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Abstract

While playing a fundamental role in shape understanding, the me-
dial axis is known to be sensitive to small boundary perturbations.
Methods for pruning the medial axis are usually guided by some
measure of significance. The majority of significance measures
over the medial axes of 3D shapes are locally defined and hence
unable to capture the scale of features. We introduce a global signif-
icance measure that generalizes in 3D the classical Erosion Thick-
ness (ET) measure over the medial axes of 2D shapes. We give
precise definition of ET in 3D, analyze its properties, and present
an efficient approximation algorithm with bounded error on a piece-
wise linear medial axis. Experiments showed that ET outperforms
local measures in differentiating small boundary noise from promi-
nent shape features, and it is significantly faster to compute than
existing global measures. We demonstrate the utility of ET in ex-
tracting clean, shape-revealing and topology-preserving skeletons
of 3D shapes.

Keywords: Medial axis, skeletons, shape analysis

Concepts: •Computing methodologies → Shape analysis;

•Theory of computation→ Computational geometry;

1 Introduction

Since its introduction by Blum [1967], the medial axis has become
the basis for many shape descriptors. Simply defined as the set of
points with more than one nearest neighbors on the shape boundary,
the medial axis has many desirable properties for shape descrip-
tion: it has a lower dimension than the shape, captures components
and protrusions, and preserves the homotopy of the shape [Lieutier
2003].

A notable issue of medial axis that prevents its wider adoption is its
sensitivity to boundary perturbations: a bump on the shape bound-
ary, no matter how tiny, is captured by some branch of the medial
axis (Figure 1). Extensive research has been conducted on tam-
ing such sensitivity (see Section 2). The majority of these methods
works by pruning branches that arise from boundary noise. These
methods are usually guided by some form of significance measure
that rates the importance of the shape feature represented by each
medial axis point.

A variety of significance measures have been formulated on the
graph-like medial axis of a 2D shape [Shaked and Bruckstein 1998],
and they generally fall into two categories. While local measures
are based on the immediate geometry around a medial axis point,
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Figure 1: The medial axis of a bumpy 3D shape contains numer-
ous spurious sheets. Erosion Thickness (ET) highlights parts of the
medial axis that represent significant shape features. We use ET to
create a family of clean, topology-preserving skeletons made up of
both 2D sheets and 1D curves.

global measures consider shape in a larger neighborhood. The ex-
tended context allows global measures to outperform local mea-
sures in differentiating boundary noise from major shape features.
A popular global measure is the Erosion Thickness (ET), which
captures the amount of shape loss due to the erosion of the medial
axis [Ho and Dyer 1986; Brandt and Algazi 1992; Niblack et al.
1992; Arcelli and di Baja 1993; Attali et al. 1995] (see a precise
definition in Section 3).

The complexity of the medial axis of a 3D shape makes it much
more challenging to formulate global significance measures than in
the 2D case. While many pruning heuristics are based on principles
similar to ET, they do not lead to any continuously defined measures
over the medial axis. The only well-defined global measure that
we are aware of is the Medial Geodesic Function (MGF) [Dey and
Sun 2006], which measures the geodesic distance between the two
nearest neighbors of a medial axis point on the shape boundary.
However, computing MGF is expensive due to the need to query
geodesic distances between many pairs of surface points.

In this paper, we define, analyze and compute Erosion Thickness on
the medial axis of a 3D shape. ET in 2D can be defined as the dif-
ference between the arrival time of a fire front propagating over the
medial axis and the radii of maximal balls [Liu et al. 2011]. We fol-
low the same idea and introduce a burning process over the medial
axis in 3D. We show that several key properties of ET in 2D, such
as finiteness, continuity, and lack of local minima, extend nicely to
our definition of ET in 3D. Guided by the burning process, we de-
velop an efficient approximation algorithm with bounded error on
a piece-wise linear medial axis. Our experiments showed that ET
in 3D, like its counterpart in 2D, can effectively differentiate small
boundary noise from prominent shape features (Figure 1). On the
other hand, it is orders of magnitude faster to compute than MGF.

We demonstrate the utility of ET by developing a skeletonization
algorithm guided by ET. The skeletons are made up of both 2-
dimensional sheets of the medial axis with high ET values and
1-dimensional curves that follow the “ridges” of ET. Our method
allows a user to control the pruning of the sheets and curves inde-
pendently using two intuitive parameters. The skeletons preserve
the topology of the 3D shape and are observed to be stable under
boundary perturbations (Figure 1).
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Contributions: To our best knowledge, this work introduces the
first well-defined and efficient-to-compute global significance mea-
sure over the medial axis of a 3D shape. It makes the following
theoretic and algorithmic contributions:

1. Formalizing Erosion Thickness over the medial axis of a
3D shape (Section 4) and analyzing its theoretical properties
(Section 5).

2. Developing an efficient algorithm for approximating ET over
a piece-wise linear medial axis and proving its error bound
(Section 6).

3. Developing a skeletonization method guided by ET that pro-
duces stable, topology-preserving, and shape-depicting skele-
tons (Section 7).

2 Related works

We briefly review works on computing and simplifying medial
axes. Please refer to the excellent book by Siddiqi and Pizer [2008]
for more extensive and in-depth discussions.

Computing medial axes Algorithms for computing exact me-
dial axes in 3D are available for only limited classes of shapes such
as small polyhedra [Culver et al. 2004] and unions of balls [Amenta
and Kolluri 2001]. Approximation strategies include thinning on
voxelized models [Bertrand 1995], locating singularities of distance
fields [Siddiqi et al. 2002], and computing a subset of the Voronoi
diagram of boundary samples [Amenta et al. 2001; Dey and Zhao
2004]. Many of these methods produce a piece-wise linear repre-
sentation (i.e., a mesh), on which our algorithms can be directly
applied.

Simplifying medial axes There are three general approaches to
medial axes simplification. The first approach reduces the com-
plexity of the medial axis by smoothing the shape boundary be-
fore extracting the medial axis [Dill et al. 1987; Pizer et al. 1987;
Giesen et al. 2009; Miklos et al. 2010]. However, the medial axis of
the smoothed boundary may exhibit a different structure, and even
topology, from the original shape [Shaked and Bruckstein 1998].
The second approach, pioneered by Golland et al. [2000] and Pizer
et al. [2003a; 2003b], is to deform a noise-free, template medial
axis into the shape. The deformation approach was found partic-
ularly useful in analyzing biological shapes [Fletcher et al. 2004],
but it is limited to shapes with known structures or a group of simi-
lar shapes. The third approach, which we adopt, is directly pruning
medial axis components arising from boundary noise. Guided by
a significance measure, pruning methods often employ a contrac-
tion scheme [Siddiqi et al. 2002; Tam and Heidrich 2003; Sud et al.
2005; Liu et al. 2010; Li et al. 2015] to ensure that the pruned subset
retains the topology of the medial axis.

Significance measures Most commonly, the significance of a
medial axis point is measured by the local configuration of a me-
dial axis point and its nearest neighbors on the shape’s boundary.
For example, object angle measures the angle spanned by the vec-
tors from a medial axis point to its two nearest neighbors on the
boundary [Attali and Montanvert 1996; Amenta et al. 2001; Dey
and Zhao 2004; Foskey et al. 2003; Sud et al. 2005]. Measures
related to object angle include the propagation velocity of [Blum
1973], the outward flux of [Siddiqi et al. 2002], and the stability
ratio of [Li et al. 2015]. Another measure considers the circumra-
dius of the nearest neighbors on the boundary [Chazal and Lieutier
2004; Chaussard et al. 2009]. The subset of the medial axis where
the circumradius is above a constant λ (known as the λ-medial axis)
is provably stable under certain class of boundary perturbations.

Figure 2: Top: Medial axes of the same 2D shape colored (blue for
low and red for high) by the object angle measure, the circumradius
measure, and Erosion Thickness. Bottom: Subsets of the medial
axes where the respective measure is higher than some threshold.
Local measures, such as object angle and circumradius, fail to dif-
ferentiate major shape features (e.g., the horse legs) from boundary
noise (e.g., hair).

The main drawback of local measures is that they cannot capture
the size of features (Figure 2). Being scale-invariant, object angle
is high both within prominent features and inside small boundary
bumps (e.g., horse hair). Object angle is also low in the transition
area between shape parts (e.g., between horse leg and body). On the
other hand, the circumradius only captures thick parts of the shape
and easily misses long but thin features (e.g., horse leg).

Various measures of global significance were proposed on medial
axes of 2D shapes [Shaked and Bruckstein 1998]. A common
scheme is measuring the amount of shape loss as a result of prun-
ing the medial axis. The Erosion Thickness (ET), used by vari-
ous authors [Ho and Dyer 1986; Brandt and Algazi 1992; Niblack
et al. 1992; Arcelli and di Baja 1993; Attali et al. 1995; Shaked and
Bruckstein 1998; Liu et al. 2011], measures the distance by which
a protrusion shrinks after a medial axis branch is shortened (a pre-
cise definition will be reviewed in Section 3). Since ET captures the
length of a protrusion, it outperforms local measures in differentiat-
ing boundary noise from long but thin features (Figure 2 top-right).
ET also has several desirable properties. In particular, ET has no
local minima on the medial axis. As a result, thresholding ET never
disconnects the medial axis (Figure 2 bottom-right). Other global
measures in 2D that capture shape loss include the area of erosion
[Shaked and Bruckstein 1998; Attali et al. 1995] and the Potential
Residue [Ogniewicz and Ilg 1992; Ogniewicz and Kübler 1995].

Global significance measures on the medial axes of 3D shapes are
rare. Several researchers followed the general idea of capturing
shape loss and developed heuristics for simplifying medial axes
[Styner et al. 2003; Tam and Heidrich 2003; Liu et al. 2010; Li et al.
2015], although they do not lead to well-defined measures over the
medial axis. The only well-defined global measure that we know of
is the Medial Geodesic Function (MGF) proposed by Dey and Sun
[2006] ((a variant was considered by Reniers et al. [2008]). Given a
point x on the medial axis, MGF is defined as the geodesic distance
between the two generators of x on the shape’s boundary surface.
MGF extends the Potential Residue measure in 2D [Ogniewicz and
Ilg 1992]. While enjoying a simple and elegant definition, MGF is
expensive to compute: evaluating MGF at each medial axis point
involves a geodesic distance calculation on the shape boundary. In
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addition, MGF can be sensitive to perturbations that significantly
affect the geodesic distances.

We introduce a new well-defined global measure in 3D by extend-
ing ET. Compared with MGF, ET’s definition is more involved, but
its computation is orders of magnitude faster. In addition, our ex-
periments show that ET is stable under geodesic perturbations.

Medial curves Applications such as character animation and
path finding make use of 1-dimensional curves centered within the
shape, or medial curves. Current methods for computing medial
curves mostly resort to heuristics, such as mesh contraction and pro-
jection (see surveys by Cornea et al. [2007] and more recently by
Tagliasacchi et al. [2016]). These methods usually have many pa-
rameters to tune, and the computed curves lack a clear mathematical
formulation. Despite many efforts, a definition of the medial curve
that inherits the essential properties of the medial axis (e.g., being
thin and topology-preserving) is still at large. The best attempts at
this goal are perhaps the methods of Dey and Sun [2006] and Re-
niers et al. [2008], who compute medial curves that approximately
capture the singularities of MGF. Similarly, our medial curves fol-
low the singularities of ET. We then combine the pruned medial
curves with the pruned medial axis to produce a family of curve
and surface skeletons.

3 Defining Erosion Thickness in 2D

We first review the definition of Erosion Thickness (ET) over the
medial axis of a 2D shape. Consider an open set S of R

2. Its medial
axis M , in general, is a graph made up of smooth curve segments
meeting at junctions. Each point x on M is the center of a maximal
disk in S with radius R(x).

As mentioned earlier, ET captures how much the shape
has shrunk after eroding the medial axis from its end
points. Here, the shrunken shape refers to the union
of the maximal balls centered on the eroded medial axis.
As illustrated in this pic-
ture, eroding away a me-
dial axis segment yx
where y is an end point
of M results in the loss
of the shaded portion of
S. ET at x measures the
“depth” or “thickness” of
this lost portion as the
length of the red curve,
R(y) + dM (x, y) − R(x), where dM is the geodesic distance on

M 1. Note that ET is small if y lies within a small surface bump, in
which case the lost portion would be thin.

To evaluate ET at an arbitrary location on the medial axis, earlier
methods resort to a pruning heuristic that alternates between eval-
uating ET on peripheral branches and pruning the least significant
branch [Shaked and Bruckstein 1998]. A precise definition was
given by Liu et al. [2011] as the the difference between the burn
time of a fire moving along the medial axis and the maximal ball
radii. Imagine that the curves of M are made up of a uniform com-
bustible material, and fire is ignited from each end point y at time
R(y). The fire moves at constant, unit speed along M , burning
away points as the fronts pass them. When a fire front comes to
a junction point, it dies out unless all but one branch at the junc-
tion have been burned away. In the latter case, the front continues
burning along that remaining branch.

1The form is similar to the Hyperbolic distance between two balls [Choi

and Seidel 2001], where the Euclidean distance between x, y is used instead

of the geodesic distance dM (x, y).

Figure 3: The burn time (BT , left), maximal ball radii (R, middle),
and Erosion thickness (ET , right) in a 2D ellipse (top) and a 3D
ellipsoid (bottom) with small bumps.

The time at which a point x ∈ M is burned away (which we call
the burn time function, or BT ) can be obtained by

BT (x) = sup
yz

min(R(y) + dM (x, y), R(z) + dM (x, z)). (1)

where the supremum is taken over all curve segments yz of M that
contain x. ET is then defined by

ET (x) = BT (x)−R(x). (2)

The three functions, BT , R, and ET , for an ellipse shape with a
small bump are shown in Figure 3 (top). Note that while both BT
and R are non-trivial on the medial axis branch that reaches out to
the bump, their difference, ET , is small.

The definition reveals an intuitive connection between ET and tubu-
larity of shape. While the burn time measures the lateral distance to
the shape boundary along the medial axis, R measures the vertical
distance to the shape boundary. As a result, high ET values appear
inside long and thin “tubes”.

Many properties of ET can be explained using the burning analogy.
Since burning is continuous, so is its burn time and, in turn, ET.
As fire never “pierces” through the middle of a segment (due to
dying-out at junctions), the burn time is free of local minima. This
claim can be extended to ET by noting that the gradient magnitude
of R on M never exceeds that of burn time (which is constant 1).
Burning also lends naturally to an iterative algorithm for computing
the burn time and ET on the medial axis graph [Liu et al. 2011].

4 Defining Erosion Thickness in 3D

As in 2D, Erosion Thickness in 3D captures the shrinkage of the
3D shape when the medial axis is eroded. Our definition closely
mimics that of Liu et al. [2011] in 2D: ET in 3D is defined as
the difference between the burn time of a fire over the medial axis
and the maximal ball radii (see an illustration in Figure 3 bottom).
While ET in 2D reflects the tubularity of shape, ET in 3D captures
the plate-likeness. High ET values arise at the center of wide and
thin “plates”, where the difference between the lateral distance (i.e.,
burn time) and the vertical distance (i.e., maximal ball radius) to the
shape boundary is large.

To define ET in 3D, the key challenge is therefore to formulate
burning on the complex structure of the medial axis of a 3D shape.
We first review the structure of a 3D medial axis, and then introduce
the burning process before giving a precise definition of burn time
(and in turn ET). As we will show in the next section, our definition
of ET in 3D is able to retain key properties of ET in 2D, such as
continuity and lack of local minima (see Section 5).
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Figure 4: Burning on the medial axis of a 3D shape (shown in the top-left) at five time points and at completion. Fire fronts are indicated
by red curves, unburnt portion of the medial axis is colored gray, and the burned portion is colored by their burn time and rendered in
transparency.

4.1 Preliminaries

We consider a shape S as a bounded open subset of R
3, and denote

∂S as its boundary. DefineM = {x ∈ S | ‖B(x)‖ > 1}, where
B(x) is set of nearest neighbors of x on ∂S. We consider the clo-

sure ofM, M =M, as the medial axis. The distance from x ∈M
to ∂S is denoted by R(x).

A point x on M is manifold if its local neighborhood on M is home-
omorphic to a disk or half-disk, otherwise it is singular. x is a
boundary point if there is no disk on M that contains x, otherwise
it is an interior point. Denote the set of all manifold points, sin-
gular points, and boundary points as M2, MS, ∂M . These points
are illustrated in Figure 5. In the picture on the left, points x1, x2

are manifold while others are singular. Points x2, x6 are boundary
points while others are interior points. Note that a boundary point
can be either manifold (e.g., x2) or singular (e.g., x6).

(1 sect) (1 sect) (2 sect)

(3 sect) (6 sect) (3 sect)

Figure 5: Left: illustration of a medial axis with three sheets.
Right: local topology of 6 locations on the medial axis, each show-
ing the number of sectors and a possible exposing set (red).

A connected component of the manifold set M2 is called a sheet.
The singular set MS forms a graph whose nodes are called junc-
tions and edges are called seams. Intuitively, a seam is where mul-
tiple sheets meet, and a junction is either an end of a seam or where
multiple seams meet.

We will assume that M is finite and generic. The finiteness can be
ensured if S is defined by a finite set of analytic equations and in-
equalities [Chazal and Soufflet 2003]. By [Giblin and Kimia 2004],
any point on a generic medial axis has one of the five local topolo-
gies depicted by x1, . . . , x5 in Figure 5. The local topology of x6

only arises during burning, as we shall see below (e.g., point p in
Figure 4).

4.2 Burning the medial axis

Imagine that the sheets of M are made up of a uniform combustible
material. Fire is ignited at every point y ∈ ∂M at time R(y) and
propagates geodesically on M at constant, unit speed. Recall that,
in 2D, the fire front dies out at a junction point unless there is only
one remaining branch at the junction. To generalize this rule to 3D,
we ask that the fire burns away a point x only if x is on the boundary
of the unburned portion of M . For example, the fire front would die
out as it reaches a seam where two or more sheets have not yet been
burned.

The burning process is illustrated in Figure 4. As shown in the top-
left, S consists of a “fin” on top of a thicker and wider “board”.
M is made up of two sheets, called respectively the “fin sheet”
and “board sheet”, that meet along a seam. Burning starts earlier
along the boundary of the fin sheet than the board sheet, because
the former has smaller maximal balls. At the beginning, fire on the
fin sheet dies out as it reaches the seam, because the board sheet
has not been burned away (see time T1). An interesting event takes
place at time T2, when the fire front on the board sheet “catches up”
with that on the fin sheet. Note that the local topology of the point
where the fronts meet (p) in the unburned portion of M is the same
as x6 in Figure 5. Thereafter, the front splits into two segments, one
(“A”) merged with the fire front on the fin sheet and the other (“B”)
moving behind the fin sheet and dying out on the seam (see time
T3). Later on, at time T4, the latter segment (“B”) merges with the
other fire front on the fin sheet (at point q).

4.3 Defining burn time

To define burn time, we draw inspiration from geodesic distances.
Note that burn time agrees exactly with the geodesic distance to the
boundary if M has no singular points and R is zero everywhere.
Recall that the geodesic distance is defined by the length of the
shortest path. Similarly, we define burn time as the length of the
shortest tree of paths that branch at the singular points.

Motivation To motivate our definition, we assume for now that R
is zero everywhere on ∂M . That is, burning starts simultaneously
along the boundary. The burn time of a point x ∈ M is thus the
length of the shortest path along which burning can proceed contin-
uously (i.e., without dying out) from the boundary. If such path, say
γ, passes a point z on a seam, the other sheet at z must have been
burned before the fire front on γ reaches z. This implies that there is
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some path γ′ on that other sheet connecting z to the boundary that
is shorter than the segment of γ between z and the boundary (see
illustration in Figure 6 left). Note that if z has a more complicated
local topology (e.g., x5 in Figure 5), there should be enough num-
ber of paths like γ′ at z such that removing these paths, together
with the segment of γ between z and the boundary, from M would
“expose” z as a boundary point.

Figure 6: Left: An illustrative exposing tree at x. Right: Exposing
trees that realize burn time at different locations on the seam of the
medial axis of Figure 4. The primary path in each tree is colored
red, and the other tree edges are colored blue.

The path γ′, in turn, may spawn more paths to the boundary as
it passes other singular points. If we recursively collect all paths
spawned by γ and its spawned paths, we get a tree of paths to the
boundary that is rooted at x and branches at singular points. We call
this tree an exposing tree, because each vertex of the tree is exposed
as a boundary point if all its child branches are removed from M .
Note that γ is the longest root-to-leaf path in the tree. To define
burn time, we explore all exposing trees rooted at x and seek the
one whose longest rooted path is shortest.

Formal definition We start by formalizing the notion of “expo-
sure”, which is key to defining exposing trees. Given x ∈ M , we
consider the regular neighborhood of x on M , denoted as N(x).
We call each component of N(x) ∩M2 a sector. Intuitively, a sec-
tor corresponds to a (local) sheet that contains x. While a manifold
point has a single sector, a singular point has multiple sectors. Fig-
ure 5 (right) plots the regular neighborhood and note the number of
sectors for each sample point.

We say x is exposed by sectors {s1, . . . , sk} if removing them from
N(x) leaves no complete disks in N(x) (and hence x becomes a
boundary point). More precisely,

Definition 4.1 x ∈ M is exposed by sectors {s1, . . . , sk} if there
is no 2-dimensional disk D ⊆ N(x) such that x ∈ D, ∂D ⊆
∂N(x), and si ∩ D = ∅, ∀i = 1, . . . , k. The set {s1, . . . , sk} is
called an exposing set of x.

Examples of exposing sets are highlighted in Figure 5 (right). Note
that a singular point can have more than one exposing sets. Con-
sider point x4: any two of x4’s three sectors form an exposing set,
and so is the set of all three sectors. An empty set can also be an
exposing set if the point is already on ∂M .

Alternatively, exposing sets can be defined by considering the
boundary of the regular neighborhood, ∂N(x). This boundary is
a graph where each edge corresponds to a sector of x. If we remove
from this graph those edges corresponding to an exposing set, the
remaining subgraph is free of cycles.

Next we introduce exposing trees, their length, and burn time.

Definition 4.2 An image of a finite tree on M is called an exposing
tree of x ∈ M if it is rooted at x, each edge lies on M2, and each
vertex is exposed by the sectors that contain the child edges of that
vertex.

This definition naturally implies that each leaf vertex of Γ must lie
on ∂M , the only place where points are exposed by empty sets. An
exposing tree can consist of a single point (if x is on ∂M ), a single
path, or a collection of paths.

Definition 4.3 Given an exposing tree Γ at x ∈ M , a rooted path
from x to a leaf vertex y ∈ ∂Γ is called the primary path if

y = arg max
y′∈∂Γ

(R(y′) + dΓ(x, y′)), (3)

where dΓ measures path distance on Γ. The value R(y)+ dΓ(x, y)
is called the length of Γ, denoted as L(Γ).

Definition 4.4 Let Tx be the set of all exposing trees at x ∈ M .
The burn time function, BT : M → R ∪ {∞} is

BT (x) = inf
Γ∈Tx

L(Γ) (4)

We use infimum instead of minimum, because burn time may only
exist in the limit. An example is given in the Supplementary Ma-
terials. Finally, Erosion Thickness (ET) is defined as the difference
between BT and the radius function R, as in Equation 2.

Examples As examples, Figure 6 (right) plots the exposing trees
at various locations on the seam in the medial axis of Figure 4.
In this example, the burn time at each location is exactly realized
by the length of the exposing tree. Each exposing tree consists of
two edges that lie respectively on the board sheet and fin sheet.
Recall that, during burning, the merging of fire fronts happens at
two locations on the seam, first at p and later at q (Figure 4). For
a point located away from the seam segment between p and q, the
fin sheet is burned away first, and hence the primary path (red) of
the exposing tree lies on the board sheet. For a point located within
the segment between p and q, the board sheet is burned away first
(from behind the fin sheet) , and hence the primary path lies on the
fin sheet. The fire fronts from the fin sheet and board sheet reach
p (resp. q) at the same time, hence the exposing tree of p (resp. q)
has two primary paths of equal lengths.

5 Properties of Erosion Thickness

Guided by the same burning analogy, our definition of ET in 3D
naturally inherits the properties of ET in 2D [Liu et al. 2011]. We
give intuitive explanation of these properties here and refer read-
ers to the Supplementary Materials (Propositions 1.1, 1.2, 1.4) for
precise statements and formal proofs of these properties.

Finiteness ET in 2D is finite everywhere except on closed cycles
of the medial axis. Similarly, ET in 3D is finite anywhere away
from the closed surfaces in M . This property is evident from the
burning analogy, since burning terminates either when M is com-
pletely burned or the unburned residue has no boundary. Infinite
ET happens rarely: in general, M contains a closed surface only
when the shape S is bounded by multiple surfaces (e.g., a ball with
interior cavities that are disconnected from the outside).

Continuity ET in 2D is continuous everywhere over the medial
axis. Even at a junction point, ET is continuous over a segment
formed by two branches (see Figure 2). Such continuity extends
nicely to 3D: at any point x ∈ M (manifold or singular), ET is
continuous on some disk neighborhood of x. This disk is the last
remaining neighborhood of x right before x is burned away. As an
example, at a point x on the seam in Figure 6 (right), ET is con-
tinuous either on the board sheet (if x is not on the seam segment
between p, q) or on a disk formed by the fin sheet and board sheet.
Note that, in comparison, MGF is generally discontinuous at singu-
lar points.
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Local minima Like ET in 2D, ET in 3D is free of local minima
on the medial axis. Intuitively, since points are burned away only
when they lie on the boundary of the unburned subset, the burn time
lacks local minima. As R never varies faster than the burn time, ET
is free of local minima as well.

Unlike the 2D case, the lack of local minima in 3D does not warrant
a topology-preserving subset after thresholding. This is because ET
may contain saddle points (critical points of a 2-dimensional func-
tion that are neither locally maximal or minimal), and the medial
axis can become disconnected using thresholds lower than the val-
ues at the saddles. In our skeletonization algorithm, we shall use a
contraction method to ensure that the resulting skeleton preserves
both the significant parts and the topology of M .

Consistency with 2D definition Finally, we remark that our def-
inition of burn time in 3D, with minor modifications, reduces to
Liu’s definition in 2D (Equation 1). Consider now the medial axis
M of a 2D shape S. In this case, x ∈ M is exposed if at least
all but one of x’s adjacent segments are removed. If M is free of
cycles, x has only two exposing trees, one on each side of x, that
correspond to the two components of the residue M \ {x}. It is
easy to verify that the greater length of the two trees evaluates to be
BT as defined in Equation 1.

6 Computing Erosion Thickness in 3D

As mentioned earlier, exact or approximate algorithms for comput-
ing medial axes in 3D often produce a piece-wise linear structure, or
a triangular mesh. Given such a mesh M and a well-defined radius
function R (e.g., piece-wise linear interpolation of radii at vertices),
our goal is to compute a good approximation of ET. While we leave
exact computation of ET as future work, we also note that seeking
exact values may not be necessary when M itself is an approxima-
tion of the true medial axis.

Our algorithm is inspired by Lanthier’s method [1997] for approx-
imating geodesic distances over triangulated manifolds. His idea is
to construct a graph G, whose vertices are sampled from triangle
edges of M , and compute the shortest path distances on G. We
use a similar graph construction, based on which we formulate and
compute a version of ET that is restricted to the graph. The advan-
tage of this approximation strategy is that we can bound the error
of approximating the true ET by the sampling density.

6.1 Graph construction

We build an undirected graph G = {N, A} with nodes N and arcs
A. The nodes include the triangle vertices and extra sample points
along triangle edges. As in [Lanthier et al. 1997], we allow the user
to control the sampling density by specifying the maximal distance
ω between two nodes on the same triangle edge. Additionally, our
proof of error bound requires at least one sample point on each
triangle edge. As a result, we add max(1, ⌊l/ω⌋) sample points
with uniform spacing on an edge with length l.

The nodes on the edges of each triangle are connected by arcs in one
of two ways, as illustrated in Figure 7 (left). First, any two nodes
that do not lie on the same edge are connected by an arc (called
a triangle-arc). Next, any two nodes are the adjacent on a trian-
gle edge are connected by an arc (called an edge-arc). A notable
distinction from [Lanthier et al. 1997] is that our graph maintains
multiple edge-arcs between two nodes, one for each triangle that
shares the edge. Since the triangle edge can be part of a seam where
multiple medial axis sheets meet, the multiple edge-arcs capture the
paths on different sheets that lie infinitesimally close to the seam.
The length of an arc is the Euclidean distance between its ends.

Figure 7: Left: A graph on a triangle, showing graph nodes (fill
dots for vertices and hollow dots for edge samples) and arcs (blue

for triangle-arcs and red for edge-arcs). Right: Arcs in burn trees
(blue and red lines) and the dual medial curve (green).

6.2 Graph-restricted ET

An exposing tree is said to be restricted to G if vertices and edges
coincide with some subset of N and A. We denote the set of all
restricted exposing trees at a node v by TG,v . This allows us to
define a restricted version of burn time and ET on the graph.

Definition 6.1 Given a graph G = {N, A}, the graph-restricted
burn time function, BTG : N → R ∪ {∞} is defined for each
v ∈ N as

BTG(v) = min
Γ∈TG,v

L(Γ) (5)

The graph-restricted Erosion Thickness, ETG : N → R ∪ {∞} is

ETG(v) = BTG(v)−R(v) (6)

It is not difficult to verify that the graph-restricted ET retains key
properties of the continuous definition, including being finite any-
where away from the closed surfaces of M and free of local minima
(the latter property additional requires that ‖R(u) − R(v)‖ is no
greater than the distance between u, v for any node pair {u, v} that
shares an edge).

Obviously, ETG(v) cannot be smaller than ET (v), since the for-
mer considers a smaller set of exposing trees (i.e., those restricted to
G). On the other hand, we show that ETG(v) cannot be too much
longer than ET (v) either (see proof in Supplementary Materials):

Proposition 6.2 Let |M | count the number of triangles in M , g be
the maximal gradient magnitude of R on any triangle edge on ∂M ,
and ω be the maximal distance between adjacent nodes in G on a
triangle edge. For any node v in G,

ET (v) ≤ ETG(v) ≤ ET (v) + (2|M |+ g)ω (7)

This bound is similar to that of approximating geodesic distances
[Lanthier et al. 1997], with the difference of adding the variation
of R. Although theoretically g should not exceed 1, we allow ar-
bitrary g that might arise when M is an approximation of the true
medial axis. The bound implies that the graph-restricted ET can be
arbitrarily close to the true ET when edge sampling is sufficiently
dense. In practice, we observed that a moderate sampling rate al-
ready achieves a good approximation, and denser sampling only
brings minor improvement in accuracy (see Section 8).

6.3 Algorithm

To compute the graph-restricted burn time, our algorithm simulates
burning on G. Like Dijkstra’s algorithm, we adopt a greedy ex-
pansion: burn times are estimated at nodes that have not yet been
burned, and a node is burned if its estimate is minimal among all
un-burned nodes and if its neighborhood is exposed.

6
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Our algorithms uses the following data structures. We store at each
node v its radius (v.R), an estimated burn time (v.time), a state
flag (v.burned), and a list of its sectors (v.sectors). Each sec-
tor s keeps its own estimated burn time (s.time), its own state flag
(s.burned), and a list of arcs that lie on that sector (s.arcs). During
the algorithm, s.time maintains the earliest time of arrival of the
fire front from neighboring, burned nodes. Specifically, let a.len be
the length of an arc a, s.time is the minimum of (a.len + u.time)
over those arcs a in s.arcs whose other end node, u, is already
burned. For back-tracking purposes, the arc that realizes the mini-
mum, called the primary arc, is stored in s.primeArc. The min-
imal s.time among all unburned sectors s at node v is stored in
v.time. The sector that realizes the minimum, called the primary
sector, is stored in v.primeSector.

The pseudo-code of the algorithm is provided in Figure 8. The
algorithm keeps all unburned nodes in a list Q. Initially, all nodes
and sectors are unburned, and they all have infinite burn time except
for the boundary nodes whose burn times are their radii. The main
loop of the algorithm extracts the unburned node v with smallest
estimated burn time. Its primary sector is considered burned, as
well as any exposed sectors. Here, an unburned sector s is said to
be exposed if it cannot form a 2-dimensional disk with any other
unburned sectors at v. We set an exposed sector’s primary arc to
null because it is burned by an arc on another sector. If all sectors
at v are burned, the node v is considered burned, and the estimated
burn time at neighboring nodes and sectors are updated. Otherwise,
v is re-inserted into Q after updating its estimated burn time using
the remaining unburned sectors.

The algorithm exactly computes the graph-restricted burn time (see
proof in Supplementary Materials):

Proposition 6.3 At the termination of algorithm Burn in Figure 8,
v.time = BTG(v) for every node v.

The complexity of the algorithm is dominated by operations on Q
and the updates of burn time between neighboring nodes. Since the
number of times that a node v is inserted into Q is no more than the
number of its sectors, and since the latter is less than the number
of arcs at v, both operations Q.extractMin,Q.addWithKey are
called no more than O(|A|) times where |A| is the total number of
arcs. Similarly, calling times for both the burn time updates and
Q.updateKey are no more than O(|A|). Using a priority queue
for Q, the complexity of the algorithm is O(|A| log |N |), where
|N | counts the total number of nodes. This is the same complexity
as Dijkstra’s algorithm.

Besides burn time, the exposing trees whose lengths realize burn
time are also readily available from the algorithm. This tree,
called a burn tree, can be constructed at each node v by tracing
s.primeArc over all sectors s of v back to the boundary. Figure
9 (top-middle) plots all burn trees computed by our algorithm on a
synthetic medial axis. In the next section, we will use these trees to
compute the medial curves. Here, we make the important observa-
tion that, like shortest paths on a surface, no two burn trees intersect
(see proof in Supplementary Materials).

7 Computing skeletons

As a significance measure, ET in 3D excels in differentiating
boundary noise from prominent features. However, naive pruning
of the medial axis by thresholding ET may not produce a desirable
skeleton. First, since ET captures plate-likeness, the pruned medial
axis may lose tubular shape parts (e.g., fingers in Figure 10 top-
left). Secondly, as mentioned earlier, threshholding ET may change
the topology of the medial axis in 3D due to the presence of saddle
points.

// G: graph (∂G denotes boundary nodes)
Burn (G)

Q.init() // Initialize
for each node v of G

for each s ∈ v.sectors
s.time←∞
s.burned← False, s.primeArc← null

if v ∈ ∂G
v.time← v.R

else
v.time←∞

v.burned← False, v.primeSector← null
Q.addWithKey(v, v.time)

while Q is not empty // Main loop
v← Q.extractMin()
if v.primeSector 6= null

v.primeSector.burned← True
for each exposed sector s ∈ v.sectors

s.burned← True
s.time← v.time, s.primeArc← null

U ← all unburned sectors in v.sectors
if U = ∅ // Burn v and update its neighbors

v.burned← True
for each s ∈ v.sectors and each a ∈ s.arcs

u← other end node of a
t← sector of u that contains a
if u.burned=False and t.burned=False

h← a.len + v.time
if h < t.time

t.time← h, t.primeArc← a
if h < u.time

u.time← h, u.primeSector← t
Q.updateKey(u, u.time)

else // Update burn time of v
v.primeSector← arg mins∈U s.time
v.time← v.primeSector.time
Q.addWithKey(v, v.time)

Figure 8: Computing graph-restricted burn time.

To recover tubular features and retain topology, we augment the
thresholded medial axis with 1-dimensional medial curves. These
curves roughly follow the “ridges” of ET, which we observe to lie
centered with respect to lateral expansion of the shape. Our method
proceeds in three steps on a triangulated medial axis. First, using
the same graph structure for computing ET, we extract a discrete set
of ridge curves of ET. Second, we introduce a significance measure
over the medial curves as a variant of ET over the medial axis of a
2D shape. Finally, significant subsets of the medial axis and medial
curves are combined to form topology-preserving skeletons.

7.1 Computing the medial curves

While it would be ideal to precisely define the medial curves, we
have found that it is difficult to come up with a definition that has
all the desirable properties, such as being 1-dimensional and topo-
logically equivalent to the 3D shape. Instead, we achieve these
properties using a discrete algorithm that approximately traces the
singularities of ET.

Our algorithm is again motivated by the burning analogy. Note that
the process of burning retains the topology of the medial axis until
fire fronts from different boundary parts collide and quench. The
quench sites become the ridges of BT , which coincide with the
ridges of ET (since the variation of R is never faster than that of

7
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Figure 9: Top: A synthetic medial axis mesh, burn trees computed
by our algorithm Burn, and the medial curves obtained by dual-
izing the space between the burn trees. Bottom: burn time over
the medial curves (BTC), burn time over the medial axis (BTM ),
and their difference, the Erosion Thickness over the medial curves
(ETC). Close-up views are shown in the inserts.

BT ). On the other hand, the burn trees computed by our algorithm
of ET are exactly the paths of burning restricted to the graph G. Fire
fronts moving along these paths would quench in the space between
the paths. This motivates our strategy for computing medial curves:
extracting the center lines of the areas of medial axis between paths
of burn trees.

We use a simple dualization technique to extract these center lines.
Consider a subdivision of each triangle on the medial axis M by
all arcs used in burn trees (Figure 7 right). This is possible since
burn trees do not intersect each other, as we have mentioned earlier.
Note that a degenerate face with zero area can be formed by a trian-
gle edge segment and a triangle-arc of G (e.g., the top-left face in
the picture). We create a dual vertex on each edge segment (green
square) and within each face (green dot). They are located at the
average locations of the ends of the segment or corners of the face
weighted by their burn time. Finally, the dual vertex of each face is
connected to all dual vertices on the face’s boundary (green lines).

We show the result of our dualization method on a synthetic medial
axis in Figure 9 (top-right). Note that the medial curves form a con-
nected, tree-like structure. In fact, we can prove that these curves
form a deformation retract of M and hence is homotopy-equivalent
to M (see Supplementary Materials).

7.2 Erosion Thickness on the medial curves

The computed medial curves may contain many spurious branches,
due in part to the noisiness of the medial axis and in part to the
discrete nature of our algorithm. Our goal is to identify a subset of
the medial curves that captures major tubular features.

We define a significance measure over the medial curve by making
a small change to the definition of ET on the medial axis of a 2D
shape. Specifically, the radius function is replaced by the burn time
over M . To avoid confusion, let us denote BTM (x) as the burn
time over M at a point x ∈ M . Given the medial curves C, we
define the Erosion Thickness over C at a point x ∈ C, ETC(x), in
a form similar to Equations 2,1:

ETC(x) = BTC(x)−BTM (x). (8)

Figure 10: Left: ET on the medial axis (ETM ) and medial curve
(ETC) of a genus-1 hand. Right: skeletons created with different
settings of significance thresholds. Note that the hand topology is
preserved in every skeleton.

where BTC(x) is the burn time function over the medial curve C,
defined as

BTC(x) =
supminyz(BTM(y) + dC(x, y), BTM (z) + dC(x, z)).

(9)

where the supremum is taken over all segments yz on C between
two end points y, z that contain x. Both BTC and ETC can be
computed using the same reduction process for computing ET in
2D [Liu et al. 2011]. The functions, BTC , BTM and ETC , are
shown on a synthetic medial axis in Figure 9 (bottom).

Conceptually, ETC measures the shrinking of a tubular protrusion
as a result of pruning the medial curve. We have observed that ET
over the medial curves can effectively distinguish spurious branches
from center curves of prominent tubular features, such as the fingers
of the hand (Figure 10 bottom-left). ETC is finite anywhere except
over cycles of C (i.e., within a topological handle, as in this ex-
ample) and closed surfaces of M (i.e., within a shell bounded by
multiple surface components).

7.3 Generating skeletons

Finally, we combine significant parts of the medial axis and me-
dial curves (as deemed by their ET) into a skeleton that also pre-
serves the topology of the shape. This is done using a homotopy-
preserving contraction operator on general cell complexes [Liu
et al. 2010].

We start by creating a refined subdivision of each triangle using
both the arcs of the burn trees and the segments of the medial curves
(i.e., the union of red, blue and green lines in Figure 7 right). The
medial axis M is then represented as a cell complex, whose 2-,
1-, and 0- cells are the faces of the subdivision, their bounding
segments, and their corners. Each 2-cell is assigned a priority as
the average ETM at the corners of the cell, and each 1-cell is as-
signed a priority as the average ETC at the ends of the cell. A 2-cell
(resp. 1-cell) whose priority is greater than a user-specified thresh-
old θ2 (resp. θ1) is marked as protected. For cleaner skeletons,
protected 2-cells (resp. 1-cells) that form connected components
of size smaller than a constant φ2 (resp. φ1) become un-protected.
Contraction of M , ordered by the priority of cells, yields a minimal
sub-complex that contains all protected cells while preserving the
topology of M [Liu et al. 2010].
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Our skeletonization method allows flexible, independent control
over 1-dimensional and 2-dimensional components of the skeleton
(Figure 10 right). By the definition of ET, the threshold θ2 (resp.
θ1) roughly corresponds to how far the outer rim (resp. end point)
of a plate-like (resp. tubular) part of the shape shrinks inward after
the medial axis is pruned. Visually, a lower θ2 (resp. θ1) retains
more sheets (resp. curves) and captures more plate-like (resp. tubu-
lar) feature of the shape. Setting θ2 = ∞ produces an all-curve
skeleton (except for shapes bounded by multiple surfaces), and set-
ting θ1 = ∞ produces an surface-dominant skeleton where curves
are present only for preserving topology. Setting both thresholds
to ∞ yield a minimal structure that only preserves the topology,
such as a point (for a genus-0 shape), a cycle set (for a non-genus-0
shape, as in Figure 10 bottom-right) or a set of closed surfaces (for
a shape bounded by multiple surfaces).

8 Results

We implemented the algorithms for computing Erosion Thickness
and the skeletons in C++. We use the software provided by [Miklos
et al. 2010] to generate the triangulated medial axes. To be able
to use consistent parameter settings, we scale each shape so that
the maximal dimension of the bounding box is 1. All tests are per-
formed on a quad-core PC with 3.2GHz CPU and 12 GB RAM.

Quality and speed To study the approximation error of our al-
gorithm Burn, we consider the analytical medial axis of a simple
rectangular box (made up of 13 planar polygons), on which the ex-
act burn time can be analytically determined based on the burning
process (Figure 11 (a)). To compare the exact burn time with that
computed by Burn on the approximate triangulated medial axis, we
select ten vertices on the latter (dots in Figure 11 (a)) and plot the
result of Burn divided by the exact burn time at each vertex under
different values of ω (Figure 11 (b)). Note that our discrete algo-
rithm is able to approximate the true burn time with high accuracy,
and increasing the sampling rate (lowering ω) only brings minor
improvement.

On the same medial axis, we plot the number of graph arcs and
running time of Burn as functions of ω (Figure 11 (c,d)). Both
quantities grow roughly quadratically with the sampling rate, which
is consistent with our complexity analysis of Burn.

In all our experiments, we set ω = 0.004 to balance accuracy and
efficiency. At this setting, our algorithm completes under just a few
seconds on a triangulated medial axis with 50K vertices (e.g., for
Dolphin in Figure 12). As a comparison, even using the most effi-
cient approximation method available for geodesic distances [Crane
et al. 2013], evaluating MGF at all vertices of the same medial axis,
assuming a typical complexity of 30K vertices on the shape bound-
ary, requires at least 15 minutes.

Comparison of significance measures We have performed ex-
tensive tests to compare ET with object angle, circumradius and
MGF on smooth and perturbed shapes (see Supplementary Materi-
als). Two examples (Dolphin and Elephant) are shown in Figure 12.
Each significance measure is shown first by color and transparency
over the medial axis and next as a sub-set of the medial axis trian-
gles with significance values higher than a threshold (same thresh-
olds are used before and after boundary perturbation).

Consistent with our observations in 2D (Figure 2), ET in 3D excels
over local measures in differentiating noise from features. While
highlighting thin features (e.g., the tail of Dolphin and ear of Ele-
phant), object angle is also high near boundary noise (note the large
number of islands in the thresholded medial axis of the perturbed
shapes). While circumradius is much less sensitive to boundary
noise, the values are overly low on thin features. In contrast, ET

Figure 11: The exact medial axis of a box colored by exact burn
time (a) and the plots under decreasing ω (increasing sampling)
for approximation error of our burn time algorithm (b), number of
graph arcs (c), and running time (d) on a triangulated medial axis.

is sensitive to thin, plate-like features while being insensitive to
boundary noise.

Compared with MGF, ET is often better at highlighting plate-like
features (e.g., Dolphin’s tail and Elephant’s ears). We also found ET
to be more stable under boundary perturbations that significantly
alter geodesic distances. As shown in Figure 13, after ripples are
added to one side of a box, the distribution and range of MGF values
notably change while ET stays roughly the same.

Skeletons Guided by ET, our skeletonization algorithm produces
skeletons that are stable under boundary perturbations. Figure 14
compares the skeletons of Dolphin and Elephant before and after
boundary perturbation (see more examples in the Supplementary
Materials). The thresholds θ2 and θ1 used in our examples typi-
cally range between [0.01, 0.03] and [0.02, 0.06], respectively, ex-
cept for all-curve skeletons where θ2 = ∞. For each shape, we
keep the same thresholds before and after perturbation. In all of
our examples, we use the component size limits φ2 = 0.0005 and
φ1 = 0.

We compare with skeletons produced by a state-of-the-art pruning
method of Li et al. [2015], called Q-MAT, in Figure 15. Besides
pruning spurious branches, Q-MAT also simplifies the mesh struc-
ture in the un-pruned region, and both goals are achieved within a
unified edge-contraction framework. The method offers a family
of skeletons with varying levels of details, from a complex surface
mesh to a coarse polygonal curve. In comparison, by allowing in-
dependent control of the 2D and 1D components (via θ2 or θ1),
our method creates a greater variety of skeletons. For example, we
can increase the pruning on the skeleton surface without losing the
skeleton curves within fine features (e.g., Dinosaur’s teeth). Fur-
thermore, since edge-contraction in Q-MAT is guided by a combi-
nation of a local significance measure (known as stability ratio) and
a heuristically defined distance metric, it can be difficult for the user
to interpret their pruning parameter. On the other hand, the pruning
parameters (θ2 or θ1) in our method have more intuitive meanings
(as the amount of shrinking of plate-like or tubular shape features
from their extremities after medial axis pruning).

We also compare with the discrete Scale Axis Transform (SAT) of
Miklos et al. [2010] in Figure 16. The SAT method inflates the
shape, by a scaling parameter, before extracting the medial axis. For
noisy inputs, a small amount of inflation is insufficient to create a
clean skeleton (Figure 16 left). However, greater inflation can cause
nearby shape features to merge, thus creating a skeleton protruding
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Figure 12: Comparison of significance measures on Dolphin (left), perturbed Dolphin (middle left), Elephant (middle right) and perturbed
Elephant (right). First column for each shape visualizes the significance measure by heat color (higher values use hotter color) and trans-
parency (higher values are more opaque). Second column shows the portion of the medial axis whose significance values are higher than
a threshold. Note that ET is sensitive to thin, plate-like features (see inserts) while being robust to perturbation. See more examples in
Supplementary Materials.

outside the original shape and even with a wrong topology (e.g.,
between the fingers in Figure 16 middle). In contrast, our skeletons
are guaranteed to stay inside the shape and preserve its topology.

9 Conclusion and discussion

We introduce a novel global significance measure on the medial
axes of 3D shapes that extend the Erosion Thickness measure in 2D.
We give a precise definition, prove its key theoretical properties,
and present an efficient discrete approximation with bounded error.
The measure is used to guide the creation of clean, topology- and
shape- preserving skeletons.

Future work We would like to investigate a formal definition of
medial curves. Our medial curve (as ridge of Erosion Thickness)
can also be understood as the quench site of burning over the medial
axis. This interpretation is in fact consistent with the medial axis it-
self, which is the quench site of Blum’s grassfire burning from the

boundary of the 3D shape. Naturally, one may conjecture the ex-
istence of a hierarchy of structures (3D shape, 2D medial axis, 1D
medial curve, 0D medial point), such that each lower-dimensional
structure is the quench site of burning on the higher-dimensional
structure. It would also be interesting to see if exact geodesic al-
gorithms on meshes, which are known to have a low polynomial
complexity, can be extended to compute exact ET on a triangulated
medial axis with a similar complexity.

Applications Skeletons have been widely used in applications such
as animation, shape analysis, object retrieval, and medical image
analysis [Tagliasacchi et al. 2016]. As 3D ET measures the plate-
likeness of shape parts, we are particularly interested in applying
ET and the skeletons in part-based shape segmentation. This can
be achieved, for example, by defining signature functions over the
shape boundary that capture plate-likeness and tubularity.
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Figure 13: Comparing MGF (middle) and ET (right) on the medial
axis of a box before (top) and after (bottom) adding ripples to one
side of the box. Note that MGF has a significant shift in its distri-
bution (see the outlined areas) and a big increase in its range of
values, while ET remains largely unchanged.

Figure 14: Skeletons generated by our method before and after
boundary perturbation.
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