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Abstract

Let G be a directed graph with n vertices embedded on an orientable surface of genus g
with two designated vertices s and t. We show that counting the number of minimum (s, t)-cuts
in G is fixed parameter tractable in g. Specially, we give a 2O(g)n2 + min

{
n2 log n, gO(g)n3/2

}
time algorithm for this problem. Our algorithm requires counting sets of cycles in a particular
integer homology class. That we can count these cycles is an interesting result in itself as there
are few prior results that are fixed parameter tractable and deal directly with integer homology.
We also describe an algorithm which, after running our algorithm to count the number of cuts
once, can sample repeatedly for a minimum cut in O(g2n) time per sample.
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1 Introduction

Given a weighted directed graph G = (V,E) on an orientable surface Σ of genus g with two vertices
s, t ∈ V , we consider the problem of counting the minimum (s, t)-cuts of G. This problem is
#P-complete, and can be reduced to the problem of counting maximal anitchains in a poset [50].
Ball and Provan [50] first considered the problem of counting minimum cuts and gave an algorithm
to compute the number of minimum (s, t)-cuts in an (s, t)-planar graph. Later, Bezáková and
Friedlander [2] generalized the algorithm for arbitrary locations of s and t in a planar graph.

Counting the number of minimum cuts is of interest due to connections with many other areas.
For example, the number of minimum cuts is closely related to the probabilistic connectedness of a
stochastic graph, where each edge may fail with a certain probability [1], and so it is fundamentally
important in several network reliability problems [1,15,35,47].

In addition, cuts have strong connections to problems from computer vision. In image segmen-
tation, the image is represented as a (generally planar) graph on the pixels with edges connecting
neighboring pixels weighted according to how similar the pixels are; a minimum cut between two
locations corresponds to a good segmentation of the original image [7]. Being able to count mini-
mum cuts is closely related to sampling such cuts [34], implying our ability to count minimum cuts
allows us to sample from the collection of high quality segmentations of an image.

For graphs on surfaces, good segmentation algorithms are key for problems such as texture
mapping, metamorphosis, simplification, and compression; see [52] for a recent survey of techniques
and applications. Many of these algorithms wish to minimize stretch, so that patches of the surface
are separated via small separators and local distances within each patch stay close to the original
distance. Minimum cuts have strong potential here; by looking at flow along the mesh, separating
along these cuts will again result in a good segmentation. Even an algorithm with large dependence
on the genus is useful, because many meshing algorithms attempt to keep the genus small as a way
of reducing noise in the mesh.

1.1 Flows and cuts in restrictive graph families

Along with counting minimum cuts, computing minimum cuts (and maximum flows) is a funda-
mental problem in combinatorial optimization. Because of their utility, much effort has been spent
on finding faster algorithms in restricted but useful settings.

Planar graphs are a natural family of graphs to consider, both because they arise naturally
in many settings and because the extra structure in planar graphs can be exploited to get faster
algorithms. Examples of problems aided by planarity include minimum spanning trees [42, 49];
single-source shortest paths [13,30,38,41,45,53]; multiple-source shortest paths [8,37]; replacement
paths [22, 56]; graph and subgraph isomorphism [19, 20, 26, 31, 43]; and approximation of several
NP-hard problems [3–5,17,20].

Of course, much work is also dedicated to computing cuts and flows in planar graphs, both undi-
rected [10,24,28,32,33,40,51] and directed [6,54]. The current best algorithms run in O(n log log n)
time in undirected graphs [33] and O(n log n) time in directed graphs [6], where both considerably
improve running times for arbitrary graphs.

Because of this success in the planar setting, there has been a considerable amount of recent
work on computing flows and cuts in generalizations of planar graphs, which include surface em-
bedded graphs [13, 14, 21, 23], minor-free families [12], and graphs with bounded treewidth [27].
Unfortunately, some properties of planar graphs that the planar flow and cut algorithms take for
granted such as every cycle being separating do not apply in these more general settings. The lack
of structure not only slows progress toward creating new algorithms, but it introduces surprising
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dependencies in running time. For example, the current best algorithms for computing a minimum
cut in an undirected surface graph run in 2O(g)n log n time [23] and gO(g)n log logn time [33].

1.2 Our contributions

In this paper, we describe a near-quadratic time algorithm to compute the number of minimum
(s, t)-cuts for a weighted graph embedded on a surface of constant genus. Specifically, our algorithm
runs in 2O(g)n2 + n2 log n time assuming a cellular embedding is given onto a surface of genus g.
If no embedding is given, then we can compute one in 2O(g)n time [36, 55]. The O(n2 log n) time
dependency is for computing a maximum flow using Goldberg and Tarjan’s algorithm [25] for
arbitrary sparse graphs. Alternatively, we can use Chambers et al.’s algorithm [13] to compute
a maximum flow in a surface embedded graph to obtain a 2O(g)n2 + gO(g)n3/2 time algorithm for
counting minimum cuts. Since counting the number of cuts is generally #P-complete [50], finding
a fixed parameter tractable algorithm to compute the number of cuts for a surface embedded graph
represents a significant and perhaps optimal improvement in known results for a large family of
graphs. Our algorithm requires only a few simple assumptions on the input graph; every edge has
positive capacity, and there exists a directed path from s to every vertex in G and a directed path
from every vertex in G to t.

Our approach uses a connection between cuts and (co-)homology in a non-trivial way, as well
as generalizing the tools from [2] to more general surfaces. As in [2], our algorithm first reduces the
problem of counting minimum cuts in G to the problem of counting forward (t, s)-cuts in a directed
acyclic graph. Our algorithm then used a connection between forward (t, s)-cuts and circulations
of a certain homology class in the dual graph. Both reductions are briefly described in Section 3;
details are deferred to Appendices. The characterization of cuts using circulations in the dual is
not original to this work [14,21,23,48], but there are some key changes in our characterization and
how we use it for counting cuts. In [14,21,23], minimum cuts in undirected graphs are characterized
using homology with coefficients in Z2. However, G has directed edges, so we must use coefficients
in Z. Integer coefficients are used in [48] to compute edge expansion in genus g graphs. However,
the algorithm used to compute edge expansion has running time nO(g2) and is therefore not fixed
parameter tractable. To the best of our knowledge, there is no fixed parameter tractable algorithm
that deals with integer homology directly.

In Section 4 we describe an algorithm to compute the number of circulations in a certain homol-
ogy class if the primal directed acyclic graph is triangulated. Finally, in Section 5 we generalize our
algorithm to work for non-triangulated graphs as well. Unlike many other problems where triangu-
lating the input is trivial, we must actually change the surface itself to form a triangulation without
affecting the number of forward (t, s)-cuts. Fortunately, some surprising properties of non-crossing
cycles allows us to limit the complexity of our modified surface.

Our algorithm can also be used to randomly sample a minimum (s, t)-cut. The sampling algo-
rithm follows almost as an immediate consequence of our main result and the sampling technique
given in [2]. After running the counting cut algorithm, we only need O(g2n) time per sampling, so
several samples can be computed quite fast. We defer the presentation of the sampling algorithm
to Appedix F.

2 Preliminaries

We give a brief overview of necessary definitions of tools we use. For full coverage, we direct the
reader to existing books and surveys on topology [29, 46], computational topology [18, 57], and
graphs on surfaces [16,44].
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2.1 Graphs

Let G = (V,E) be a directed graph. For each edge e = (u→v) ∈ E we define its tail and head
to be the vertices u and v, respectively. If u = v then e is a loop. The indegree of a vertex v
is the total number of edges in E whose head are v. Similarly, the outdegree of v is the total
number of edges in E whose tail are v. A directed (u, v)-walk in G is a sequence of vertices
W = (u = w1, w2, · · · , wk = v) such that (wi→wi+1) ∈ E for all 1 ≤ i < k; we denote a (u, v)-walk
by u w; we also use u v to designate there is a a directed walk from u to v. A (u,w)-walk is
closed if u = w, it is a path if it has no repeated vertices, and it is a cycle if it is a path with u = w
its only repeated vertex. Let W1 be a (u, v)-walk and W2 be a (v, w)-walk; their concatenation
W1 ·W2 is defined as the concatenation of their corresponding vertex sequences.

A directed graph G is a directed acyclic graph (DAG) if and only if it does not contain any
directed cycle. A vertex v ∈ V of a DAG is a source if its indegree is zero and a sink if its outdegree
is zero.

A cut in G is defined as a subset of vertices S ⊆ V ; we refer to S and T = V \S as different
sides of the cut. Given two vertices a and b with a ∈ S and b ∈ T , we say S is a forward
(a, b)-cut if there is no edge (u→v) ∈ E such that u ∈ T and v ∈ S.

An edge e = (u→v) crosses a cut S if and only if u and v are on different sides of S; particularly
e crosses S in the forward direction if u ∈ S and in the backward direction if v ∈ S. For a cut
S we use the notation Γ+(S) to denote the set of all edges that cross S in the forward direction.
We define Γ−(S) as the set of edges that cross S in the backward direction. A walk W crosses a
cut S k times if and only if there are k edges of W that cross S.

A spanning tree τ of a connected graph G = (V,E) is a maximal subgraph of G that contains
no cycles. The tree τ is a forward spanning tree with root r ∈ V if and only if τ contains
a directed path from r to any vertex u ∈ V ; we will also say that is a directed tree with root r.
Similarly, τ is a backward spanning tree with root r if it contains a path from any vertex u ∈ V
to r.

2.2 Surfaces and embeddings

A surface (or a 2-manifold) with boundary is a (Hausdorff) space in which every point has a
neighborhood homeomorphic to the Euclidian plane or the closed half plane. The union of all
points that are homeomorphic to the closed half plane compose the boundary of the surface.
Every boundary component is homeomorphic to a disk. A cycle in a surface Σ is a continuous
function γ : S1 → Σ; the cycle γ is simple if and only if γ is injective. A path in a surface Σ is a
continuous function p : [0, 1]→ Σ; the path p is simple if and only if p is injective. A simple cycle γ
is separating if and only if Σ\γ is not connected. Further, γ is contractible if Σ\γ is composed
of two components and at least one of them is homeomorphic to an open disc. The genus of a
surface Σ, denoted by g, is the maximum number of disjoint simple cycles γ1, γ2, . . . , γg in Σ such
that Σ\(γ1 ∪ γ2 ∪ · · · ∪ γg) is connected. A surface Σ is non-orientable if and only if it contains
a subspace homeomorphic to the Möbius band and is orientable otherwise. It is known that any
surface can be specified up to homeomorphism with its genus and orientability. For this paper, we
consider only compact, connected, orientable surfaces.

An embedding of a graph G = (V,E) on a surface Σ is a drawing of G on Σ, such that vertices
are mapped to distinct points in Σ and edges are mapped to internally disjoint simple paths in
Σ. A face of an embedding is a maximal connected set in Σ that does not intersect the image of
G. An embedding is cellular if all of its faces are homeomorphic to a topological open disc. For
a face f , we let ∂f define the clockwise cycle bounding the face. Any cellular embedding in an
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orientable surface can be combinatorially described using a rotation system , which records the
cyclic order of the incident edges of each vertex. For such an embedding, Euler’s formula implies
|V | − |E| + |F | = 2 − 2g − b, where F is the set of faces of the embedding and b is the number
of boundary components. For this paper, we assume g = O(n). Euler’s formula then implies
m = O(n) if G is simple.

2.3 Topology

Let G = (V,E) be a graph embedded on a surface Σ and let F be the set of faces of the embedding.
We optionally refer to the vertices of G as cells of dimension 0, the edges as cells of dimension
1, and the faces as cells of dimension 2. A k-chain (1 ≤ k ≤ 2) is a function that assigns a set
of values to cells of dimension k. A k-chain is trivial if it assigns 0 to all cells, it is non-negative
if it assigns non-negative values to all cells, and it is a (0, 1)-chain if it assigns values from {0, 1}
to all cells.

Let φ : E → Z be a 1-chain. Then, the boundary of φ is a 0-chain ∂φ : V → Z defined
as ∂φ(v) =

∑
((v→w))∈E φ(v→w) for each v ∈ V . It helps to think of φ as a function that assigns

non-negative values to each undirected edge together with a direction, so that φ(u→v) = −φ(v→u).
A circulation is a 1-chain φ such that ∂φ(v) = 0 for all v ∈ V . The cycle space of a graph G,

denoted by Z(G), is the vector space of 1-chains that are circulations in G. One can easily verify
that Z(G) is isomorphic to Z|E|−|V |+1. A trivial circulation , a non-negative circulation and
a (0, 1)-circulation are special cases of such 1-chains. We say a set of directed cycles C trivially
generates a circulation φ if φ is the 1-chain that assigns a value to each edge equal to the number
of times the edge appears in C. We may abuse terminology by equating C with the circulation
trivially generated by C.

2.4 Homology

The boundary of a 2-chain α : F → Z is a 1-chain ∂α : E → Z such that ∂α(e) = right(e)− left(e),
where left(e) and right(e) are the faces to the left and right of the edge e with a certain direction.
It is straightforward to verify that the boundary of any 2-chain, which is called a boundary
circulation , is a circulation. The boundary space of G, denoted by B(G) is the space of all
boundary circulations. It follows from the definition that B(G) is a linear subspace of Z(G), and
it is isomorphic to Z|F |−1 if b = 0 or Z|F | if b ≥ 1, where b is the number of boundary components
in Σ.

Two circulations φ and ψ are homologous, or they are in the same homology class, if and
only if their difference φ − ψ is a boundary circulation. Thus the homology space is the vector
space of homology classes, which is isomorphic to Z(G)\B(G) ∼= Z2g+max{0,b−1} by Euler’s formula.
We sometimes refer to the homology class of a set of directed cycles, where we more precisely mean
the homology class of the circulation trivially generated by that set.

2.5 Dual graphs

Let G = (V,E) be a graph embedded on a surface Σ, and let F be the set of faces in the embedding.
The dual graph G∗ is defined as an embedded graph on Σ that has a vertex f∗ for each face f ∈ F .
There is an edge (f∗→g∗) in G∗ if and only of there is a directed edge e ∈ E that has f on its left
side and g on its right side; we denote such a situation by f ↑ g. For a subgraph H of G, we abuse
notation by letting H∗ denote the subgraph of G∗ with the same edges as H.

The graph G is a triangulation if every face of G is a triangle; this is equivalent to G∗ being
3-regular , where every vertex of G∗ has degree 3.
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Let G = (V,E) be a graph embedded on a surface Σ of genus g. A tool we use is a tree-cotree
decomposition, where E is decomposed into three disjoint sets (τ, L, C) such that τ is a spanning
tree of G, L∗ is a spanning tree of G∗, and C is composed of 2g edges. It is well known that for
any e ∈ C, τ ∪ e contains exactly one undirected cycle, which is non-separating.

2.6 Flows

For s, t ∈ V , an (s, t)-flow is a 1-chain φ : E → R such that ∂φ(v) = 0 for all v ∈ V \{s, t}. For a
capacity function c : E → R, the flow φ is feasible if φ(e) ≤ c(e) for all e ∈ E. Each flow can be
decomposed to a set of weighted paths and cycles. A flow is acyclic if it can be decomposed into
a set of simple (s, t)-paths.

For a flow φ, the residual capacity function cφ : E → R is defined as cφ(e) = c(e)−φ(e). The
residual graph Gφ is the graph with edges weighted according to the residual capacity function.

3 Minimum cuts, forward cuts, and cocirculations

Following Bezáková and Friedlander, we begin by reducing the problem of counting minimum cuts
to the problem of counting forward cuts. Let G be a directed acyclic (multi) graph. Let a be a
vertex of G with indegree 0 and let b be a vertex of G with outdegree 0. Finally, let S be a subset
of vertices such that a ∈ S and b /∈ S. Recall that X is a forward (a, b)-cut of G if there is no
edge u→v such that v ∈ X and u 6∈ X.

The following theorem is a slight generalization of Bezáková and Friedlander [2, Theorem 4];
the proof appears in Appendix A.

Theorem 3.1. Let G = (V,E, c) be a (directed) flow network with edge capacities c : E → IR+

embedded on a surface of genus g. Let s ∈ V be the source and t ∈ V be the sink. There exists a
directed acyclic (DAG) graph G̃ = (Ṽ , Ẽ), possibly with self-loops, embedded on a surface of genus
at most g and vertices s̃, t̃ ∈ Ṽ such that the number of minimum (s, t)-cuts in G is equal to the
number of forward (t̃, s̃)-cuts in G̃.

The following corollary is immediate from Theorem 3.1 as well as the original theorem in [2].

Corollary 3.2 (Bezáková and Friedlander [2, Corollary 5]). Suppose there exits a path from
s to every vertex of G and a path from every vertex of G to t. Then t̃ is the only vertex of indegree 0
and s̃ is the only vertex of outdegree 0 in G̃.

Based on the above theorem and corollary, we focus on the problem of counting forward (t, s)-
cuts in a directed acyclic graph G possibly with self loops embedded on a surface Σ of genus g
where t is the only source in G and s is the only sink. Let Σ′ = Σ \ (s∗ ∪ t∗). Simply knowing
that G is a DAG immediately gives us the following lemma which generalizes Claim 1 of [2]. This
lemma helps us characterize the edges leaving forward (t, s)-cuts as particular circulations in the
dual and makes it possible to count these circulations.

Lemma 3.3. There exist no non-trivial non-negative boundary circulations of G∗ in the surface Σ′.

Proof: For the sake of contradiction, let φ be a non-trivial non-negative boundary circulation
of G∗ in the surface Σ′. We note that no edge dual to a loop in G can have non-zero value in any
boundary circulation, since its dual is bordered by the same face on both sides.
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Let (u→w)∗ be a directed edge with φ((u→w)∗) > 0. By Corollary 3.2, u is reachable from t
and w can reach s. Therefore, there exists a simple directed path p = v0→v1→v2→ . . .→vk from t
to s through u→w, where v0 = t, vk = s; also for some 0 ≤ i ≤ k − 1, vi = u and vi+1 = w.

Boundary circulation φ is equal to ∂α for some 2-chain α of G∗ in the surface Σ where α(v∗0) =
α(v∗k) = 0 (because v∗0 = t∗ and v∗k = s∗ are boundaries). For each edge vi→vi+1 of p, we
have α(v∗i+1) − α(v∗i ) ≤ 0, because there exists no edge e in G with φ(e∗) < 0. Further, we
have α(w∗)− α(u∗) < 0. Therefore, α(v∗k) < 0, a contradiction. �

Theorem 3.1 reduces the problem of counting minimum cuts to the problem of counting forward
cuts in a DAG that possible contains self loops. The following results reduce counting forward cuts
to the problem of counting circulations in a certain homology class. These results borrow ideas
from minimum cut algorithms in surface embedded graphs [14, 21, 23], but require substantially
more technical detail to work with integer homology.

Lemma 3.4. Let T be a forward (t, s)-cut in G, and let φT be the 1-chain in G∗ where φT (e) = 1
if e∗ crosses T and φT (e) = 0 otherwise. Then, φT is a (0, 1)-circulation of G∗ homologous to ∂t∗

in the surface Σ′.

Proof: We define a 2-chain α of G∗ in the surface Σ′. For each vertex v ∈ V \ {t, s}, let α(v∗) = 1
if v ∈ T \ {t}, and let α(v∗) = 0 otherwise. Consider the circulation ∂α and any directed edge e =
u→v of G. If e is a loop and v = u, then α(v∗)−α(u∗) = 0. If u = t and v ∈ T , then ∂α(e∗) = −1.
If u = t and v /∈ T , then ∂α(e∗) = 0. If u ∈ T \ {t} and v /∈ T , then ∂α(e∗) = 1. In all other
situations, ∂α(e∗) = 0. We see ∂α = φT − ∂t∗. �

Lemma 3.5. Let φ be a non-negative circulation in G∗ that is homologous to ∂t∗ in the surface
Σ′. Then there exists a forward (t, s)-cut T of G, such that for each edge e ∈ E, e crosses T if and
only if φ(e∗) = 1. Further, φ is a (0, 1)-circulation in G∗.

Proof: We begin by showing the existence of some (not necessary forward) (t, s)-cut T where for
every edge e that crosses T in forward direction we have φ(e∗) ≥ 1; the dual of the collection of
edges with value 1 in φ separates t from s.

Let φt be the circulation trivially generated by ∂t∗. By assumption, there exists a 2-chain α
of G∗ in the surface Σ such that ∂α = φ − φt and α(t∗) = α(s∗) = 0. Let p = (v0→v1→ . . . vk)
be any simple path in G such that v0 = t and vk = s. Suppose there exists no edge e of p with
φ(e∗) ≥ 1. We have α(v∗1)− α(v∗0) ≥ 1 and α(v∗i+1)− α(v∗i ) ≥ 0 for all 0 < i ≤ k. We immediately
have a contradiction on α(v∗0) = α(v∗k) = 0. Thus, any simple (t, s)-path contains an edge e ∈ E
such that φ(e∗) ≥ 1; so the collection of such edges separate t from s.

Now, let T ( V be the set of vertices reachable from t. Recall Γ+(T ) and Γ−(T ) are the sets
of edges that cross T in forward and backward direction, respectively. Let φT be the 1-chain of G∗

with φT (e∗) = 1 for every directed edge e ∈ Γ+(T ), φT (e∗) = −1 for every directed edge e ∈ Γ−(T ),
and φT (e∗) = 0 for every other edge in G. Let G′ be the graph G with every edge of Γ−(T ) reversed.
We see T is a forward (t, s)-cut in G′. By Lemma 3.4, φT is a (0, 1)-circulation homologous to ∂t∗

in G′∗ on the surface Σ′. By assumption, φ is homologous to ∂t∗ on Σ′, too. Therefore, φT is also
homologous to φ on Σ′.

Now, let φ′ = φ−φT . The 1-chain φ′ is a non-negative boundary circulation. Thus, Lemma 3.3
implies that φ′ should be trivial. It follows that φ = φT and so T is a forward (t, s)-cut. Further,
φ is a (0, 1)-circulation. �

Lemmas 3.4 and 3.5 imply a bijection between forward (t, s)-cuts in G and (0, 1)-circulations
in G∗ of a particular homology class. We immediately get the following theorem which drives the
remaining algorithm design and analysis.
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Theorem 3.6. Let G = (V,E) be a directed graph embedded on a surface Σ with vertices s, t ∈ V
such that there exist no directed cycles in G other than single edge loops and where every vertex
of G is reachable from t and every vertex can reach s, and let Σ′ = Σ \ (t∗ ∪ s∗). The number of
forward (t, s)-cuts in G is equal to the number of (0, 1)-circulations of G∗ homologous to ∂t∗ in the
surface Σ′.

4 Counting circulations in triangulations

In this section, we give our algorithm for counting forward (t, s)-cuts of G assuming G is embedded
in Σ as a triangulation. We relax our assumption that G is a triangulation in Section 5. We
first note that G∗ is 3-regular. Therefore, any set of edge-disjoint directed cycles in G∗ must also
be vertex disjoint. We immediately see every (0, 1)-circulation φ of G∗ is trivially generated by
a unique set of edge-disjoint cycles in G∗ found by tracing along edges e of G where φ(e∗) = 1.
Theorem 3.6 then implies we can count the forward (t, s)-cuts of G by counting such collections of
cycles in a particular homology class. In fact, the second part of Lemma 3.5 implies we can safely
count all sets of cycles that trivially generate a circulation in the correct homology class without
explicitly checking if they are edge disjoint. The rest of this section is devoted to counting these
collections of cycles.

Our algorithm begins with the following construction. It creates a tree-cotree decomposi-
tion (τ, C, L) where τ is an arbitrary directed spanning tree of G rooted at t. Euler’s formula implies
that L contains exactly 2g directed edges which we label u1→v1, u2→v2, . . . , u2g→v2g. Let τ [v] de-
note the directed path from t to v in τ . For each i ∈ {1, . . . , 2g}, let p+

i denote the directed path
τ [ui] · (ui→vi), and let p−i = τ [vi]. Let p+

0 = τ [s] and let p−0 denote the trivial walk from s to itself.
Let pi denote the directed path p+

i · rev(p−i ). Finally, let P = {p0, p1, . . . , p2g}. The intersection
of P and Σ′ forms a system of arcs in Σ′; cutting Σ′ along P creates a topological disk [11].

Lemma 4.1. Let G be a directed, acyclic graph, T be a forward (t, s)-cut, and p be a simple
directed path in G. At most one edge of p crosses T .

Proof: Since T is a forward (t, s)-cut, by definition there is no edge going from V \ T to T .
Therefore, once any directed walk enters V \T , it cannot cross to T again, giving at most one edge
on the walk crossing the cut (which must go from T to V \ T ). �

Corollary 4.2. At most one edge of each path p+
i , p−i crosses T .

Let C be an arbitrary set of directed simple cycles in G∗ and let φ be the circulation trivially
generated by C. We show how to determine the homology class of φ in Σ′ by (essentially) counting
the number of times the cycles in C cross P . For any directed cycle γ in G∗ and index 0 ≤ i ≤ 2g,
let x+

i (γ) be the net number of times γ crosses p+
i , and let x−i (γ) be the net number of times γ

crosses p−i . Let xi(γ) = x+
i (γ) − x−i (γ). Similar to [14, 23], we define the subdivided crossing

vector x|(γ) to be (x+
0 (γ), x−0 (γ), . . . , x+

2g(γ), x−2g(γ)). We define the arc crossing vector x(γ)
to be (x0(γ), . . . , x2g(γ)). The subdivided/arc crossing vector of x(C) is the sum of the respective
crossing vectors of C’s individual elements. Observe that x(∂t∗) = (1, 0, 0, . . . ). The following
lemma and its proof are based on [23, Lemma 3.2]. We defer the proof to Appendix B.

Lemma 4.3. A set of cycles C in G∗ trivially generates a boundary circulation φ in Σ′ if and only
if x(C) = 0.

Corollary 4.4. Two sets of cycles C and C′ are homologous if and only if x(C) = x(C′).
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Let γ be a directed cycle in G∗. We define the crossing sequence of γ to be its cyclic order
of crossings of {p−0 , p

+
0 , . . . , p

−
2g, p

+
2g}. We compute the total number of forward (t, s)-cuts in G

(or the total number of sets of cycles in G∗ that trivially generate a circulation homologous to
∂t∗), by enumerating sets of abstract cycles in the dual, where an abstract cycle is specified by a
crossing sequence. For any set of abstract cycles CA, we compute the total number of corresponding
circulations in G∗.

We use a modification of a method based on previous works [11,14] to enumerate abstract sets
of cycles. Our algorithm cuts Σ′ along P and replaces each copy of p+

i , p
−
i with a single edge to

obtain an abstract polygonal schema which we denote as S. We emphasize that our algorithm
replaces each path p+

i , p
−
i by a single edge and not each arc pi of Σ′ as in previous works. Each

path p+
i , p

−
i corresponds to two edges of S.

Figure 1. Building the polygonal schema (left to right): The set of paths P is given in black, and the dual of a forward
cut is given in green and blue; polygonal schema S; the triangulated dual of S.

Now consider a set of cycles C that trivially generates a circulation homologous to ∂t∗ in Σ′,
and let CA be its corresponding abstract set of cycles. In polygonal schema S, each of the cycles
of CA is cut into arcs which cross the schema; by Lemma 3.5, the arcs will be non-crossing in the
interior of S, and by Corollary 4.2 each edge of the schema contains at most one endpoint of any
arc; in particular, no two arcs have endpoints on the same pair of boundary.

Our algorithm dualizes the polygonal schema by taking the original abstract schema and re-
placing each edge with a vertex and each vertex with an edge. It then connects two vertices in the
dual if there is an arc between their corresponding edges in the original schema. Now, each arc
from CA represents an edge between vertices in the 8g + 2-gon. (Note that we can ignore copies of
p−0 because p−0 is a trivial walk and no directed paths cross it.) Since none of the arcs can cross,
this abstraction gives a subdivision of the dualized schema with no parallel edges. We triangulate
this subdivision by adding edges of weight zero. We say that two triangulations of the abstract
polygonal schema are equivalent if and only if they are identical ignoring zero weight edges. See
Figure 1 for illustration.

Every equivalence class of weighted triangulations of the dualized schema corresponds to a
collection of non-crossing abstract cycles in G∗. Our algorithm enumerates such equivalence classes.
Note that the weight of each edge is either zero or one, which implies that our algorithm needs to
consider only 2O(g) different triangulations.

Our algorithm first checks whether a triangulation corresponds to a set of cycles that trivially
generate the homology class of ∂t∗ using Corollary 4.2 and Corollary 4.4. We note that each edge
of the triangulation has a clear direction specified entirely by the vertices it goes through, because
each vertex corresponds to a directed path in G. Then, it computes an abstract collection of cycles
corresponding to the triangulation by brute force and then computes the crossing sequence for each
cycle in the collection and P . All that remains is to compute the total number of cycle collections
in G∗ with a given set of crossing sequences.
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4.1 Counting cycles with a crossing sequence

We briefly sketch our strategy to count collections of cycles in G∗ with a given set of crossing
sequences. Let X be an arbitrary crossing sequence corresponding to an abstract directed cycle γ.
In a manner similar to [9, 39], our algorithm builds a finite portion of the universal covering space
of size O(|X|n). This subset of the covering space contains a lift of G∗ we call GX such that GX is
a directed acyclic graph and every cycle with crossing sequence X lifts to a directed path in GX .
We can easily count these directed paths in O(|X|n2) time using a strategy similar to the one found
in [2]. See Appendix C for details.

In order to compute the total number of cycle collections in G∗ with a given set of crossing
sequences, our algorithm simply needs to multiply the numbers of cycles for each individual crossing
sequence. It then adds the number of cycles corresponding to each equivalence class of weighted
triangulations of the dualized polygonal schema. We get the following lemma.

Lemma 4.5. Let G be a triangulated DAG with possible self-loops embedded on a surface Σ of
genus g with t and s the only source and sink, respectively. There is a 2O(g)n2 time algorithm to
compute the total number of forward (t, s)-cuts.

5 Handling non-triangulations

In this section, we remove our assumption that G is embedded in Σ as a triangulation. We sketch
an algorithm to build a triangulated graph G∆ embedded on a surface Σ∆ of genus O(g) with the
same total number of forward (t, s)-cuts. We can then use the algorithm of section 4 to count the
number of forward cuts in G∆ and so in G.

We use the following lemma to add edges to G in order to create a triangulation; see Appendix D
for the proof.

Lemma 5.1. Let G = (V,E) be a DAG with possible self-loops and t and s the only source and
sink vertices, respectively. Assume u, v ∈ V , (u→v) 6∈ E and u  v. Then, G ∪ (u→v) is a DAG
with possible self-loops that has the same number of forward (t, s)-cuts as G.

A face f of G is irreducible if and only if for any two vertices u, v ∈ V that are not adjacent
on f (1) u 6= v, (2) u 6 v, and (3) v 6 u. In particular, the boundary of an irreducible face is
composed of an even number of edges with alternating clockwise and counterclockwise directions.
See Figure 3 for examples of irreducible faces.

An embedded DAG with possible self loops is maximally triangulated if and only if any
non-triangle face of it is irreducible. Applying Lemma 5.1 and adding self-loops let us create a
maximally triangulated graph Gδ, but this process does not necessarily result in a triangulation.
We cannot add edges on an irreducible face without possibly changing the number of forward (t, s)-
cuts. Fortunately, we have the following lemma based on a surprising application of a bound on
the number of non-crossing non-homotopic loops on a surface. A proof appears in Appendix E.

Lemma 5.2. Let G be a DAG with possible self-loops embedded on a surface Σ such that t and
s are the only source and sink. Then, there is an O(n2) time algorithm to compute a maximally
triangulated DAG, Gδ, embedded on Σ that has the same number of forward (t, s)-cuts. Further,
Gδ has O(g) irreducible faces.

To get rid of irreducible faces we further triangulate Gδ intuitively by connecting the vertices
that appear on the boundary of irreducible faces to s; Lemma 5.1 particularly implies that we can



Erin W. Chambers, Kyle Fox, and Amir Nayyeri 10

always add edges to s without changing the total number of minimum cuts. However, adding edges
with endpoints in different faces results in changing the underlying surface Σ; intuitively, we need
to glue more handles to the surface to avoid edge crossings. The following theorem shows that all
irreducible faces can be triangulated by adding only O(g) handles to Σ.

Lemma 5.3. Let Gδ be a maximally triangulated DAG with possible self-loops embedded on a
surface Σ of genus g, and t and s be the only source and sink, respectively. Then, there exists a
triangulated supergraph G∆ of Gδ embedded on a surface Σ∆ of genus O(g) such that the number
of forward (t, s)-cuts in Gδ and G∆ are equal. Further, G∆ can be computed in O(n) time.

Proof: Lemma 5.2 implies that Gδ has O(g) irreducible faces. Lemma 5.1 implies that s is not on
the boundary of any irreducible faces.

Let f be an irreducible face and f ′ be a triangle incident to s. Let the vertices on the boundary
of f and f ′ be (v0, v2, . . . , vk−1) and (s, s′, s′′) respectively, in clockwise order. We add a handle to
connect f and f ′, and use it to add edges from all vi’s to s. Combinatorially, for all 0 ≤ i < k, we
add the ei = vi→s edges such that (1) for all 0 ≤ i < k, ei is between (vi	1, vi) and (vi⊕1, vi) in
the list of vi, where 	 and ⊕ are subtraction and addition modulo k, (2) for all 1 ≤ i < k− 1, ei is
between (vi	1, s) and (vi⊕1, s) in the list of s, (3) (v0, s) is between (v1, s) and (s′′, s) in the list of
s, and (4) (vk−1, s) is between (vk−2, s) and (s′, s) in the list of s; see Figure 2.

It is easy to check that for any 0 ≤ i < k−1, the triangle (vi, s, vi+1) is a face of the new graph.
The only face that is not a triangle is (v0, s, s

′′, s′, s, vk−1), which can be triangulated by adding
the following edges: (s′′→s), (s→s) and (vk−1→s); see Figure 2. Since all new edges are towards
s, Lemma 5.1 implies that adding them does not change the number of forward (t, s)-cuts.

Figure 2. Triangulating an irreducible face (left to right): f ′, a triangle incident to s, and f an irreducible face of degree
6; the handle to connect f to f ′; the flat view of the handle as an annulus and its triangulation with green edges (all the
green edges are directed towards s.

Each of O(g) irreducible faces of degree d can be triangulated by adding one handle in O(d)
time. It follows that we can iteratively triangulate Gδ to obtain G∆ by adding O(g) handles in
O(n) time. �

Finally, the main theorem of this section follows from Lemma 5.2 and Lemma 5.3.

Theorem 5.4. Let G = (V,E, c) be a (directed) flow network with edge capacities c : E → IR+

embedded on a surface Σ of genus g. Let s ∈ V be the source and t ∈ V be the sink where there
exists a path from s to every vertex in V and a path from every vertex in V to t. There exists a
2O(g)n2 + min

{
n2 log n, gO(g)n3/2

}
time algorithm to calculate the number of minimum (s, t)-cuts

in G.
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Appendix

A Forward cuts and embeddings

We now prove the following theorem:

Theorem A.1 (Bezáková and Friedlander [2, Theorem 4]). LetG = (V,E, c) be a (directed)
flow network with edge capacities c : E → IR+. Let s ∈ V be the source and t ∈ V be the sink.
There exists a directed acyclic (DAG) graph G̃ = (Ṽ , Ẽ) and vertices s̃, t̃ ∈ Ṽ such that the number
of minimum (s, t)-cuts in G is equal to the number of forward (t̃, s̃)-cuts in G̃.

The proof of Theorem A.1 relies upon constructing a maximum flow f for the graph G, and then
computing the residual graph Gf and iteratively removing cycles to result in an acyclic residual
graph. The graph G̃ is then formed by taking the acyclic residual graph and contracting the strongly
connected components. The edge contraction operation is defined as removing an edge u→v of
the graph G and identifying its endpoints, u and v. Corollary 3.2 follows immediately.

Corollary 3.2. [Bezáková and Friedlander [2, Corollary 5]] Suppose there exits a path from s to
every vertex of G and a path from every vertex of G to t. Then t̃ is the only vertex of indegree 0
and s̃ is the only vertex of outdegree 0 in G̃.
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In [2], Bezáková and Friedlander use the fact that contraction of an edge in a planar graph
yields another planar graph with an inherited embedding, as well as the existing algorithms for
computing flows in planar graphs quickly, to get their algorithm to count the number of cuts.

In our setting, we must similarly exploit the embedding of the graph on a surface. Let G be em-
bedded on a surface Σ of genus g. We note O(n2 log n) is the best known time bound for computing
maximum flows in arbitrary sparse graphs [25], which includes surface embedded graphs, so we use
this algorithm to compute flows on our graph. We could also use a gO(g)n3/2 time algorithm [13]
if we are not concerned with the larger dependency on g. The proof of Theorem A.1 implies G̃
can be computed in O(n2 log n), because forming the residual and removing cycles from G̃ takes
O(n2) time in a sparse graph. The proof for Theorem A.1 will not quite get the correct structure
for the DAG in our setting, however, since we will still require the graph to be cellularly embedded
on the surface Σ, and contracting strongly connected components may destroy the topology of the
underlying surface which is essential to the algorithm.

We therefore modify the original construction as follows. First, find strongly connected compo-
nents as in the original construction. All of the edges will be contracted iteratively unless the edge
is a loop; these loops will not be contracted. The contraction of a single edge can be done in linear
time while maintaining the same embedding on the underlying surface, so the overall contraction
algorithm is still O(n2). Note that the underlying topology is maintained, since a loop will remain
in the graph for each handle of the surface. Theorem 3.1 follows immediately.

Theorem 3.1. Let G = (V,E, c) be a (directed) flow network with edge capacities c : E → IR+

embedded on a surface of genus g. Let s ∈ V be the source and t ∈ V be the sink. There exists a
directed acyclic (DAG) graph G̃ = (Ṽ , Ẽ) possibly with self-loops embedded on a surface of genus
at most g and vertices s̃, t̃ ∈ Ṽ such that the number of minimum (s, t)-cuts in G is equal to the
number of forward (t̃, s̃)-cuts in G̃.

While this graph is not a DAG, our proofs are not affected by the existence of self loops. As
an alternative to the above procedure, we can compute a new embedding of G̃ without loops onto
a new surface of genus at most g [36], but we must consider loops anyway due to technicalities
introduced by the procedure in Section 5. Note the minimum embedding of a connected graph is
known to be cellular [55].

Lemmas 3.4 and 3.5 imply a bijection between forward (t, s)-cuts in G and (0, 1)-circulations
in G∗ of a particular homology class. We immediately get the following theorem which drives the
remaining algorithm design and analysis.

Theorem 3.6. Let G = (V,E) be a directed graph embedded on a surface Σ with vertices s, t ∈ V
such that there exist no directed cycles in G other than single edge loops and where every vertex
of G is reachable from t and every vertex can reach s, and let Σ′ = Σ \ (t∗ ∪ s∗). The number of
forward (t, s)-cuts in G is equal to the number of (0, 1)-circulations of G∗ homologous to ∂t∗ in the
surface Σ′.

B Proof of Lemma 4.3

Lemma 4.3. A set of cycles C in G∗ trivially generates a boundary circulation φ in Σ′ if and only
if x(C) = 0.

Proof: Suppose C trivially generates boundary circulation φ. By definition, φ = ∂α for some
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2-chain α of G∗ in the surface Σ′. The boundary of any face of G∗ has crossing vector 0. We see

x(C) = x(
∑
v∈V

α(v∗) · ∂v∗) =
∑
v∈V

α(v∗)x(∂v∗) = 0.

Now, suppose x(C) = 0. We create a graph G+ by modifying G∗ as follows. For every loop
pi ∈ P and for every adjacent pair of edge e1, e2 in pi, we subdivide e1 and e2 by replacing e1

(respectively e2) with a vertex ve1 (ve2) adjacent to both endpoints of e1 (e2). We then add an
edge (ve1ve2) to G+, subdividing a face incident to both e∗1 and e∗2. Essentially, we are augmenting
G∗ with paths that follow the images of loops in P . We then prove the lemma by considering the
cycles C in G+. Subdividing edges and faces does not change homology.

Let a and b be two intersection (crossing) points between a cycle γ ∈ C and some arc pi where γ
crosses pi from left to right through a and γ crosses pi from right to left through b. If such crossing
points do not exist each cycle of C lies in the disk Σ′ \P , and the lemma follows. Let pi[a, b] be the
path added to G+ between a and b along with image of pi. Alter C by replacing γ’s crossings through
a and b with copies of pi[a, b] and rev(pi[a, b]). The transformation does not change the homology
class of C and it reduces the number of crossings of P . By induction, we see φ is homologous to a
circulation trivially generated from a set of cycles C′ that do not cross P . Each cycle of C′ lies in
the disk Σ′ \ P , meaning they trivially generate a boundary circulation. �

C Counting cycles with a given crossing sequence

Let X be an arbitrary crossing sequence corresponding to an abstract directed cycle γ. We represent
the elements of X using the integers 0, . . . , 2g+1 along with their negations (where the existence of
element −0 is optional). Element i represents γ crossing p+

i and element −i represents γ crossing
p−i . Abusing notation, we assign each edge e of G∗ a crossing sequence X(e) using the following
linear time recursive procedure. For the sake of definition, we add a vertex s′ to G within an
arbitrary face incident to s along with a directed edge s→s′. We set X((s→s′)∗) = 0. Recall that
we use the spanning tree τ and the set L of distinct extra edges in the tree-cotree decomposition
to construct P . For every edge ui→vi in L, we set X((ui→vi)∗) = i. For every edge u→v in τ in
bottom up order from the leaves, we set X((u→v)∗) by concatenating the crossing sequences for
edges of G incident to v in clockwise order starting with the edge immediately clockwise to u→v.
During the concatenation, we negate the singleton crossing sequence of any edge w→v that lies
in L. Finally, we set X(e) = ε for every other edge in G∗. For any cycle c, we have X(c) equal to
the concatenation of crossing sequences for c’s individual edges.

We construct the following graph GX along with a mapping from vertices and edges of GX
to G∗. The vertices are of GX are pairs (f∗, X ′) where f∗ is a vertex of G∗ and X ′ is a prefix
of X (including the empty sequence ε). Graph GX contains edges (f∗, X ′)→(h∗, X ′′) where X ′ is
a proper prefix of X (not including X itself), f∗→h∗ is an edge of G∗, and X ′′ = X ′ ·X(f∗→h∗).
Vertices and edges of GX map to vertices and edges of G∗ by simply dropping the second component
of their pairs. We can also define GX along with an embedding on a disk ΣX using a standard
construction [9,39]. Cut along P ’s image in Σ′ to create a disk D we call the fundamental domain.
Create one copy of D denoted DX′ for every prefix X ′ of X. For every pair of prefixes X ′ and X ′′

where X ′′ = X ′ · i, paste together DX′ and DX′′ along p+
i . If X ′′ = X ′ · −i, then paste along p−i .

Finally, remove all outgoing edges from any vertex in DX . Here ΣX is a subset of the universal
cover of Σ′. The next lemma follows from our construction.

Lemma C.1. Let f be a face of G incident to path p+
i (p−i ). If X contains i (−i), then there
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exists a bijection between loops in G∗ with crossing sequence X and basepoint f∗ and paths in GX
from (f∗, ε) to (f∗, X).

Lemmas 4.3 and 3.3 imply the following lemma.

Lemma C.2. Graph GX is a directed acyclic graph.

A simple dynamic programming algorithm computes the number of paths from a vertex u in
a DAG to a vertex v in linear time (see, for example, [2, Observation 6]). For each face f of G
incident to a path p+

i (p−i ) where X contains i (−i), our algorithm computes the number of paths
in GX from (f∗, ε) to (f∗, X). It then sums the results.

Lemma C.3. Let X be a non-empty crossing sequence of an abstract cycle. Then, there is a
O(|X|n2) time algorithm to compute the number of directed cycles with crossing sequence X.

D Proof of Lemma 5.1

Lemma 5.1. Let G = (V,E) be a DAG with possible self-loops and t and s the only source and
sink vertices, respectively. Assume u, v ∈ V , (u→v) 6∈ E and u  v. Then, G ∪ (u→v) is a DAG
with possible self-loops that has the same number of forward (t, s)-cuts as G.

Proof: If u = v the lemma is trivial because a self-loop never shows up in a forward cut, so we
may assume u 6= v.

Assume G ∪ (u→v) has a directed cycle γ of length at least two. Since G does not contain any
directed cycles, we know (u→v) ∈ γ. It immediately follows that [γ\(u→v)] ∪ (u  v) is a closed
walk of length at least two in G, which contradicts the lemma assumption.

Now consider any forward cut T in G. Since u v it cannot be the case that u ∈ S and v ∈ T ;
it follows that T is a forward cut in G ∪ (u→v) as well.

On the other hand, a forward cut in G∪ (u→v) is indeed a forward cut in its subgraph G, and
the proof is complete. �

E Proof of Lemma 5.2

We begin with some definitions. Let v be a vertex on the boundary of an irreducible face f . Then,
v is incoming on f if and only if both incident edges to v on f are incoming. Similarly, v is
outgoing on f if and only if both incident edges to v on f are outgoing. Observe that any vertex
v on the boundary of any irreducible face f is either incoming or outgoing on f ; see Figure 3 for
sample irreducible faces.

Figure 3. Irreducible faces of degree four, six and eight; circles: outgoing vertices; bullets: incoming vertices.
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Lemma E.1. Let G be a maximally triangulated DAG with possible self-loops embedded on a
surface Σ and f be an irreducible face. Then, all vertices on the boundary of f are distinct.

Proof: Any two non-adjacent vertices on the boundary of f are distinct by the definition of an
irreducible face.

Assume that (u→v) appears on the boundary of f and that u = v. Let w be the other neighbor
of v on the boundary of f , and so (w→v) ∈ E. Because u and v are identical, it follows that
(w→u) ∈ E, in particular w  u. Since the degree of an irreducible face is at least 4, w and u
cannot be adjacent on the boundary of v, which implies that f is not irreducible. �

Let S be a spanning tree of G that contains a single directed path S[v] from any vertex v ∈ V
to s.

Lemma E.2. Let G be a maximally triangulated DAG with possible self-loops embedded on a
surface Σ, f be an irreducible face and u and v be outgoing and incoming vertices on f , respectively.
Then, there is no directed path from any vertex of S[v] to u; in particular, no directed (t, u)-path
intersects S[v].

Proof: Let γ = S[v] and assume, for the purpose of contradiction, that there exist a directed path
τ from a vertex x ∈ γ to u. It follows that there exists a directed path, γ[v, x] · τ [x, u], from v to
u. Since G does not contain a directed cycle whose length is larger than one, we have (u→v) 6∈ E,
which implies that f is reducible; see Figure 4.

Figure 4. The setting for Lemma E.2.

�

Let u be an outgoing vertex on an irreducible face f and v1 and v2 be u’s neighbors on f . We
define C(S, f, u) to be the undirected cycle that is composed of (u→v1) · S[v1] and (u→v2) · S[v2];
see Figure 5, left.

Figure 5. Left: definition of C(S, f, u). Right: proof of Lemma E.3

Lemma E.3. Let G be a maximally triangulated DAG with possible self-loops embedded on a
surface Σ, f be an irreducible face and u be an outgoing vertex on f . Then, C(S, f, u) is a
non-separating cycle on Σ.
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Proof: Assume, for the purpose of contradiction, that C(S, f, u) is separating. Let v1 and v2 be
the neighbors of u on f and α be a (v1, v2)-path (in the surface and not in the graph), which is
strictly inside f except for its endpoints that are on the boundary of f . Also, let γ1 = S[v1] and
γ2 = S[v2]. (See Figure 5, right.)

Since C(S, f, u) and α ∪ (u, v1) ∪ (u, v2) are separating, γ = α ∪ γ1 ∪ γ2 is separating as well.
Assume that γ separates Σ into two surfaces Σu and Σw. Let w be the other neighbor of v1 on f
and observe that u and w are on two different sides of γ. Without loss of generality assume that
u ∈ Σu and w ∈ Σw.

Since t is the source of the DAG and its indegree is zero it cannot be on γ, so it is either in Σu

or in Σw. In the former case any (t, w)-path has to intersect γ and in the latter case any (t, u)-path
has to intersect γ. In either case there is a directed path from γ1 = S[v1] or γ2 = S[v2] to u or w,
which contradicts Lemma E.2.

�

Lemma E.4. Let G be a maximally triangulated DAG with possible self-loops embedded on a
surface Σ, f and f ′ be irreducible faces and u and u′ be outgoing vertices on f and f ′, respectively.
Then, C(S, f, u)∪C(S, f ′, u′) does not separate Σ; in particular, C(S, f, u) and C(S, f ′, u′) are not
homotopic.

Proof: Let v1 and v2 be the neighbors of u on f and α be a directed (v1, v2)-path (in the surface
and not in the graph), which is strictly inside f except for its endpoints that are on the boundary
of f . Similarly, let v′1 and v′2 be the neighbors of u′ on f ′ and α′ be a directed (v′1, v

′
2)-path, which is

strictly inside f ′ except for its endpoints that are on the boundary of f ′. Let w,w′ ∈ V be the other
neighbors of v1 and v′1 on f and f ′, respectively. Further, let γ1 = S[v1], γ2 = S[v2], γ′1 = S[v′1],
γ′2 = S[v′2], γ = α ∪ γ1 ∪ γ2 and γ′ = α′ ∪ γ′1 ∪ γ′2.

Assume, for the purpose of contradiction, that C(S, f, u) ∪ C(S, f ′, u′) is separating. Since
α ∪ (u, v1) ∪ (u, v2) and α′ ∪ (u′, v′1) ∪ (u′, v′2) are contractible cycles and C(S, f, u) ∪C(S, f ′, u′) is
separating, γ ∪ γ′ is also separating. Assume that γ ∪ γ′ separates Σ to two surfaces Σu and Σw.
Observe that u and w are on two different sides of γ ∪ γ′. Without loss of generality assume that
u ∈ Σu and w ∈ Σw.

There are four possible cases to consider depending on whether t ∈ Σu and whether u′ ∈ Σu.
Here we assume t ∈ Σu and u′ ∈ Σu; the argument for the other cases are the same (in fact easier).

Observe that u′ ∈ Σu implies that w′ ∈ Σw. Since t ∈ Σu, any (t, w′)-directed path τ ′ intersects
γ ∪ γ′. Lemma E.2 implies that τ ′ cannot intersect γ′. So, it intersects γ1 or γ2. Without
loss of generality assume that τ ′ intersects γ1, and x′ is any vertex in the intersection. Then,
δ = γ1[v1, x

′] · τ ′[x′, w′] · (w′→v′1) is a directed (v1, v
′
1) path.

Similarly, any directed (t, w)-path, τ , intersects γ′1 or γ′2.
Case 1: If there is a vertex x ∈ τ ∩ γ′1, then there is a (v′1, v1)-directed path δ′ = γ′1[v′1, x] ·

τ [x,w] · (w→v1), and δ · δ′ is a cycle of length at least two contradicting the assumption that G is
a DAG.

Case 2: If there is a vertex x ∈ τ ∩ γ′2, then there is a (v′2, v1)-directed path δ′ = γ′2[v′2, x] ·
τ [x,w](̇w→v1), and δ′ · δ is a (v′2, w

′)-directed path contradicting either the assumption that G has
not cycle of length larger than one (if w′→v′2) or the assumption that f ′ is irreducible (otherwise).

�

We may finally complete our proof of Lemma E.5.

Lemma E.5. Let G be a maximally triangulated DAG embedded on a surface Σ of genus g. Then,
the total degree of irreducible faces of G is at most 12g.
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Figure 6. The setting for Lemma E.4.

Proof: Consider a backward spanning tree S rooted at s. Let u1, u2, . . . , uk be the list of outgoing
vertices (with possible multiplicity) on all irreducible faces of G; for 1 ≤ i ≤ k assume ui is on the
irreducible face fi. By construction, the cycles (closed walks) C(T, fi, ui) (1 ≤ i ≤ k) are mutually
non-crossing. Lemma E.3 implies that for any 1 ≤ i ≤ k, C(S, fi, ui) is non-separating, and
Lemma E.4 implies that for any pair 1 ≤ i, j ≤ k, C(S, fi, ui) and C(S, fj , uj) are non-homotopic.
It follows that k ≤ 6g; see [11, Lemma 2.1].

On the other hand, k equals half of the total degree of the irreducible faces and the statement
follows. �

The following lemma states that we can compute a maximally triangulated DAG.

Lemma 5.2. Let G be a DAG with possible self-loops embedded on a surface Σ such that t and
s are the only source and sink. Then, there is an O(n2) time algorithm to compute a maximally
triangulated DAG, Gδ, embedded on Σ that has the same number of forward (t, s)-cuts. Further,
Gδ has O(g) irreducible faces.

Proof: Lemma 5.1 implies that for any pair of vertices u, v ∈ V such that u v we can add u→v
without changing the total number of forward (t, s)-cuts. In particular, we can also add self-loops
without changing the total number of forward (t, s)-cuts.

First, in O(n2) time, for all pairs of vertices u, v ∈ V we figure out whether u  v by running
BFS’s from all vertices of G. Then, for each vertex u ∈ V , we add all u→v edges such that u and
v are on a same face and u  v. This takes O(n) time to detect in the BFS tree, and the graph
embedded can be updated in the same amount of time. It is straight forward to check that the
resulting graph, Gδ, is maximally triangulated. Then, Lemma E.5 implies that Gδ contains O(g)
irreducible faces. �

F Sampling minimum cuts

In this Appendix, we given an algorithm to sample a minimum (s, t)-cut from a graph uniformly
at random. Let G = (V,E) be a directed acyclic graph plus a set of loops embedded on a surface Σ
of genus g with a unique source t and unique sink s. Let G∗ be the dual graph of G and let Σ′ =
Σ \ (t∗ ∪ s∗). By Theorem A.1, it suffices to give an algorithm to sample forward (t, s)-cuts in G.
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Our sampling algorithm combines the ideas from earlier in this paper with the algorithm given
in [2]. We assume G is embedded as a triangulation without loss of generality (see Section 5) and
run the counting algorithm given in Section 4. We assume familiarity with the counting algorithm
as given.

Our counting algorithm enumerates weighted triangulations of a dualized polygonal schema with
a particular arc crossing signature relative to a system of 2g+ 1 arcs. For each such triangulation,
it counts the directed cycles in G∗ that correspond to the crossing sequences represented in the
triangulation. See Section 4 for details. For each such triangulation ∆i, let ci be the number
of collections of directed cycles corresponding to ∆i. Our sampling algorithm samples a single
weighted triangulation where each triangulation ∆i is picked with probability ci/

∑
k ck.

Let ∆ be the triangulation sampled. Our counting algorithm computes an abstract collection
of cycles corresponding to ∆. For each cycle in the abstract collection, it then counts the number
of real cycles with the same crossing sequence relative to a system of 4g + 2 paths. Our sampling
algorithm just needs to pick a cycle uniformly at random for each of these crossing sequences. Let
X be one such crossing sequence.

GivenX, our counting algorithm creates a directed acyclic graphGX . It then counts the directed
paths in GX between several pairs of endpoints. For each pair of endpoints ((f∗i , ε), (f

∗
i , X)), let di

be the number of directed paths between (f∗i , ε) and (f∗i , X) in GX . Our sampling algorithm picks
a pair of endpoints where each pair ((f∗i , ε), (f

∗
i , X)) is picked with probability di/

∑
k dk.

Finally, we describe how to sample a directed path between a pair of endpoints (f∗, ε) and
(f∗, X). Let x0 = (f∗, X). For every k = 1, 2, . . . , our sampling algorithm selects xk from the set
of immediate predecessors to xk−1 with probability proportional to the number of paths between
(f∗, ε) and the predecessor. The reverse of x0, x1, . . . gives us a randomly sampled path in GX or
equivalently a randomly sampled cycle in G∗.

All of the information required for the sampling algorithm is computed by the counting algo-
rithm. As a byproduct of our counting algorithm, we obtain an enumeration of all 2O(g) possible
weighted triangulations. We can pick a random triangulation ∆ from this list in O(g) time. Then,
we need O(g2n) time to sample a cut that corresponds to ∆. In fact, the above procedure runs
in only O(g2n) additional time over the time it takes to count in the first place. We can actually
sample several cuts in O(g2n) time each while relying on the preprocessing done by only a single
instantiation of the counting algorithm.
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