
Counting and Sampling Minimum Cuts in Genus g Graphs∗

Erin W. Chambers† Kyle Fox‡ Amir Nayyeri§

May 16, 2014

Abstract

Let G be a directed graph with n vertices embedded on an orientable surface of genus g with
two designated vertices s and t. We show that computing the number of minimum (s, t)-cuts
in G is fixed-parameter tractable in g. Specifically, we give a 2O(g)n2 time algorithm for this
problem. Our algorithm requires counting sets of cycles in a particular integer homology class.
That we can count these cycles is an interesting result in itself as there are no prior results
that are fixed-parameter tractable and deal directly with integer homology. We also describe
an algorithm which, after running our algorithm to count minimum cuts once, can sample an
(s, t)-minimum cut uniformly at random in O(n log n) time per sample.

∗A primary version of this paper is appeared in SoCG 2013.
†Department of Computer Science and Mathematics, Saint Louis University; echambe5@slu.edu. Research sup-

ported in part by the National Science Foundation under Grant No. CCF 1054779.
‡Institute for Computational and Experimental Research in Mathematics, Brown University; kyle fox@brown.edu.

Research supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE
SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-
ORAU under contract no. DE-AC05-06OR23100. Portions of this work were done while this author was a student
at the University of Illinois at Urbana-Champaign.
§School of Electrical Engineering and Computer Science, Oregon State University, nayyeria@eecs.oregonstate.edu.

Research supported in part by the National Science Foundation under Grants No. CCF 1065106 and CCF 09-15519.
Portions of this work were done while this author was a student at the University of Illinois at Urbana-Champaign.

echambe5@slu.edu
kyle_fox@brown.edu
nayyeria@eecs.oregonstate.edu

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 1

1 Introduction

Given a weighted directed graph G = (V,E) with n vertices and m edges on an orientable surface Σ
of genus g with two vertices s, t ∈ V , we consider the problem of counting the minimum (s, t)-cuts
of G. This problem in general graphs is #P-complete [54], and can be reduced to the problem of
counting maximal antichains in a poset [1]. Ball and Provan [1] first considered the problem of
counting minimum cuts and gave an algorithm to compute the number of minimum cardinality (s, t)-
cuts in an (s, t)-planar graph (where the source and sink are on the same face). Later, Bezáková
and Friedlander [2] generalized the algorithm for arbitrary locations of s and t in a planar graph
and arbitrary edge weights.

Counting the number of minimum cuts is of interest due to connections with many other areas.
For example, the number of minimum cuts is closely related to the probabilistic connectedness of a
stochastic graph, where each edge may fail with a certain probability [1], and so it is fundamentally
important in several network reliability problems [1,16,38,50].

In addition, cuts have strong connections to problems from computer vision. In image segmen-
tation, the image is represented as a (generally planar) graph on the pixels with edges connecting
neighboring pixels weighted according to how similar the pixels are; a minimum cut between two
locations corresponds to a good segmentation of the original image [8]. Being able to count mini-
mum cuts is closely related to sampling such cuts [37], implying that our ability to count minimum
cuts allows us to sample from the collection of high quality segmentations of an image.

For graphs on surfaces, good segmentation algorithms are key for problems such as texture
mapping, metamorphosis, simplification, and compression; see [56] for a recent survey of techniques
and applications. Many of these algorithms wish to minimize stretch so that patches of the surface
are separated via small separators and local distances within each patch stay close to the original
distance. Minimum cuts have strong potential here; separating along these cuts will again result
in a good segmentation. Even an algorithm with large dependence on the genus is useful, because
many meshing algorithms attempt to keep the genus small as a way of reducing noise in the mesh.

1.1 Flows and cuts in restrictive graph families

Along with counting minimum cuts, computing minimum cuts (and maximum flows) is a funda-
mental problem in combinatorial optimization. Because of their utility, much effort has been spent
on finding faster algorithms in restricted but useful settings.

Planar graphs are a natural family of graphs to consider, both because they arise naturally
in many settings and because the extra structure in planar graphs can be exploited to get faster
algorithms. Examples of problems aided by planarity include minimum spanning trees [45, 53];
single-source shortest paths [15,33,41,44,48,57]; multiple-source shortest paths [9,40]; replacement
paths [24, 60]; graph and subgraph isomorphism [20, 21, 29, 34, 46]; and approximation of several
NP-hard problems [3–5,18,21].

Of course, much work is also dedicated to computing cuts and flows in planar graphs, both undi-
rected [11,28,31,35,36,43,55] and directed [6,58]. The current best algorithms run in O(n log log n)
time in undirected graphs [36] and O(n log n) time in directed graphs [6], considerably improving
on running times for arbitrary sparse graphs.

Because of this success in the planar setting, there has been a considerable amount of recent
work on computing flows and cuts in generalizations of planar graphs, which include surface em-
bedded graphs [14, 15, 23, 25], minor-free families [13], and graphs with bounded treewidth [30].
Unfortunately, some properties of planar graphs that the planar flow and cut algorithms take for
granted such as every cycle being separating do not apply in these more general settings. The lack

2 Counting and Sampling Minimum Cuts in Genus g Graphs

of structure not only slows progress toward creating new algorithms, but it introduces surprising
dependencies in running time. For example, the current best algorithms for computing a minimum
cut in an undirected surface graph run in 2O(g)n log n time [25] and gO(g)n log logn time [36].

1.2 Our contributions

In this paper, we describe a quadratic time algorithm to compute the number of minimum (s, t)-
cuts for a weighted graph embedded on a surface of constant genus. Specifically, our algorithm runs
in 2O(g)n2 time assuming a cellular embedding is given onto a surface of genus g. If no embedding
is given, then we can compute one in 2O(g)n time [39, 59]. Since counting the number of cuts is
generally #P-complete [54], finding a fixed-parameter tractable algorithm to compute the number
of cuts for a surface embedded graph represents a significant and perhaps optimal improvement in
known results for a large family of graphs. Our algorithm requires only a few simple assumptions on
the input graph; every edge has positive capacity, and there exists a directed path from s to every
vertex in G and a directed path from every vertex in G to t. We make the second assumption so
that vertices with no effect on the connectivity of s and t do not influence the number of minimum
(s, t)-cuts. See [2, Section 4].

Our approach uses a connection between cuts and (co-)homology in a non-trivial way, as well
as generalizing tools from [2] to more general surfaces. As in [2], our algorithm first reduces the
problem of counting minimum cuts in G to the problem of counting forward (t, s)-cuts in a directed
acyclic graph. Our algorithm then uses a bijection between forward (t, s)-cuts and circulations
of a certain homology class in the dual graph. These reductions are described in Section 3 and
4, respectively. The characterization of cuts using circulations in the dual is not original to this
work [14, 23, 25, 52], but there are some key changes in our characterization and how we use it for
counting cuts. In [14,23,25], minimum cuts in undirected graphs are characterized using homology
with coefficients in Z2. However, in our case, G has directed edges, so we must use coefficients
in Z. Integer coefficients are used in [52] to compute edge expansion in genus g graphs. However,
the algorithm used to compute edge expansion has running time nO(g2) and is therefore not fixed
parameter tractable. To the best of our knowledge, there is no fixed-parameter tractable algorithm
that deals with integer homology directly.

In Section 5 we describe an algorithm to compute the number of dual circulations in a certain
homology class if the primal directed acyclic graph is triangulated. Finally, in Section 6 we general-
ize our algorithm to work for non-triangulated primal graphs as well. Unlike many other problems
where triangulating an input graph without changing the output is trivial, we must actually change
the surface itself to form a triangulation without affecting the number of forward (t, s)-cuts. For-
tunately, some surprising properties of non-crossing cycles allow us to limit the complexity of our
modified surface.

Our algorithm can also be used to sample a minimum (s, t)-cut uniformly at random. The
sampling algorithm follows almost as an immediate consequence of our main result and the sampling
technique given in [2]. After running the counting cut algorithm, we only need O(n log n) time per
sampling, so several samples can be computed quickly. We describe the sampling algorithm in
Section 7.

2 Preliminaries

We give a brief overview of necessary definitions for tools we use. For full coverage, we direct
the reader to existing books and surveys on topology [32,49], computational topology [19,61], and
graphs on surfaces [17,47].

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 3

2.1 Graphs

Let G = (V,E) be a directed graph. For each edge e = (u→v) ∈ E we define its tail and head to be
the vertices u and v, respectively. Our graph may contain parallel edges with identical endpoints;
in this case the edge referred by (u→v) should be clear from context. If u = v then e is a loop.
The indegree of a vertex v is the total number of edges in E whose heads are v. Similarly, the
outdegree of v is the total number of edges in E whose tails are v, and the simple degree of a
vertex v is the sum of its indegree and outdegree. A directed (u, v)-walk in G is a sequence of
vertices W = (u = w1, w2, · · · , wk = v) such that (wi→wi+1) ∈ E for all 1 ≤ i < k; we sometimes
denote a (u, v)-walk by u v; we also use u v to designate that there is a a directed walk from
u to v. A (u, v)-walk is closed if u = v, it is a (directed) path if it has no repeated vertices, and
it is a (directed) cycle if u = v is its only repeated vertex. An undirected walk , path , or cycle
has the same definition as above, except we allow either (wi→wi+1) ∈ E or (wi+1→wi) ∈ E for any
consecutive vertices in the vertex sequence. Note that we still respect the ordering of vertices in
an undirected walk even though we are ignoring the orientation of its edges within G. Let W1 be a
(u, v)-walk and W2 be a (v, w)-walk; their concatenation W1 ·W2 is defined as the concatenation
of their corresponding vertex sequences (excepting the first instance of v in W2). Let rev(W1)
denote the reversal of walk W1.

A directed graph G is a directed acyclic graph (DAG) if it does not contain any directed
cycle. A vertex v ∈ V of a DAG is a source if its indegree is zero and a sink if its outdegree is zero.

A cut in G is defined as a subset of vertices S ⊆ V ; we refer to S and T = V \S as different
sides of the cut. Given two vertices a and b with a ∈ S and b ∈ T , we say S is an (a, b)-cut .
Further S is a forward (a, b)-cut if there is no edge (u→v) ∈ E such that u ∈ T and v ∈ S.

An edge e = (u→v) crosses a cut S if exactly one of u and v lie in S. In particular, e crosses
S in the forward direction if u ∈ S and in the backward direction if v ∈ S. For a cut S we
use the notation Γ+(S) to denote the set of all edges that cross S in the forward direction. We
define Γ−(S) as the set of edges that cross S in the backward direction. A walk W crosses a cut
S k times if there are k edges of W that cross S. Given an edge capacity function c : E → IR+,
the value of a cut S is

∑
e∈Γ+(S) c(e) (note that this sum is taken over edges in Γ+(S) only). A

minimum (s, t)-cut of G with respect to capacity function c is an (s, t)-cut of least value.

A spanning tree τ of a connected graph G = (V,E) is a maximal subgraph of G that contains
no undirected cycles. The tree τ is a forward spanning tree with root r ∈ V if and only if τ
contains a directed path from r to any vertex u ∈ V ; we will also say that τ is a directed tree with
root r. Similarly, τ is a backward spanning tree with root r if it contains a directed path from
every vertex u ∈ V to r.

2.2 Surfaces and embeddings

A surface (or a 2-manifold) with boundary is a compact Hausdorff space in which every point
has a neighborhood homeomorphic to the Euclidean plane or the closed half plane. The union of
all points in open neighborhoods homeomorphic to the closed half plane compose the boundary
of the surface. Every boundary component is homeomorphic to a circle. A cycle in a surface Σ
is a continuous function γ : S1 → Σ, where S1 is the unit circle; the cycle γ is simple if γ is
injective. A loop is a cycle along with a designated basepoint on the cycle. A path in a surface
Σ is a continuous function p : [0, 1] → Σ; the path p is simple if p is injective. Two paths or
cycles in a surface cross if no continuous infinitesimal perturbation makes them disjoint; if such a
perturbation exists, then the paths are non-crossing . Two paths p and q in Σ are homotopic if
one can be continuously deformed into the other without changing their endpoints. More formally,

4 Counting and Sampling Minimum Cuts in Genus g Graphs

a homotopy between p and q is a continuous map h : [0, 1]× [0, 1]→ Σ such that h(0, ·) = p,
h(1, ·) = q, h(·, 0) = p(0) = q(0), and h(·, 1) = p(1) = q(1).

A simple cycle γ is separating if Σ\γ is not connected. Further, γ is contractible if Σ\γ is
composed of two components and at least one of them is homeomorphic to an open disc. A (not
necessarily simple) loop ` is contractible if it is homotopic to its basepoint. When ` is simple,
these two definitions of contractible are equivalent. The genus of a surface Σ, denoted by g, is
the maximum number of disjoint simple cycles γ1, γ2, . . . , γg in Σ such that Σ\(γ1 ∪ γ2 ∪ · · · ∪ γg)
is connected. A surface Σ is non-orientable if and only if it contains a subspace homeomorphic
to the Möbius band and is orientable otherwise. It is known that any surface can be specified
up to homeomorphism with its genus and orientability. For this paper, we consider only compact,
connected, orientable surfaces.

An embedding of a graph G = (V,E) on a surface Σ is a drawing of G on Σ, such that vertices
are mapped to distinct points in Σ and edges are mapped to internally disjoint simple paths in Σ
between the edges’ vertices’ corresponding points. A face of an embedding is a maximal connected
subset of Σ that does not intersect the image of G. An embedding is cellular if all of its faces are
homeomorphic to a topological open disc. For a face f , we let ∂f define the clockwise cycle bounding
the face. Any cellular embedding in an orientable surface can be combinatorially described using a
rotation system , which records the (clockwise) cyclic order of the incident edges of each vertex.
For such an embedding, Euler’s formula implies |V | − |E| + |F | = 2 − 2g − b, where F is the
set of faces of the embedding and b is the number of boundary components. For this paper, we
assume all embeddings are cellular. We assume g = O(n), because otherwise the trivial algorithm
of enumerating all s, t-cuts and counting the ones that are minimum would meet our desired time
bound. Finally, we assume the input graph G is simple. Self-loops do not appear in minimum
s, t-cuts and parallel edges can be replaced by single edges without increasing the genus of the
embedding. By Euler’s formula, our assumptions guarantee m = O(n).

2.3 Topology

Let G = (V,E) be a directed graph embedded on a surface Σ and let F be the set of faces of the
embedding. We optionally refer to the vertices of G as cells of dimension 0, the edges as cells
of dimension 1, and the faces as cells of dimension 2. A k-chain (0 ≤ k ≤ 2) is a function
that assigns a set of real values to cells of dimension k. A k-chain is trivial if it assigns 0 to all
cells, it is non-negative if it assigns non-negative values to all cells, and it is a {0, 1}-chain if it
assigns values from {0, 1} to all cells.

Let φ : E → Z be a 1-chain. Then, the boundary of φ is a 0-chain ∂φ : V → Z defined as
∂φ(v) =

∑
(v→w)∈E φ(v→w) −

∑
(w→v)∈E φ(w→v) for each v ∈ V . A circulation is a 1-chain

φ such that ∂φ(v) = 0 for all v ∈ V . The cycle space of a graph G, denoted by Z(G), is the
vector space of integral 1-chains that are circulations in G. The cycle space Z(G) is isomorphic to
Z|E|−|V |+1 [32]. A trivial circulation , a non-negative circulation and a {0, 1}-circulation
are special cases of these 1-chains in the cycle space.

We say a set of undirected cycles C trivially generates a circulation φ if φ is the 1-chain that
assigns a value to each edge equal to the number of times the edge appears in C in the forward
direction minus the number of times it appears in the backwards direction. Note that if C contains
only directed cycles, then it generates a non-negative circulation. We will abuse terminology slightly
by equating C with the circulation trivially generated by C.

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 5

2.4 Homology

The boundary of a 2-chain α : F → Z is a 1-chain ∂α : E → Z such that ∂α(e) = ∂α(right(e)) −
∂α(left(e)), where left(e) and right(e) are the faces to the left and right of the directed edge e. If e’s
right (or left) side is a boundary component then we take ∂α(right(e)) = 0 (or ∂α(left(e)) = 0).
It is straightforward to verify that the boundary of any 2-chain, which is called a boundary
circulation , is a circulation. The boundary space of G, denoted by B(G) is the space of all
integral boundary circulations. It follows from the definition that B(G) is a linear subspace of
Z(G), and it is isomorphic to Z|F |−1 if b = 0 or Z|F | if b ≥ 1, where b is the number of boundary
components in Σ [32].

Two integral circulations φ and ψ are homologous, or they are in the same homology class,
if and only if their difference φ − ψ is a boundary circulation. Thus the homology space is the
vector space of homology classes, which is isomorphic to Z(G)/B(G) ∼= Z2g+max{0,b−1} by Euler’s
formula. We sometimes refer to the homology class of a set of directed cycles, where we more
precisely mean the homology class of the circulation trivially generated by that set.

2.5 Dual graphs and triangulations

Let G = (V,E) be a graph embedded on a surface Σ, and let F be the set of faces in the embedding.
The dual graph G∗ is defined as an embedded graph on Σ that has a vertex f∗ for each face f ∈ F .
There is an edge (f∗→g∗) in G∗ if and only if there is a directed edge e ∈ E that has f on its left
side and g on its right side; we denote such a situation by f ↑ g. For a subgraph H of G, we abuse
notation by letting H∗ denote the subgraph of G∗ with the same edges as H.

Let G = (V,E) be a graph embedded on a surface Σ of genus g. A tool we use is a tree-cotree
decomposition, introduced by Eppstein [22], where E is decomposed into three disjoint sets (τ, L, C)
such that τ is a spanning tree of G, C∗ is a spanning tree of G∗, and L is composed of 2g edges.
For any e ∈ L, τ ∪ e contains exactly one undirected cycle, which is non-separating.

The graph G is a triangulation if every face of G is a triangle; graph G being a triangulation
is equivalent to G∗ being 3-regular , where every vertex of G∗ has degree 3.

2.6 Flows

For s, t ∈ V , an (s, t)-flow is a 1-chain φ : E → R such that ∂φ(v) = 0 for all v ∈ V \{s, t}. For a
capacity function c : E → R+, the flow φ is feasible if 0 ≤ φ(e) ≤ c(e) for all e ∈ E. Each flow
can be decomposed to a set of weighted paths and cycles; here, each edge in a particular cycle or
path has the same amount of flow present. A flow is acyclic if it can be decomposed into a set
of simple (s, t)-paths. The value of an (s, t)-flow φ is ∂φ(s) =

∑
s→v φ(s→v) −

∑
u→s φ(u→s). A

maximum (s, t)-flow with respect to a capacity function c is a feasible flow of highest value. A
well known theorem of Ford and Fulkerson [26] states that for any capacity function c, the value
of a maximum feasible flow is equal to the value of a minimum (s, t)-cut.

For a flow φ, the residual capacity function cφ : E → R is defined as cφ(e) = c(e)−φ(e). The
residual graph Gφ contains two edges (u→v) and (v→u) for every edge e = (u→v) in G (the
residual graph Gφ may have multiple edges from v to u for this definition). The edges are weighted
so cφ(u→v) = c(e)− φ(e) and cφ(v→u) = φ(e).

3 Minimum cuts and forward cuts

Following Bezáková and Friedlander [2], we begin by reducing the problem of counting the minimum
(s, t)-cuts in G to the problem of counting forward (t̃, s̃)-cuts in a related graph G̃. Let G be a

6 Counting and Sampling Minimum Cuts in Genus g Graphs

directed acyclic (multi-)graph. Let a and b be vertices of G. Finally, let S be a subset of vertices
such that a ∈ S and b /∈ S. Recall that S is a forward (a, b)-cut of G if there is no edge u→v such
that v ∈ S and u 6∈ S. We begin by considering the following theorem:

Theorem 3.1 (Bezáková–Friedlander [2, Theorem 4]). Let G = (V,E, c) be a (directed)
graph with edge capacities c : E → IR+. Let s ∈ V be the source and t ∈ V be the sink. There
exists a directed acyclic graph (DAG) G̃ = (Ṽ , Ẽ) and vertices s̃, t̃ ∈ Ṽ such that the number of
minimum (s, t)-cuts in G is equal to the number of forward (t̃, s̃)-cuts in G̃. Moreover, |Ṽ | ≤ |V |,
|Ẽ| ≤ |E|, and it is possible to construct G̃ in time O(|V |3 + |E|2). Also, if G is planar, then G̃ is
planar as well, and G̃ can be constructed in time O(|V | log |V |).

The proof of this theorem relies upon constructing a maximum flow f for the graph G and
removing directed cycles containing flow from f . The graph G̃ is then formed by taking the residual
graph Gf , removing 0 weight edges, and contracting the strongly connected components. The edge
contraction operation is defined as removing an edge u→v of the graph G and identifying its
endpoints, u and v. The final part of the theorem comes from the existence of fast algorithms for
computing maximum flows in planar graphs [7] as well as the fact that contraction of an edge in a
planar graph yields a planar graph with an inherited embedding. Corollary 3.2 follows immediately.

Corollary 3.2 (Bezáková–Friedlander [2, Corollary 5]). Suppose there exists a path from s
to every vertex of G and a path from every vertex of G to t. Then t̃ is the only vertex of indegree 0
and s̃ is the only vertex of outdegree 0 in G̃.

In our setting, we must similarly exploit the embedding of the graph on a surface. Let G be
embedded on a surface Σ of genus g. The current best running time for computing a maximum
flow in an arbitrary graph where m = O(n) is O(n2/ log n) due to a recent algorithm of Orlin [51].
The proof of Theorem 3.1 implies G̃ can be computed in O(n2) time, because computing a max-
imum flow, forming the residual graph, and removing cycles from G̃ takes O(n2) time total when
m = O(n). The proof for Theorem 3.1 will not quite get the correct structure for the DAG in our
setting, however, since we will still require the graph to be cellularly embedded on the surface Σ,
and contracting strongly connected components may destroy the topology of the underlying surface
which is essential to the algorithm.

We therefore modify the original construction as follows. First, our algorithm finds strongly
connected components in the residual graph as in the original construction. All of the edges are
contracted iteratively unless the edge is a loop; these loops are not contracted so that we can retain
a cellular embedding of the graph. The contraction of a single edge can be done in linear time while
maintaining the same embedding on the underlying surface, so the overall contraction algorithm is
still O(n2). Note that the underlying topology is maintained, since a loop will remain in the graph
for each handle of the surface. For the simplicity of exposition, we assume the new graph contains
no faces of degree 2 or 1. Our algorithm enforces this assumption by iteratively removing faces of
degree 2 or 1 by deleting one of their edges. Again, this process can be easily completed in O(n2)
time. Theorem 3.3 follows immediately.

Theorem 3.3. Let G = (V,E, c) be a (directed) graph with edge capacities c : E → IR+ embedded
on a surface of genus g. Let s ∈ V be the source and t ∈ V be the sink. There exists a directed
acyclic graph (DAG) G̃ = (Ṽ , Ẽ), possibly with self-loops, embedded on a surface of genus at most g
and vertices s̃, t̃ ∈ Ṽ such that the number of minimum (s, t)-cuts in G is equal to the number of
forward (t̃, s̃)-cuts in G̃. Moreover, G̃ has O(n) vertices and edges, G̃ has no faces of degree 2 or 1,
and G̃ can be computed in O(n2) time.

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 7

While this graph is not a strictly DAG, our algorithm is resilient to the existence of self loops. As
an alternative to the above procedure, our algorithm can perform the original contraction procedure
of Bezáková and Friedlander [2] and then compute a new embedding of G̃ without loops onto a new
surface of genus at most g [39], but we must consider loops anyway due to technicalities introduced
by the procedure in Section 6. Note the minimum embedding of a connected graph is known to be
cellular [59].

4 Forward cuts and cocirculations

Based on Theorem 3.3 and Corollary 3.2, we focus on the problem of counting forward (t, s)-cuts
in a directed acyclic graph; therefore, from here on G is a directed acyclic graph, possibly with
self loops, embedded on a surface Σ of genus g where t is the only source in G and s is the only
sink. Let Σ′ = Σ \ (s∗ ∪ t∗). Simply knowing that G is a DAG immediately gives us the following
lemma which generalizes Claim 1 of [2]. While the original claim deals with single cycles in planar
graphs, our lemma describes more general circulations. This lemma helps us characterize the edges
leaving forward (t, s)-cuts as particular circulations in the dual and makes it possible to count these
circulations.

Lemma 4.1. There exist no non-trivial non-negative boundary circulations of G∗ in the surface Σ′.

Proof: For the sake of contradiction, let φ be a non-trivial non-negative boundary circulation
of G∗ in the surface Σ′. We note that no edge dual to a loop in G can have non-zero value in any
boundary circulation, since its dual is bordered by the same face on both sides.

Let (u→w)∗ be a directed edge with φ((u→w)∗) > 0. Vertex u is reachable from t since t
is the only source in G. Likewise, w can reach s. Therefore, there exists a simple directed path
p = v0→v1→v2→ . . .→vk from t to s through u→w, where v0 = t, vk = s; also for some 0 ≤ i < k,
vi = u and vi+1 = w.

Boundary circulation φ is equal to ∂α for some 2-chain α of G∗ in the surface Σ where α(v∗0) =
α(v∗k) = 0 (because v∗0 = t∗ and v∗k = s∗ are boundaries in Σ′). For each edge vi→vi+1 of p,
we have α(v∗i+1) − α(v∗i) ≤ 0, because there exists no edge e in G with φ(e∗) < 0. Further, we
have α(w∗)− α(u∗) < 0. Therefore, either α(v∗0) > 0 or α(v∗k) < 0, a contradiction. �

Theorem 3.3 reduces the problem of counting minimum cuts to the problem of counting forward
cuts in a DAG that possibly contains self loops. The following results reduce counting forward cuts
to the problem of counting circulations in a certain homology class. These results borrow ideas
from minimum cut algorithms in surface embedded graphs [14, 23, 25], but require substantially
more technical detail to work with integer homology.

Lemma 4.2. Let T be a forward (t, s)-cut in G, and let φT be the 1-chain in G∗ where φT (e) = 1
if e∗ crosses T and φT (e) = 0 otherwise. Then, φT is a {0, 1}-circulation of G∗ homologous to ∂t∗

in the surface Σ′.

Proof: We define a 2-chain α of G∗ in the surface Σ′. For each vertex v ∈ V \ {t, s}, let α(v∗) =
1 if v ∈ T \ {t}, and let α(v∗) = 0 otherwise. Consider the circulation ∂α and any directed
edge e = u→v of G. If e is a loop so v = u, then α(v∗) − α(u∗) = 0. If u = t and v ∈ T ,
then ∂α(e∗) = −1. If u = t and v /∈ T , then ∂α(e∗) = 0. If u ∈ T \ {t} and v /∈ T , then ∂α(e∗) = 1.
In all other situations, ∂α(e∗) = 0. We see ∂α = φT − ∂t∗. �

8 Counting and Sampling Minimum Cuts in Genus g Graphs

Lemma 4.3. Let φ : E∗ → Z be a non-negative circulation in G∗ that is homologous to ∂t∗ in the
surface Σ′. Then there exists a forward (t, s)-cut T of G, such that for each edge e ∈ E, e crosses
T if and only if φ(e∗) = 1. Further, φ is a {0, 1}-circulation in G∗.

Proof: We begin by showing the existence of some (not necessarily forward) (t, s)-cut T where
for every edge e that crosses T in the forward direction we have φ(e∗) ≥ 1; i.e., the dual of the
collection of edges with value at least 1 in φ separates t from s.

Let φt be the circulation trivially generated by ∂t∗. By assumption, there exists a 2-chain α
of G∗ in the surface Σ such that ∂α = φ − φt and α(t∗) = α(s∗) = 0. Let p = (v0→v1→ . . . vk)
be any directed path in G such that v0 = t and vk = s. Suppose there exists no edge e of p with
φ(e∗) ≥ 1. We have α(v∗1)− α(v∗0) ≥ 1 and α(v∗i+1)− α(v∗i) ≥ 0 for all 0 < i < k. We immediately
have a contradiction on α(v∗0) = α(v∗k) = 0. Thus, any simple (t, s)-path contains an edge e ∈ E
such that φ(e∗) ≥ 1. The collection of such edges separates t from s.

Now, let T (V be the set of vertices reachable from t using only edges e with φ(e∗) = 0.
Recall Γ+(T) and Γ−(T) are the sets of edges that cross T in the forward and backward directions,
respectively. Let φT be the 1-chain of G∗ with φT (e∗) = 1 for every directed edge e ∈ Γ+(T),
φT (e∗) = −1 for every directed edge e ∈ Γ−(T), and φT (e∗) = 0 for every other edge in G.
Let G′ be the graph G with every edge of Γ−(T) reversed. We see T is a forward (t, s)-cut in G′.
Further, G′ is acyclic, because every edge in G′ not also present in G lies on that forward (t, s)-
cut. By Lemma 4.2, φT is a {0, 1}-circulation homologous to ∂t∗ in G′∗ on the surface Σ′. By
assumption, φ is homologous to ∂t∗ on Σ′, too. Since homology is a transitive property and both
are homologous to ∂t∗, we know that φT is also homologous to φ on Σ′.

Now, let φ′ = φ − φT . The 1-chain φ′ is a non-negative boundary circulation on G∗. Thus,
Lemma 4.1 implies that φ′ should be trivial. It follows that φ = φT . Circulation φT is non-negative,
so T is a forward (t, s)-cut. Further, φ is a {0, 1}-circulation. �

Lemmas 4.2 and 4.3 imply a bijection between forward (t, s)-cuts in G and {0, 1}-circulations
in G∗ of a particular homology class. We immediately get the following theorem which drives the
remaining algorithm design and analysis.

Theorem 4.4. Let G = (V,E) be a directed graph embedded on a surface Σ with vertices s, t ∈ V
such that there exist no directed cycles in G other than single edge loops and where every vertex
of G is reachable from t and every vertex can reach s, and let Σ′ = Σ \ (t∗ ∪ s∗). The number of
forward (t, s)-cuts in G is equal to the number of {0, 1}-circulations of G∗ homologous to ∂t∗ in the
surface Σ′.

5 Counting cuts in triangulations

In this section, we give our algorithm for counting forward (t, s)-cuts of G assuming G is embedded
in Σ as a triangulation. We relax our assumption that G is a triangulation in Section 6. We
first recall that G∗ is 3-regular. Therefore, any set of edge-disjoint directed cycles in G∗ must
also be vertex disjoint. We immediately see every {0, 1}-circulation φ of G∗ is trivially generated
by a unique set of edge-disjoint directed cycles in G∗ found by tracing along edges e of G where
φ(e∗) = 1. Theorem 4.4 then implies we can count the forward (t, s)-cuts of G by counting such
collections of cycles in a particular homology class. In fact, the second part of Lemma 4.3 implies
we can safely count all sets of cycles that trivially generate a circulation in the correct homology
class without explicitly checking if they are edge disjoint or simple. We focus on counting these
collections of cycles.

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 9

5.1 Crossing sequences and vectors

t

u

v

τ[u]

τ[v]

Our algorithm begins with the following construction. It creates
a tree-cotree decomposition (τ, L, C) where τ is an arbitrary directed
spanning tree of G rooted at t. Euler’s formula implies that L contains
exactly 2g directed edges which we label u1→v1, . . . , u2g→v2g. Let τ [v]
denote the directed path from t to v in τ . For each i ∈ {1, . . . , 2g},
let p+

i denote the directed path τ [ui] · (ui→vi), and let p−i = τ [vi].
Let p+

0 = τ [s] and let p−0 denote the trivial walk from s to itself. Let pi denote the directed closed
walk p+

i · rev(p−i). Finally, let P = {p0, p1, . . . , p2g}. The intersection of P and Σ′ forms a system
of arcs in Σ′; cutting Σ′ along P creates a topological disk [12].

Lemma 5.1. Let G be a directed acyclic graph with single edge loops, T be a forward (t, s)-cut,
and p be a simple directed path in G. At most one edge of p crosses T .

Proof: Since T is a forward (t, s)-cut, by definition there is no edge going from V \ T to T .
Therefore, once any directed walk enters V \T , it cannot cross to T again, giving at most one edge
on the walk crossing the cut. �

Corollary 5.2. At most one edge of each path p+
i , p−i crosses T .

u

v

+2, +1, -2, -1

+1

+2, +1, -2

Let γ be a directed cycle in G∗. We define the crossing sequence
of γ to be its cyclic order of crossings of {p−0 , p

+
0 , . . . , p

−
2g, p

+
2g}; this is

well defined if we perturb the paths infinitesimally to be disjoint and
non-crossing. More formally, let X be an arbitrary crossing sequence
corresponding to a directed cycle γ. We represent the elements of X
using the integers 0, . . . , 2g + 1 along with their negations (where the
existence of element −0 is optional). Element i represents γ crossing
p+
i and element −i represents γ crossing p−i . Suppose we perturb the

arcs of P so they are disjoint except at t. Abusing notation, we assign
each edge e∗ of G∗ a computed crossing sequence X(e∗) for the perturbed arcs using the following
linear time recursive procedure. For the sake of definition, we add a vertex s′ to G within an
arbitrary face incident to s along with a directed edge s→s′. Set X((s→s′)∗) = 0. Recall that we
use the spanning tree τ and the set L of distinct extra edges in the tree-cotree decomposition to
construct P . For each edge ui→vi in L, set X((ui→vi)∗) = i. For each edge e∗ outside τ or L set
X(e∗) = ε. Finally, for each edge u→v in τ in bottom up order from the leaves, set X((u→v)∗)
using the following iterative subroutine. The crossing sequence X((u→v)∗) begins as the empty
sequence ε. For each edge e′ incident to v in clockwise order starting with the edge immediately
clockwise to u→v, append to X((u→v)∗) the crossing sequence X(e′∗) if e′ has tail v. If e′ does
not have tail v, then e′ = (ui→vi) for some index i. Append to X((u→v)∗) the element −i. As
each edge appears at most twice in each arc of P , the above procedure to construct these crossing
sequences runs in O(gn) time.

Lemma 5.3. For any directed dual cycle c, we have X(c) equal to the concatenation of crossing
sequences for c’s individual edges in order.

Proof: It suffices to prove that for any edge e, the crossing sequence X(e∗) accurately lists the
arcs of P crossed by e∗ in order. The statement is trivially true for any e outside τ or L. Each

10 Counting and Sampling Minimum Cuts in Genus g Graphs

edge ui→vi in L appears in exactly one member of P so the statement is true for those edges as
well. Finally, for any edge e = u→v of τ , assume the computation is accurate for all descendants
of e in the rooted tree τ . If u→v or v→u appears in any arc P it must be immediately followed by
or proceeded by an edge incident to v. Let e′ be the first edge in the clockwise rotation system of v
following e. Edge e′ is one of s→s′, a member of L, a descendent of e in τ , or an edge outside of L
and τ so we may assume X(e′∗) is accurate (and possibly empty). If X(e′∗) is non-empty and e′

has v as its tail then the arcs passing through e′ must be the leftmost arcs passing through u→v
to avoid a crossing and e′∗ passes through them in the same order and direction as e∗. If X(e′∗) is
non-empty and e′ has v as its head, then the arcs passing through e′ must still be the leftmost arcs
passing through u→v. However, e′∗ passes through the arcs in the opposite order and direction
as e∗. In all cases, we see the concatenation of X(e′∗) or its reversal is correct. The remainder
of X(e∗)’s computation is correct by induction. �

Now, let C be an arbitrary set of undirected cycles in G∗ and let φ be the circulation trivially
generated by C. We show how to determine the homology class of φ in Σ′ by computing the net
number of times the cycles in C cross members of P . For any undirected cycle γ = (f1, f2, · · · , fk)
in G∗ and index 0 ≤ i ≤ 2g, let x+

i (γ) be the number of edges (fj ↑ fj+1) in p+
i minus the number

of edges (fj+1 ↑ fj) in p+
i . Let x−i (γ) be defined similarly for p−i . Equivalently, if γ is directed,

then x+
i (γ) is the number of times i appears in the crossing sequence for γ and x−i (γ) is the number of

times −i appears in the crossing sequence. Let xi(γ) = x+
i (γ)−x−i (γ). Similar to [14,25], we define

the subdivided crossing vector x|(γ) to be (x+
0 (γ), x−0 (γ), . . . , x+

2g(γ), x−2g(γ)). We define the arc
crossing vector x(γ) to be (x0(γ), . . . , x2g(γ)). The subdivided/arc crossing vector of x(C) is the
sum of the respective crossing vectors of C’s individual elements. Observe that x(∂t∗) = (1, 0, 0, . . .).
The following lemma and its proof are based on [25, Lemma 3.2].

Lemma 5.4. A set of undirected cycles C in G∗ trivially generates a boundary circulation φ in Σ′

if and only if x(C) = 0.

Proof: Suppose C trivially generates boundary circulation φ. By definition, φ = ∂α for some
2-chain α of G∗ in the surface Σ′. The boundary of any face of G∗ has arc crossing vector 0. We
see

x(C) = x(
∑
v∈V

α(v∗) · ∂v∗) =
∑
v∈V

α(v∗)x(∂v∗) = 0

where
∑

v∈V α(v∗) · ∂v∗ denotes the collection of cycles where for each vertex v, ∂v∗ appears α(v∗)
times.

Now, suppose x(C) = 0. We create a graph G+ by modifying G∗ as follows. For every arc
pi ∈ P and for every edge e in pi, we subdivide e∗ = (u→v) by replacing e∗ with a vertex ve∗ and
edges (u→ve∗) and (ve∗→w). Then, for every adjacent pair of edges e1, e2 in pi, we add an edge
(ve∗1ve∗2) to G+, subdividing a face originally incident to both e∗1 and e∗2. Essentially, we augment G∗

with paths that follow the images of loops in P . See Figure 1. We prove the lemma by considering
the cycles C in G+. Subdividing edges and faces does not change homology.

Let a and b be two intersection (crossing) points between cycles γ1, γ2 ∈ C and the image of
some arc pi where γ1 crosses pi from left to right through a and γ2 crosses pi from right to left
through b. Note that γ1 and γ2 may be the same cycle. If such crossing points do not exist each
cycle of C lies in the disk Σ′ \ P , and the lemma follows. Let pi[a, b] be the path added to G+

between a and b along the image of pi. Alter C by replacing γ1 and γ2’s crossings through a and b
with copies of pi[a, b] and rev(pi[a, b]). The transformation may decrease the number of cycles in C.
However, the transformation does not change the homology class of C, and it reduces the number

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 11

Figure 1. Left: An arc p (dashed) and its dual edges (solid). Right: A new path in G+ follows the image of p.

of crossings of P . By induction, we see φ is homologous to a circulation trivially generated from a
set of cycles C′ that do not cross P . Each cycle of C′ lies in the disk Σ′ \ P , meaning they trivially
generate a boundary circulation. �

Corollary 5.5. Two sets of undirected cycles C and C′ are homologous if and only if x(C) = x(C′).

5.2 Enumerating crossing sequences

Recall that for a directed cycle γ in G∗, the crossing sequence is the cyclic order of crossings of
{p−0 , p

+
0 , . . . , p

−
2g, p

+
2g}. We compute the total number of forward (t, s)-cuts in G (or the total number

of sets of cycles in G∗ that trivially generate a circulation homologous to ∂t∗), by enumerating sets
of abstract cycles in the dual, where an abstract cycle is specified by a crossing sequence. For any
set of abstract cycles CA, we compute the total number of corresponding circulations in G∗.

We use a method based on previous works [12,14,27] to enumerate abstract sets of cycles. Our
algorithm cuts Σ′ along P and replaces each copy of p+

i , p
−
i with a single edge to obtain an abstract

polygonal schema which we denote as S; see Figure 2. We emphasize that our algorithm replaces
each path p+

i , p
−
i by a single edge and not each arc pi of Σ′ as in previous works. Each path p+

i or
p−i corresponds to two edges of S.

Now consider a set of cycles C that trivially generates a circulation homologous to ∂t∗ in Σ′,
and let CA be its corresponding abstract set of cycles. In polygonal schema S, each of the cycles
of CA is cut into arcs which cross the schema; by Lemma 4.3, the arcs will be non-crossing in the
interior of S, and by Corollary 5.2 each edge of the schema contains at most one endpoint of any
arc; in particular, no two arcs have endpoints on the same edge of the boundary.

Our algorithm dualizes the polygonal schema by taking the original abstract schema and re-
placing each edge with a vertex and each vertex with an edge. It then connects two vertices in the
dual if there is an arc between their corresponding edges in the original schema. Now, each arc
from CA represents an edge between vertices in the 8g + 2-gon. (Note that we can ignore copies of
p−0 because p−0 is a trivial walk and no directed paths cross it.) Since none of the arcs can cross, this
abstraction gives a subdivision of the dualized schema with no parallel edges. We triangulate this
subdivision by adding edges of weight zero. We say that two weighted triangulations of the abstract
polygonal schema are equivalent if and only if they are identical ignoring zero weight edges. See
Figure 2 for illustration.

Every equivalence class of weighted triangulations of the dualized schema corresponds to a
collection of non-crossing abstract cycles in G∗. Our algorithm enumerates such equivalence classes.
The weight of each edge is either zero or one, which implies that our algorithm needs to consider
only 2O(g) different triangulations.

12 Counting and Sampling Minimum Cuts in Genus g Graphs

Figure 2. Building the polygonal schema (left to right): The set of paths P is given in black, and the dual of a forward
cut is given in green and blue; polygonal schema S; the triangulated dual of S.

Our algorithm first checks whether a triangulation corresponds to a set of cycles that trivially
generate the homology class of ∂t∗ using Corollary 5.5. We note that each edge of the triangu-
lation has a clear direction specified entirely by the vertices it goes through, because each vertex
corresponds to a directed path in G. Our algorithm then computes an abstract collection of cycles
corresponding to the triangulation by brute force and then computes the crossing sequence for each
cycle in the collection and P . All that remains is to compute the total number of cycle collections
in G∗ with a given set of crossing sequences.

5.3 Counting cycles with a given crossing sequence

Let X be an arbitrary crossing sequence corresponding to an abstract directed cycle γ. We construct
the following graph GX along with a mapping from vertices and edges of GX to G∗. The vertices
of GX are pairs (f∗, X ′) where f∗ is a vertex of G∗ and X ′ is a prefix of X (including the empty
sequence ε). Graph GX contains edges (f∗, X ′)→(h∗, X ′′) where X ′ is a proper prefix of X (not
including X itself), f∗→h∗ is an edge of G∗, and X ′′ = X ′ ·X(f∗→h∗). Vertices and edges of GX
map to vertices and edges of G∗ by simply dropping the second component of their pairs. We
can also define GX along with an embedding on a disk ΣX using a standard construction [10, 42].
Cut along P ’s image in Σ′ to create a disk D we call the fundamental domain . Create one
copy of D denoted DX′ for every prefix X ′ of X. For every pair of prefixes X ′ and X ′′ where
X ′′ = X ′ · i, paste together DX′ and DX′′ along p+

i . If X ′′ = X ′ · −i, then paste along p−i . Finally,
remove all outgoing edges from any vertex in DX . Here ΣX is a subset of the universal cover of Σ′,
which we are constructing as is common in previous work [42]. The next lemma follows from our
construction.

Lemma 5.6. Let f be a face of G on the right side of an edge in path p+
i (p−i). If X ends with i

(−i), then there exists a bijection between cycles in G∗ with crossing sequence X with first vertex f∗

and paths in GX from (f∗, ε) to (f∗, X).

Lemmas 5.4 and 4.1 imply the following lemma.

Lemma 5.7. Graph GX is a directed acyclic graph.

A simple dynamic programming algorithm computes the number of paths from a vertex u in a
DAG to a vertex v in linear time (see, for example, [2, Observation 6]). For each face f of G on the
right side of an edge in path p+

i (p−i) where X contains i (−i), our algorithm computes the number
of paths in GX from (f∗, ε) to (f∗, X). It then sums the results.

Lemma 5.8. Let X be a non-empty crossing sequence of an abstract cycle. Then, there is an
O(|X|n2) time algorithm to compute the number of directed cycles with crossing sequence X.

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 13

In order to compute the total number of cycle collections in G∗ with a given set of crossing
sequences, our algorithm simply needs to multiply the number of cycles for each individual crossing
sequence. It then adds the number of cycles corresponding to each equivalence class of weighted
triangulations of the dualized polygonal schema. We get the following lemma.

Lemma 5.9. Let G be a triangulated DAG with possible self-loops embedded on a surface Σ of
genus g with t and s the only source and sink, respectively. There is a 2O(g)n2 time algorithm to
compute the total number of forward (t, s)-cuts.

6 Handling non-triangulations

In this section, we remove our assumption that G is embedded in Σ as a triangulation. We sketch
an algorithm to build a triangulated graph G∆ embedded on a surface Σ∆ of genus O(g) with the
same total number of forward (t, s)-cuts. We can then use the algorithm of Section 5 to count the
forward cuts in G∆ and so in G. The following lemma has a key role in constructing G∆.

Lemma 6.1. Let G = (V,E) be a DAG with possible self-loops and t and s the only source and
sink vertices, respectively. Assume u, v ∈ V , (u→v) 6∈ E and u v. Then, G ∪ (u→v) is a DAG
with possible self-loops that has the same number of forward (t, s)-cuts as G.

Proof: If u = v then the lemma is trivial, because a self-loop never shows up in a forward cut. We
may assume u 6= v.

Assume G ∪ (u→v) has a directed cycle γ of length at least two. Since G does not contain any
directed cycles, we know (u→v) ∈ γ. It immediately follows that [γ\(u→v)] ∪ (u v) contains a
closed walk with at least two distinct vertices in G, which contradicts the lemma assumption.

Now consider any forward (t, s)-cut T in G. Since u v it cannot be the case that u ∈ S and
v ∈ T ; it follows that T is a forward cut in G ∪ (u→v) as well.

On the other hand, a forward cut in G∪ (u→v) is indeed a forward cut in its subgraph G, and
the proof is complete. �

A face f of G with degree at least 4 is irreducible if and only if for any two vertices u, v ∈ V
that are not adjacent on f (1) u 6= v, (2) u 6 v, and (3) v 6 u. In particular, the boundary
of an irreducible face is composed of an even number of edges with alternating clockwise and
counterclockwise directions; see Figure 3.

Figure 3. Irreducible faces of degree four, six and eight; circles: outgoing vertices; bullets: incoming vertices.

Lemma 6.2. Let f be an irreducible face. Then, all vertices on the boundary of f are distinct.

Proof: Any two non-adjacent vertices on the boundary of f are distinct by the definition of an
irreducible face.

Assume that (u→v) appears on the boundary of f and that u = v. Let w be the other neighbor
of v on the boundary of f , and so (w→v) ∈ E. Because u and v are identical, it follows that

14 Counting and Sampling Minimum Cuts in Genus g Graphs

(w→u) ∈ E, in particular w u. Since the boundary of an irreducible face is a closed walk of
length at least 4, w and u cannot be adjacent on the boundary of f , which implies that f is not
irreducible. �

An embedded DAG with possible self loops is maximally triangulated if and only if any
non-triangle face of it is irreducible. Applying Lemma 6.1 lets us create a maximally triangulated
graph Gδ:

Lemma 6.3. Let G be a DAG with possible self-loops embedded on a surface Σ such that t and
s are the only source and sink. Then, there is an O(n2) time algorithm to compute a maximally
triangulated DAG Gδ embedded on Σ that has the same number of forward (t, s)-cuts as G.

Proof: Lemma 6.1 implies that for any pair of vertices u, v ∈ V such that u v, we can add u→v
without changing the total number of forward (t, s)-cuts. In particular, we can also add self-loops
without changing the total number of forward (t, s)-cuts.

First, in O(n2) time, for all pairs of vertices u, v ∈ V , our algorithm figures out whether u v
by running breadth first searches from all vertices of G. It then iteratively adds edges (u→v)
such that u v and adding edge (u→v) subdivides a face of degree d ≥ 4 into two faces of
degree strictly less than d. It is straight forward to check that the resulting graph Gδ is maximally
triangulated. �

Unfortunately, this process does not necessarily result in a triangulation. We cannot add edges
on an irreducible face without possibly changing the number of forward (t, s)-cuts. Fortunately, we
can prove that the total number of irreducible faces is O(g) in any maximally triangulated DAG.

Let v be a vertex on the boundary of an irreducible face f of the maximally triangulated graph
Gδ. Then, v is incoming on f if and only if both incident edges to v on f are incoming. Similarly,
v is outgoing on f if and only if both incident edges to v on f are outgoing. Observe that any
vertex v on the boundary of any irreducible face f is either incoming or outgoing on f ; see Figure 3.

Let S be a backwards spanning tree of G with root s. Let S[v] denote the directed path from
vertex v ∈ V to s.

Figure 4. The setting for Lemma 6.4.

Lemma 6.4. Let f be an irreducible face and u and v be an outgoing vertex and an incoming
vertex on f , respectively. Then, there is no directed path from any vertex of S[v] to u; in particular,
no directed (t, u)-path intersects S[v].

Proof: Let γ = S[v] and assume, for the purpose of contradiction, that there exists a directed path
τ from a vertex x ∈ γ to u. It follows that there exists a directed path, γ[v, x] · τ [x, u], from v to u.
Since G does not contain a directed cycle whose length is larger than 1, we have (u→v) 6∈ E, which
in particular implies that u and v are not adjacent. Thus, f must be reducible; see Figure 4. �

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 15

Let u be an outgoing vertex on an irreducible face f and v1 and v2 be u’s neighbors on f .
We define L(S, f, u) to be the undirected loop rev(S[v1]) · (v1→u) · (u→v2) · S[v2]. We define
C(S, f, u) to be the undirected cycle composed of directed edges from Gδ appearing in L(S, f, u)
exactly once. See Figure 5, left.

Figure 5. Left: The definition of C(S, f, u). Right: The proof of Lemma 6.5.

Lemma 6.5. Let f be an irreducible face and u be an outgoing vertex on f . Then, C(S, f, u) is
a non-separating cycle on Σ.

Proof: Assume, for the purpose of contradiction, that C(S, f, u) is separating. Let v1 and v2 be
the neighbors of u on f and α be a (v1, v2)-path (in the surface and not in the graph), which is
strictly inside f except for its endpoints that are on the boundary of f . Also, let γ1 = S[v1] and
γ2 = S[v2]. (See Figure 5, right.)

Since C(S, f, u) and α ∪ (u, v1) ∪ (u, v2) are separating, γ = α ∪ γ1 ∪ γ2 is separating as well.
Cycle γ separates Σ into two surfaces Σu and Σw. Let w be the other neighbor of v1 on f and
observe that u and w are on two different sides of γ. Without loss of generality assume that u ∈ Σu

and w ∈ Σw.
Since t is the source of the DAG and its indegree is zero it cannot be on γ, so it is either in Σu

or in Σw. In the former case any (t, w)-path has to intersect γ and in the latter case any (t, u)-path
has to intersect γ. In either case there is a directed path from γ1 = S[v1] or γ2 = S[v2] to u or w,
which contradicts Lemma 6.4.

�

Lemma 6.6. Let f and f ′ be distinct irreducible faces and u and u′ be two outgoing vertices on
f and f ′, respectively. Then, C(S, f, u)∪C(S, f ′, u′) does not separate Σ; in particular, C(S, f, u)
and C(S, f ′, u′) are not homotopic.

Proof: Let v1 and v2 be the neighbors of u on f and α be a directed (v1, v2)-path (in the surface
and not in the graph), which is strictly inside f except for its endpoints that are on the boundary
of f . Similarly, let v′1 and v′2 be the neighbors of u′ on f ′ and α′ be a directed (v′1, v

′
2)-path, which

is strictly inside f ′ except for its endpoints that are on the boundary of f ′. Let w,w′ ∈ V be the
other neighbors of v1 and v′1 on f and f ′, respectively. Also, let y, y′ ∈ V be the other neighbors
of v2 and v′2 on f and f ′, respectively. Further, let γ1 = S[v1], γ2 = S[v2], γ′1 = S[v′1], γ′2 = S[v′2],
γ = α ∪ γ1 ∪ γ2 and γ′ = α′ ∪ γ′1 ∪ γ′2. See Figure 6 for illustration.

Assume, for the purpose of contradiction, that C(S, f, u) ∪ C(S, f ′, u′) is separating. Since
α ∪ (u, v1) ∪ (u, v2) and α′ ∪ (u′, v′1) ∪ (u′, v′2) are contractible cycles and C(S, f, u) ∪C(S, f ′, u′) is
separating, γ ∪ γ′ is also separating.

We prove that if γ ∪ γ′ is separating then the following three contradictory statements hold:
(1) (v1 6= v′1 and v1 v′1) or (v2 6= v′1 and v2 v′1), (2) (v1 6= v′1 and v′1 v1) or (v1 6= v′2 and
v′2 v1), and (3) (v1 6= v′2 and v1 v′2) or (v2 6= v′2 and v2 v′2).

16 Counting and Sampling Minimum Cuts in Genus g Graphs

Figure 6. The setting for Lemma 6.6.

The following case analysis shows that the three statements are in contradiction. There are
eight cases to consider. We group the cases to make the analysis concise. Each group is labeled
by three characters from {0, 1, ∗} showing which condition of the three statements above is true.
Specifically, a 0 implies the first condition is true, a 1 implies the second condition is true, and a ∗
implies one or both conditions are true. For example in (01∗) indicates that the first condition of
statement (1), the second condition of statement (2) and one of the conditions of statement (3) are
true.
Case (00∗): If v1 6= v′1, v1 v′1 and v′1 v1 then (v1 v′1) · (v′1 v1) is a non-trivial directed
cycle.
Case (01∗): If v1 v′1 and v′2 v1 then (v′2 v1) · (v1 v′1) is a directed (v′2, v

′
1) walk.

Case (10∗): If v2 v′1 and v′1 v1 then (v2 v′1) · (v′1 v1) is a directed (v2, v1) walk.
Case (∗10): If v1 6= v′2, v′2 v1 and v1 v′2 then (v′2 v1) · (v1 v′2) is a non-trivial directed
cycle.
Case (∗11): If v′2 v1 and v2 v′2 then (v2 v′2) · (v′2 v1) is a directed (v2, v1)-walk.

Cases (00∗) and (∗10) are in contradiction with G being a DAG, case (01∗) is in contradiction
with f ′ being irreducible, and cases (10∗) and (∗11) are in contradiction with f being irreducible.

It remains to prove (1), (2) and (3). The proof of statement (1), (v1 6= v′1 and v1 v′1) or
(v2 6= v′1 and v2 v′1), follows. The argument for the other two cases is exactly the same.

Observe that w′, u′ /∈ γ′, otherwise G contains a directed cycle or a (v′2, v
′
1)-directed path. On

the other hand, if w′ ∈ γ or u′ ∈ γ then there is a directed walk δ from v1 or v2 to v′1 through w′

or u′. Since w′ 6= v′1 and u′ 6= v′1, δ is not trivial, and so it has distinct endpoints (otherwise δ is a
non-trivial directed closed walk.) Thus, at least one of the conditions of statement (1) is true.

Hence, we assume w′, u′ /∈ γ ∪ γ′, and they are on different sides of the supposedly separating
set γ ∪ γ′. Suppose γ ∪ γ′ separates Σ into two surfaces Σu and Σw, where u′ ∈ Σu and w′ ∈ Σw.

We consider the two cases t ∈ Σu and t ∈ Σw.

First, suppose t ∈ Σu, and let τ be a (t, w′)-path. Because t ∈ Σu and w′ ∈ Σw the directed
path τ intersects γ ∪ γ′. Since, by Lemma 6.4, τ does not intersect γ′, it intersects γ, and in
particular γ1 or γ2. If τ intersects γ1 at x′ (see Figure 6) then δ1 = γ1[v1, x

′] · τ [x′, w′] · (w′→v′1) is a
(v1, v

′
1)-directed path, and so v1 v′1. Since w′ 6= v′1, δ1 is not trivial, and so, v1 6= v′1 (otherwise δ1

is a non-trivial directed closed walk.) If τ intersects γ2 at x′ then δ2 = γ2[v2, x
′] ·τ [x′, w′] ·(w′→v′1) is

a (v2, v
′
1)-directed path, and so v2 v′1. Since w′ 6= v′1, δ2 is not trivial, and so, v2 6= v′1 (otherwise

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 17

δ2 is a non-trivial directed closed walk.)

Second, suppose t ∈ Σw, and let τ be a (t, u′)-path. Because t ∈ Σw and u′ ∈ Σu the directed
path τ intersects γ ∪ γ′. Since, by Lemma 6.4, τ does not intersect γ′, it intersects γ, and in
particular γ1 or γ2. If τ intersects γ1 at x′ then δ1 = γ1[v1, x

′] · τ [x′, u′] · (u′→v′1) is a (v1, v
′
1)-

directed path, and so v1 v′1. Since u′ 6= v′1, δ1 is not trivial, and so, v1 6= v′1 (otherwise δ1 is a
non-trivial directed closed walk.) If τ intersects γ2 at x′ then δ2 = γ2[v2, x

′] · τ [x′, u′] · (u′→v′1) is a
(v2, v

′
1)-directed path, and so v2 v′1. Since u′ 6= v′1, δ2 is not trivial, and so, v1 6= v′1 (otherwise

δ2 is a non-trivial directed closed walk.)

�

Using Lemmas 6.5 and 6.6 we obtain an upper bound on the number of irreducible faces.

Lemma 6.7. The total degree of irreducible faces of G is at most 12g.

Proof: Consider a backward spanning tree S rooted at s. Let u1, . . . , uk be the list of outgoing
vertices (with possible multiplicity) on all irreducible faces of G; for 1 ≤ i ≤ k assume ui is on
the irreducible face fi. By construction, the closed walks L(S, fi, ui) (1 ≤ i ≤ k) are mutually
non-crossing except at s. Lemma 6.5 implies that for any 1 ≤ i ≤ k, L(S, fi, ui) is non-contractible;
otherwise C(S, fi, ui) would be separating. Finally, Lemma 6.6 implies that for any pair 1 ≤ i <
j ≤ k, L(S, fi, ui) and L(S, fj , uj) are non-homotopic; otherwise C(S, fi, ui) and C(S, fj , uj) would
be homotopic. It follows that k ≤ 6g; see [12, Lemma 2.1]. As k equals half of the total degree of
the irreducible faces, the lemma follows. �

To get rid of irreducible faces we further triangulate Gδ by connecting the vertices that appear
on the boundary of irreducible faces to s; Lemma 6.1 implies that we can always add edges to
s without changing the total number of forward cuts. However, adding edges with endpoints in
different faces results in changing the underlying surface Σ; intuitively, we need to glue more handles
to the surface to avoid edge crossings. The following lemma shows that all irreducible faces can be
triangulated by adding only O(g) handles to Σ.

Lemma 6.8. Let Gδ be a maximally triangulated DAG with possible self-loops embedded on a
surface Σ of genus g, and t and s be the only source and sink, respectively. Then, there exists a
triangulated supergraph G∆ of Gδ embedded on a surface Σ∆ of genus O(g) such that the number
of forward (t, s)-cuts in Gδ and G∆ are equal. Further, G∆ can be computed in O(n) time.

Proof: Lemma 6.3 implies Gδ has O(g) irreducible faces. Lemma 6.1 implies s is not on the
boundary of any irreducible face. Additionally, we recall that we collapsed faces of degree 1 and 2
during the creation of G̃.

Let f be an irreducible face and f ′ be a triangle incident to s. Let the vertices on the boundary
of f and f ′ be (v0, v1, . . . , vk−1) and (s, s′, s′′) respectively, in clockwise order. We add a handle to
connect f and f ′, and use it to add edges from all vi’s to s. Combinatorially, for all 0 ≤ i < k,
we add edge ei = vi→s such that (1) for all 0 ≤ i < k, ei is between (vi⊕1, vi) and (vi	1, vi) in the
clockwise rotation system edge list of vi, where ⊕ and 	 are addition and subtraction modulo k,
(2) for all 1 ≤ i < k − 1, ei is between (vi	1, s) and (vi⊕1, s) in the list of s, (3) (v0, s) is between
(s′′, s) and (v1, s) in the list of s, and (4) (vk−1, s) is between (vk−2, s) and (s′, s) in the list of s;
see Figure 7.

It is easy to check that for any 0 ≤ i < k−1, the triangle (vi, s, vi+1) is a face of the new graph.
The only face that is not a triangle is (v0, s, s

′′, s′, s, vk−1), which can be triangulated by adding

18 Counting and Sampling Minimum Cuts in Genus g Graphs

the following edges: (s′′→s), (s→s) and (vk−1→s); see Figure 7. Since all new edges are towards
s, Lemma 6.1 implies that adding them does not change the number of forward (t, s)-cuts.

Each irreducible face of degree d can be triangulated by adding one handle in O(d) time.
It follows that we can iteratively triangulate Gδ to obtain G∆ by adding O(g) handles in O(n)
time. �

Figure 7. Triangulating an irreducible face (left to right): f ′, a triangle incident to s, and f an irreducible face of degree
6; the handle to connect f to f ′; the flat view of the handle as an annulus and its triangulation with green edges (all the
green edges are directed towards s.)

Theorem 3.3 reduces the problem of counting minimum cuts in a surface embedded graph
of genus g to the problem of counting forward cuts in a graph embedded on the same surface.
Lemmas 6.3 and 6.8 reduce the latter problem to counting forward cuts in a triangulation of a
surface of genus O(g). Finally, Lemma 5.9 provides an algorithm to count forward cuts in embedded
triangulations. Thus, we derive our main theorem.

Theorem 6.9. Let G = (V,E, c) be a (directed) graph with edge capacities c : E → IR+ embedded
on an orientable surface Σ of genus g. Let s ∈ V be the source and t ∈ V be the sink where there
exists a path from s to every vertex in V and a path from every vertex in V to t. There exists a
2O(g)n2 time algorithm to calculate the number of minimum (s, t)-cuts in G.

7 Sampling minimum cuts

In this section, we given an algorithm to sample a minimum (s, t)-cut from a graph uniformly at
random. Let G = (V,E) be a directed acyclic graph plus a set of loops embedded on a surface Σ
of genus g with a unique source t and unique sink s. Let G∗ be the dual graph of G and let Σ′ =
Σ \ (t∗ ∪ s∗). By Theorem 3.3, it suffices to give an algorithm to sample forward (t, s)-cuts in G.
Our sampling algorithm combines the ideas from earlier in this paper with the algorithm given
in [2]. We assume G is embedded as a triangulation without loss of generality (see Section 6) and
run the counting algorithm given in Section 5. We assume familiarity with the counting algorithm
as given.

Our counting algorithm enumerates weighted triangulations of a dualized polygonal schema with
a particular arc crossing signature relative to a system of 2g+ 1 arcs. For each such triangulation,
it counts the directed cycles in G∗ that correspond to the crossing sequences represented in the
triangulation. See Section 5 for details. For each such triangulation ∆i, let ci be the number
of collections of directed cycles corresponding to ∆i. Our sampling algorithm samples a single
weighted triangulation where each triangulation ∆i is picked with probability ci/

∑
k ck.

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 19

Let ∆ be the triangulation sampled. Our counting algorithm computes an abstract collection
of cycles corresponding to ∆. For each cycle in the abstract collection, it counts the number of
real cycles with the same crossing sequence relative to a system of 4g + 2 paths. Our sampling
algorithm picks a cycle uniformly at random for each of these crossing sequences. Let X be one
such crossing sequence.

GivenX, our counting algorithm creates a directed acyclic graphGX . It then counts the directed
paths in GX between several pairs of endpoints. For each pair of endpoints ((f∗i , ε), (f

∗
i , X)), let di

be the number of directed paths between (f∗i , ε) and (f∗i , X) in GX . Our sampling algorithm picks
a pair of endpoints where each pair ((f∗i , ε), (f

∗
i , X)) is picked with probability di/

∑
k dk.

Finally, we describe how to sample a directed path between a pair of endpoints (f∗, ε) and
(f∗, X). Let x0 = (f∗, X). For every k = 1, 2, . . . , our sampling algorithm selects xk from the set
of immediate predecessors to xk−1 with probability proportional to the number of paths between
(f∗, ε) and the predecessor. The reverse of x0, x1, . . . gives us a randomly sampled path in GX or
equivalently a randomly sampled cycle in G∗.

All of the information required for the sampling algorithm is computed by the counting algo-
rithm. When sampling for a given crossing sequence, a random base vertex for the loop is chosen
(without explicitly building the subset of the universal cover); this takes O(log n) time since we
are sampling among n vertices. As we walk backwards along a random directed path, it takes at
most O(log n) time to pick xk from the set of predecessors, where lookups are done in the table for
the dynamic programming. Since there are at most n vertices on the directed path, the total time
is at most O(n log n). (Note that if one builds the universal cover for the weighted triangulation
explicitly rather than storing the information in a dynamic programming table, it results in an
extra factor of g, giving O(gn log n) instead.)

Finally, we get the following result:

Theorem 7.1. Let G = (V,E, c) be a (directed) graph with edge capacities c : E → IR+ embedded
on an orientable surface Σ of genus g. Let s ∈ V be the source and t ∈ V be the sink where there
exists a path from s to every vertex in V and a path from every vertex in V to t. There exists an
algorithm to sample minimum (s, t)-cuts uniformly at random in O(n log n) time per sample after
running our algorithm to count minimum (s, t)-cuts in G once.

References

[1] M. O. Ball and S. J. Provan. Calculating bounds on reachability and connectedness in stochas-
tic networks. Networks, 13:253–278, 1983.

[2] I. Bezáková and A. J. Friedlander. Counting and sampling minimum (s, t)-cuts in weighted
planar graphs in polynomial time. Theoret. Comput. Sci., 417:2–11, 2012.

[3] G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-time approximation schemes for
subset-connectivity problems in bounded-genus graphs. In Proc. 26th Int. Symp. Theoretical
Aspects Comput. Sci., volume 3 of Leibniz Int. Proc. Informatics, pages 171–182. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2009.

[4] G. Borradaile, C. Kenyon-Mathieu, and P. N. Klein. A polynomial-time approximation scheme
for Steiner tree in planar graphs. In Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms,
pages 1285–1294, 2007.

20 Counting and Sampling Minimum Cuts in Genus g Graphs

[5] G. Borradaile, C. Kenyon-Mathieu, and P. N. Klein. Steiner tree in planar graphs: An
O(n log n) approximation scheme with singly-exponential dependence on epsilon. In Proc.
10th Workshop on Algorithms and Data Structures, pages 275–286, 2007.

[6] G. Borradaile and P. Klein. An O(n log n)-time algorithm for maximum st-flow in a directed
planar graph. In Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 524–533,
2006.

[7] G. Borradaile and P. Klein. An O(n log n) algorithm for maximum st-flow in a directed planar
graph. J. ACM, 56(2): 9:1–30, 2009.

[8] Y. Boykov and O. Veksler. Graph cuts in vision and graphics: Theories and applications. In
N. Paragios, Y. Chen, and O. Faugeras, editors, Handbook of Mathematical Models in Computer
Vision, pages 79–96. Springer US, 2006.

[9] S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus g graph. In Proc.
18th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 89–97, 2007.

[10] S. Cabello and B. Mohar. Finding shortest non-separating and non-contractible cycles for
topologically embedded graphs. Discrete Comput. Geom., 37:213–235, 2007.

[11] P. Chalermsook, J. Fakcharoenphol, and D. Nanongkai. A deterministic near-linear time
algorithm for finding minimum cuts in planar graphs. In Proc. 15th Ann. ACM-SIAM Symp.
Discrete Algorithms, pages 828–829, 2004.

[12] E. W. Chambers, É. Colin de Verdière, J. Erickson, F. Lazarus, and K. Whittlesey. Splitting
(complicated) surfaces is hard. Comput. Geom. Theory Appl., 41(1–2):94–110, 2008.

[13] E. W. Chambers and D. Eppstein. Flows in one-crossing-minor-free graphs. In Proc. 21st
International Symposium on Algorithms and Computation (ISAAC 2010), Lecture Notes in
Computer Science, pages 241–252. Springer-Verlag, 2010.

[14] E. W. Chambers, J. Erickson, and A. Nayyeri. Minimum cuts and shortest homologous cycles.
In Proc. 25th Ann. Symp. Comput. Geom., pages 377–385, 2009.

[15] E. W. Chambers, J. Erickson, and A. Nayyeri. Homology flows, cohomology cuts. SIAM J.
Comput., 41(6):1605–1634, 2012.

[16] C. J. Colbourn. Combinatorial aspects of network reliability. Annals Operations Research,
33:1–15, 1991.

[17] É. Colin de Verdière. Topological algorithms for graphs on surfaces. Habilitation thesis, May
2012.

[18] E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction
decomposition. In Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 278–287,
2007.

[19] H. Edelsbrunner and J. Harer. Computational Topology, An Introduction. American Mathe-
matical Society, 2010.

[20] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph Algo-
rithms Appl., 3(3):1–27, 1999.

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 21

[21] D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27:275–291,
2000.

[22] D. Eppstein. Dynamic generators of topologically embedded graphs. In Proc. 14th Ann.
ACM-SIAM Symp. Discrete Algorithms, pages 599–608, 2003.

[23] J. Erickson, K. Fox, and A. Nayyeri. Global minimum cuts in surface embedded graphs. In
Proc. 23rd Ann. ACM-SIAM Symp. Discrete Algorithms, 2012.

[24] J. Erickson and A. Nayyeri. Computing replacement paths in surface graphs. In Proc. 22nd
Ann. ACM-SIAM Symp. Discrete Algorithms, pages 1347–1354, 2011.

[25] J. Erickson and A. Nayyeri. Minimum cuts and shortest non-separating cycles via homology
covers. In Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms, pages 1166–1176, 2011.

[26] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian J. Math., 8(399–
404), 1956. First published as Research Memorandum RM-1400, The RAND Corporation,
Santa Monica, California, November 19, 1954.

[27] K. Fox. Shortest non-trivial cycles in directed and undirected surface graphs. In Proc. 24th
Ann. ACM-SIAM Symp. Discrete Algorithms, 2013.

[28] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs with applications.
SIAM J. Comput., 16(6):1004–1004, 1987.

[29] M. Grohe. Isomorphism testing for embeddable graphs through definability. In Proc. 32nd
ACM Symp. Theory Comput., pages 63–72, 2000.

[30] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Characterizing multiterminal flow
networks and computing flows in networks of small treewidth. J. Comput. Syst. Sci., 57(3):366–
375, 1998.

[31] R. Hassin and D. B. Johnson. An O(n log2 n) algorithm for maximum flow in undirected planar
networks. SIAM J. Comput., 14(3):612–624, 1985.

[32] A. Hatcher. Algebraic Topology. Cambridge Univ. Press, 2002.

[33] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for
planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.

[34] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs
(preliminary report). In Proc. 6th Ann. ACM Symp. Theory Comput., pages 172–184, 1974.

[35] A. Itai and Y. Shiloach. Maximum flow in planar networks. SIAM J. Comput., 8:135–150,
1979.

[36] G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Improved algorithms for
min cut and max flow in undirected planar graphs. In Proc. 43rd Ann. ACM Symp. Theory
Comput., pages 313–322, 2011.

[37] M. Jerrum. Random generation of combinatiorial structures from a uniform distribution. In
W. Brauer, editor, Automata, Languages and Programming, volume 194 of Lecture Notes in
Computer Science, pages 290–299. Springer Berlin / Heidelberg, 1985. 10.1007/BFb0015754.

22 Counting and Sampling Minimum Cuts in Genus g Graphs

[38] D. R. Karger. A randomized fully polynomial time approximation scheme for the all terminal
network reliability problem. In Proceedings of the twenty-seventh annual ACM symposium on
Theory of computing, STOC ’95, pages 11–17, New York, NY, USA, 1995. ACM.

[39] K. Kawarabayashi, B. Mohar, and B. Reed. A simpler linear time algorithm for embedding
graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In Proc. 49th
IEEE Symp. Found. Comput. Sci., pages 771–780, 2008.

[40] P. Klein. Multiple-source shortest paths in planar graphs. In Proc. 16th Ann. ACM-SIAM
Symp. Discrete Algorithms, pages 146–155, 2005.

[41] P. Klein, S. Mozes, and O. Weimann. Shortest paths in directed planar graphs with negative
lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans. Algorithms, 6(2):article 30,
2010.

[42] M. Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus in
almost linear time. In Proc. 22nd Ann. Symp. Comput. Geom., pages 430–438, 2006.

[43] J. La̧cki and P. Sankowski. Min-cuts and shortest cycles in planar graphs in O(n log log n)
time. In Proc. 19th Ann. Europ. Symp. Algorithms, number 6942 in Lecture Notes Comput.
Sci., pages 155–166. Springer, 2011.

[44] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. Numer.
Anal., 16:346–358, 1979.

[45] M. Mareš. Two linear time algorithms for MST on minor closed graph classes. Archivum
Mathematicum, 40(3):315–320, 2004.

[46] G. L. Miller. Isomorphism testing for graphs of bounded genus. In Proc. 12th Ann. ACM
Symp. Theory Comput., pages 225–235, 1980.

[47] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Univ. Press, 2001.

[48] S. Mozes and C. Wulff-Nilsen. Shortest paths in planar graphs with real lengths in
O(n log2 n/ log logn) time. In Proc. 18th Ann. Europ. Symp. Algorithms, number 6347 in
Lecture Notes Comput. Sci., pages 206–217. Springer-Verlag, 2010.

[49] J. R. Munkres. Topology. Prentice-Hall, 2nd edition, 2000.

[50] H. Nagamoch, Z. Sun, and T. Ibaraki. Counting the number of minimum cuts in undirected
multigraphs. IEEE Transactions on Reliability, 40:610–614, 1991.

[51] J. B. Orlin. Max flows in O(nm) time, or better. In Proc. 45th Ann. ACM Symp. Theory
Comput., pages 765–774, 2013.

[52] V. Patel. Determining edge expansion and other connectivity measures of graphs of bounded
genus. In Proc. 18th Ann. Europ. Symp. Algorithms, ESA’10, pages 561–572, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[53] D. Pe’er. On minimum spanning trees. Master’s thesis, Hebrew University, 1998.

[54] S. J. Provan and M. O. Ball. The complexity of counting cuts and of computing the probability
that a graph is connected. SIAM Journal of Computing, 12:777–788, 1983.

Erin W. Chambers, Kyle Fox, and Amir Nayyeri 23

[55] J. Reif. Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM J. Comput.,
12:71–81, 1983.

[56] A. Shamir. A survey on mesh segmentation techniques. Computer Graphics Forum, 27(6):1539–
1556, 2008.

[57] S. Tazari and M. Müller-Hannemann. Shortest paths in linear time on minor-closed graph
classes, with an application to Steiner tree approximation. Discrete Appl. Math., 157:673–684,
2009.

[58] K. Weihe. Maximum (s, t)-flows in planar networks in O(|V | log |V |)-time. J. Comput. Syst.
Sci., 55(3):454–476, 1997.

[59] A. White. Orientable embeddings of cayley graphs. Duke math J., pages 353–371, 1974.

[60] C. Wulff-Nilsen. Solving the replacement paths problem for planar directed graphs inO(n log n)
time. In Proc. 21st Ann. ACM-SIAM Symp. Discrete Algorithms, pages 756–765, 2010.

[61] A. Zomorodian. Topology for Computing. Cambridge Univ. Press, 2005.

	Introduction
	Flows and cuts in restrictive graph families
	Our contributions

	Preliminaries
	Graphs
	Surfaces and embeddings
	Topology
	Homology
	Dual graphs and triangulations
	Flows

	Minimum cuts and forward cuts
	Forward cuts and cocirculations
	Counting cuts in triangulations
	Crossing sequences and vectors
	Enumerating crossing sequences
	Counting cycles with a given crossing sequence

	Handling non-triangulations
	Sampling minimum cuts

