or vertical
distance query in O(log k) time.

Proof: We preprocess each edge of the parameter grid as
described in Lemma 5.5. We start from the vertex (i, j) that
is our given input, either a straight line segment or a direct
geodesic. We then walk on the edges of the grid, visiting
each edge at least once and at most O(1) times. During this
walk, at each current vertex (i, j), we maintain the shortest
homotopic path σh(i, j) and its length dh(i, j). Each time
we walk along an edge, we apply Lemma 5.5 to preprocess it
and to compute the shortest homotopic path corresponding

to the target vertex of that edge. Each step takes O(k log k)
time, and there are O(mn) edges, whence the running-time.
As we walk along an edge of the parameter grid, we use a
deque to push and pop the obstacle vertices along the leash
in constant time per operation. Since at most k vertices are
pushed onto the deque for each grid edge, the total size of
the deque is O(mnk). �

5.3 Decision Procedure

Like Alt and Godau, we first consider the following decision
problem: Is Fh(A,B) at least some given value ε? Equiva-
lently, is there a monotone path in the free space Fε from
(0, 0) to (m,n)? Our algorithm to solve this decision problem
is identical to Alt and Godau’s, except for the O(log k)-factor
penalty for distance queries; we briefly sketch it here for com-
pleteness.

For any integers i and j, let hi,j denote the intersection of
the free space Fε with the horizontal edge ([i− 1, i], j), and
let vi,j denote the intersection of Fε with the vertical edge
(i, [j − 1, j]). In the first phase of the decision procedure,
we compute hi,j and vi,j for all i and j, using one distance
query (and O(log k) time) for each edge of the parameter
grid.

In the second phase of the decision procedure, we propagate
in lexicographic order from C1,1 to Cm,n and determine which
hi,j and vi,j are reachable via a monotone path from C1,1.
Since the free space in each Ci,j is convex, we can propagate
through each cell in constant time.

Our decision algorithm returns true if and only if there
is a monotone path that reaches (m,n). The total running
time is O(mn log k).

5.4 Computing Fréchet Distance

Finally, we describe how to use our decision procedure to
compute the optimum value ε∗ = min{ε | (m,n) ∈ Rε}; this
is the Fréchet distance Fh(A,B).

We start by computing critical distances and the distance-
query data structure in O(mnk log k) time, as described
in Lemma 5.6. We then sort the O(mn) critical distances.
Using the decision procedure, we can compare the optimal
distance ε∗ with any critical distance ε in O(mn log k) time.
By binary search, we can, repeating this step O(logmn)
times, compute an interval [ε−, ε+] that contains ε∗ but no
critical distances.

We then apply Megiddo’s parametric search technique [17];
see also [7, 18]. Parametric search combines our decision
procedure with a ‘generic’ parallel algorithm whose combina-
torial behavior changes at the optimum value ε∗. Alt and
Godau observe that one of two events occurs when ε = ε∗:

• For some integers i, i′, j, the bottom endpoint of vi,j
and the top endpoint of vi′,j lie on the same horizontal
line.

• For some integers i, j, j′, the left endpoint of hi,j and
the right endpoint of hi,j′ lie on the same vertical line.

Thus, it suffices to use a ‘generic’ algorithm that sorts the
O(mn) endpoint values of all non-empty segments hi,j and
vi,j , where the value of an endpoint (s, j) of hi,j is s, and
the value of an endpoint (i, t) of vi,j is t.

We use Cole’s parallel sorting algorithm [8], which runs in
O(logN) parallel steps on O(N) processors, as our generic al-
gorithm. Each parallel step of Cole’s sorting algorithm needs
to compare O(mn) endpoints. The graph of an endpoint,
considered as a function of ε, is convex, monotone, and made
of O(k) pieces, each having a simple closed form (see proof of
Lemma 5.5). It follows that the sign of a comparison between
two endpoints may change at O(k) different values of ε that
can be computed in O(k) time. Applying the parametric
search paradigm requires the following operations for each
parallel step of the sorting algorithm:

• Compute the O(mnk) values of ε corresponding to the
changes of sign of the O(mn) comparisons. This can
be done in O(mnk) time and O(mnk) space.

• Apply binary search to these values by median find-
ing, calling the decision procedure to discard half of
them at each step of the search. This takes O(mnk +
Td log(mnk)) time, where Td = O(mn log k) is the run-
ning time of our decision procedure. We obtain this way
an interval for ε where each of the O(mn) comparisons
has a determined sign.

• Deduce in O(mn log k) time the sign of each of the
O(mn) comparisons within the previously computed
interval.

Since the underlying sorting algorithm requires O(logmn)
parallel steps, the resulting parametric search algorithm runs
in time O(mn log(mn)(k + log k log(mnk)) = O(N3 logN).
The distance query data structure requires O(mnk) space.
We require an additional O(mnk) space to simulate sequen-
tially each parallel step of the sorting algorithm; we can
re-use this space for subsequent parallel steps. Therefore, the
total space complexity of our algorithm is O(mnk) = O(N3).

Lemma 5.7. Given either a proper line segment or a direct
geodesic in relative homotopy class h, the Fréchet distance
Fh(A,B) can be computed in O(N3 logN) time and O(N3)
space.

5.5 Summary
Finally, to compute the homotopic Fréchet distance F(A,B)
in the plane minus a set of point obstacles, we compute the
Fréchet distance Fh(A,B) in each of the O(mnk2) minimal
homotopy classes h. Similarly, for polygonal obstacles, we
compute Fh(A,B) for every class h in a set of O(mnk4)
relative homotopy classes, which includes every minimal
homotopy class.

Theorem 5.8. The homotopic Fréchet distance between
two polygonal curves in the plane minus a set of points can
be computed in O(N7 logN) time.

Theorem 5.9. The homotopic Fréchet distance between
two polygonal curves in the plane minus a set of polygons
can be computed in O(N9 logN) time.

6. CONCLUSION
In this paper, we introduced a natural generalization of
the Fréchet distance between curves to more general met-
ric spaces, called the homotopic Fréchet distance. We de-
scribed a polynomial-time algorithm to compute the homo-
topic Fréchet distance between polygonal curves in the plane
with point or polygon obstacles.

Improving the running time of our algorithms is the most
immediate outstanding open problem. For point obstacles,
we conjecture that the running time can be improved by at
least a factor of N by optimizing leash maps in every minimal
homotopy class simultaneously. Since shortest paths between
the same endpoints but belonging to different homotopy
classes are related, we expect to (partially) reuse the results
of shortest path computations going from one homotopy class
to another. For polygonal obstacles, an exact characterization
of minimal homotopy classes would almost certainly lead to
a significantly faster algorithm.

Cook and Wenk [9] describe an algorithm for computing
geodesic Fréchet distance between two curves within a simple
polygon, generalizing earlier results of Efrat et al. [10]. Their
algorithm is faster than ours by roughly a factor of N , in
part because they use a randomized strategy in place of
parametric search. Unfortunately, we have not been able to
apply their technique to our more general problem, because it
seems to require a simply-connected environment. However,
similar ideas may simplify and improve our algorithm.

Weak Fréchet distance is a variant of the ordinary Fréchet
distance without the requirement that the endpoints move
monotonically along their respective curves—the dog and its
owner are allowed to backtrack to keep the leash between
them short. Alt and Godau [2] gave a simpler algorithm
for computing the weak Fréchet distance, using a graph
shortest-path algorithm instead of parametric search. A
similar simplification of our algorithm computes the weak
homotopic Fréchet distance between curves in the punctured
plane in polynomial time. We omit further details from this
extended abstract.

It would be interesting to compute homotopic Fréchet dis-
tance in more general spaces. In particular, we are interested
in computing the homotopic Fréchet distance between two
curves on a convex polyhedron, generalizing the algorithm of
Maheshwari and Yi for classical Fréchet distance [16]. The
vertices of the polyhedron are ‘mountains’ over which the
leash can pass only if it is long enough. Shortest paths on
the surface of a convex polyhedron do not vary continuously
as the endpoints move, because of the positive curvature at
the vertices, so we cannot consider only geodesic leash maps.

Finally, it would also be interesting to consider the homo-
topic (weak) Fréchet distance between higher-dimensional
manifolds; such problems arise with respect to surfaces in
configuration spaces of robot systems. Standard Fréchet dis-
tance is difficult to compute in higher dimensions, although
the weak Fréchet distance between two triangulated surfaces
can be computed in polynomial time [1].

Acknowledgments

This research was initiated during a visit to INRIA Lorraine
in Nancy, made possible by a UIUC/CNRS/INRIA travel
grant. Research by Erin Chambers and Jeff Erickson was
also partially supported by NSF grant DMS-0528086; Erin
Chambers was additionally supported by an NSF graduate
research fellowship. Research by Shripad Thite was partially
supported by the Netherlands Organisation for Scientific
Research (NWO) under project number 639.023.301 and
travel by INRIA Lorraine. We thank Hazel Everett and
Sylvain Petitjean for useful discussions and great company,
and Kira and Nori for several walks in the woods.

References
[1] H. Alt and M. Buchin. Semi-computability of the Fréchet

distance between surfaces. Proc. 21st European Work-
shop on Computational Geometry, 45–48, 2005.

[2] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. IJCGA 5(1–2):75–91,
1995.

[3] S. Bespamyatnikh. Computing homotopic shortest paths
in the plane. Proc. 14th Annu. ACM-SIAM Sympos.
Discrete Algorithms, 609–617, 2003.

[4] S. Bespamyatnikh. Encoding homotopy of paths in the
plane. Proc. LATIN 2004: Theoretical Infomatics, 329–
338, 2004. Lect. Notes Comput. Sci. 2976, Springer-
Verlag.

[5] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Test-
ing homotopy for paths in the plane. Discrete Comput.
Geom. 31(1):61–81, 2004.

[6] B. Chazelle. A theorem on polygon cutting with applica-
tions. Proc. 23rd Annu. IEEE Sympos. Found. Comput.
Sci., 339–349, 1982.

[7] R. Cole. Slowing down sorting networks to obtain faster
sorting algorithms. JACM 34(1):200–208, 1987.

[8] R. Cole. Parallel merge sort. SIAM J. Comput. 17(4):770–
785, 1988.

[9] A. Cook and C. Wenk. Geodesic Fréchet and Hausdorff
distance inside a simple polygon. Tech. Rep. CS-TR-
2007-004, U. Texas San Antonio, 2007.

[10] A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell,
and T. M. Murali. New similarity measures between
polylines with applications to morphing and polygon
sweeping. Discrete Comput. Geom. 28:535–569, 2002.

[11] A. Efrat, S. G. Kobourov, and A. Lubiw. Computing
homotopic shortest paths efficiently. Comput. Geom.
Theory Appl. 35(3):162–172, 2006.

[12] D. Grigoriev and A. Slissenko. Polytime algorithm for
the shortest path in a homotopy class amidst semi-
algebraic obstacles in the plane. Proc. Internat. Sympos.
Symbolic and Algebraic Computation, 17–24, 1998.

[13] J. Hershberger and J. Snoeyink. Computing minimum
length paths of a given homotopy class. Computational
Geometry: Theory and Applications 4:63–67, 1994.

[14] J. Hershberger and S. Suri. An optimal algorithm for
Euclidean shortest paths in the plane. SIAM J. Comput.
28(6):2215–2256, 1999.

[15] D. T. Lee and F. P. Preparata. Euclidean shortest paths
in the presence of rectilinear barriers. Networks 14:393–
410, 1984.

[16] A. Maheshwari and J. Yi. On computing Fréchet dis-
tance of two paths on a convex polyhedron. Proc. 21st
European Workshop on Computational Geometry, 41–44,
2005.

[17] N. Megiddo. Applying parallel computation algorithms
in the design of serial algorithms. J. ACM 30:852–866,
1983.

[18] R. van Oostrum and R. C. Veltkamp. Parametric search
made practical. Computational Geometry: Theory and
Applications 28:75–88, 2004.

[19] R. Seidel. The nature and meaning of perturbations in
geometric computing. Discrete Comput. Geom. 19:1–17,
1998.

	Introduction
	Definitions
	Preliminaries
	Geodesic Leash Maps
	Homotopic Shortest Paths

	Optimal Homotopy Classes
	Minimality
	Point Obstacles
	Polygonal Obstacles
	Non-Polygonal Obstacles

	One Homotopy Class
	Geodesic Distance Is Convex
	Preprocessing for Distance Queries
	Decision Procedure
	Computing Fréchet Distance
	Summary

	Conclusion

