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Abstract
In this paper, we consider the problem of evaluating (s, t)-cuts in a bounded

treewidth graph. In particular, we show how to compute the partition function for
weighted cuts of the graph, i.e., the total weight of all (s, t)-cuts where the weight
of a single cut is the product of its edge weights. This method can also easily be
adapted to work with additive weights for the cost of a cut. We also present a method
for sampling a cut proportional to its weight in linear time. Computing the partition
function is #P-hard for general graphs, and our sampling algorithm is simple enough
to prove useful is several application areas. Finally, we discuss an alternative method
for sampling cuts that uses Markov chains and show that, in the worst case, its mix-
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ing time is exponential in the size of the graph even when the graph has bounded
treewidth.

1 Introduction

Given a directed graph G = (V,E) of bounded treewidth with edge weights w(·) and
two designated vertices s and t, we describe a linear time algorithm for computing
the partition function for weighted cuts in G. We assume a model of computation
where pairs of values can be added, multiplied, and compared in constant time; re-
quiring time proportional to the bit-complexity of numbers only increases our run-
ning times by a near-linear factor. After running our algorithm, it becomes possible
to sample cuts proportionally to the product of edge weights in linear time. We em-
phasize that the probability of a cut being chosen in an individual sample is exactly
as described above and not approximate.

For an (s, t)-cut C ⊆ V , s ∈ C, t 6∈ C, its weight w(C) is the product of weights
for edges crossing the cut, that is:

w(C) = ∏
(x,y):x∈C,y 6∈C,(x,y)∈E

w(x,y).

Weights corresponding to products are used in many applications. For example, in
physics and biology, the weights often represent probabilities or energies of indi-
vidual events. In practice, the actual probabilities are unknown and are replaced
by energies that are proportional to the probabilities. However, for certain applica-
tions including the maximum likelihood principle, one needs a close estimate on the
probability of an event, not just its energy. To compute this probability, one needs
to scale the energy of the event by the sum of the energies of all events. This scal-
ing quantity is known as the partition function. Our algorithms for computing the
partition function and sampling cuts appear in Sects. 3 and 4 respectively.

In Sect. 5, we extend the above results to work with multiple sources and sinks.
The extension is surprisingly simple; however, this is the first result we are aware
of on evaluating cuts in the multiple sources and sinks setting. In Sect. 6, we de-
scribe how to modify the above techniques to count and sample (s, t)-cuts that have
minimum summed edge weight. While the minimum weight (s, t)-cut counting pro-
cedure is nearly the same as that given for computing the partition function, we feel
it is different enough to be of independent interest.

As further motivation for our approach, we conclude this report with a discussion
on Markov chain methods for (approximately) sampling (s, t)-cuts by multiplicative
weight (Sect. 7). Markov chains have been used successfully for a variety of diffi-
cult counting problems, either to approximately count the number of solutions or to
provide an approximately uniformly random solution [13]. A common and natural
approach is to use a Glauber dynamics type chain that in each transition modifies the
current state by a constant number of sites. For cuts, this means adding or removing
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a constant number of vertices to/from the current cut. We show that this approach
may need exponential time to converge to an approximately uniform distribution on
cuts, even in graphs of treewidth 2 or less. Therefore, for essentially any graph class
Glauber dynamics Markov chains will not yield polynomial-time approximations of
the partition function for weighted (s, t)-cuts. In contrast, our algorithms handle an
interesting and widely studied class of graphs in (fast) polynomial time, and pro-
vide motivation for considering extensions to more general classes of graphs such
as minor free graph families.

1.1 Related work

For (s, t)-cuts the partition function Z is defined as the sum of the weights of all
(s, t)-cuts:

Z := ∑
C:C⊆V,s∈C,t 6∈C

w(C).

Notice that for a cut C, its actual probability when sampling proportionally to its
weight is w(C)/Z. Computing the partition function is #P-hard. This fact can be
shown via a reduction from the problem of counting minimum cardinality (s, t)-cuts,
which is #P-complete [17]. Assigning weight 1/2n to all edges in the graph, where
n is the number of vertices, means the minimum cardinality cuts will dominate the
partition function.

This problem of counting minimum weight (s, t)-cuts in general graphs is #P-
complete [17] even for unit weights, and can be reduced to the problem of counting
maximal antichains in a poset [2]. Ball and Provan first considered the problem of
counting minimum cuts and gave a polynomial time algorithm to compute the num-
ber of minimum cardinality (s, t)-cuts in an (s, t)-planar graph (where the source
and sink are on the same face) [2]. Later, Bezáková and Friedlander generalized the
algorithm for arbitrary locations of s and t in a planar graph [3] while also allowing
arbitrary edge capacities. Chambers, Fox, and Nayyeri further generalized the algo-
rithm for directed graphs embedded on orientable surfaces of bounded genus [7].

The problem of counting minimum (cardinality) cuts was originally motivated
by questions in network reliability [2,8,14,16]. In particular, the problem is closely
related to the probabilistic connectness of stochastic graphs, where edges may fail
with known probabilities [2]. More recently, counting minimum cuts has been stud-
ied for its applications to problems in computer vision. In these applications, the pix-
els of an image are interpreted as vertices in a graph with edges between the vertices
describing the similarity between pixels. Minimum cuts provide a high quality way
to segment the pixels of the image [6]. Counting minimum cuts is closely related to
sampling these cuts, allowing for a varied selection of high quality segmentations.
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1.2 Courcelle’s theorem for bounded treewidth graphs

Courcelle showed in 1990 that any graph property describable in counting monadic
second order logic can be decided in linear time if the input graph has bounded
treewidth [9]. There are often practicality concerns with using this particular meta-
theorem, however, since many direct applications of it lead to hidden constants that
are doubly or triply exponential in the treewidth [11].

Courcelle’s theorem has been extended in a variety of ways. One extension par-
ticularly relevant to our work is as follows. Weight the edges of a graph G and fix
a monadic second order logic formula φ with one free set variable. For any set of
edges A, the weight of A can be defined as either the sum or product of its edge
weights. If G has bounded treewidth, it is possible to sum the weight of all sets A
that satisfy φ in linear time [10]. In particular, this result implies we can compute the
partition function for weighted cuts of a graph G in linear time in bounded treewidth
graphs, one of our main results.

The main advantage of our partition function algorithm over the meta-theorems
mentioned above is that our algorithm is very simple, and the dependence on the
treewidth of G is only singly exponential. As stated earlier, standard applications
of Courcelle’s theorem often have doubly or triply exponential dependence on
treewidth.

Perhaps of greater interest, our algorithm also provides a simple way to randomly
sample cuts, one of the key motivations behind the study of partition functions; to
the best of our knowledge, no such sampling is known under the general framework
of Courcelle’s theorem.

2 Tree Decompositions and Treewidth

A tree decomposition T of a graph G = (V,E) is a pair (T,X ) where T is a tree
and X is a family of subsets (or bags) of V such that:

• Each node u of T has a corresponding subset Xu ∈X and ∪X∈X X =V ;
• For every edge uv ∈ E there is a bag X ∈X such that u,v ∈ X .
• For any three nodes u,v,w ∈ T such that v is on the u-to-w path in T , Xu∩Xw ⊆

Xv.

In this paper, we will refer to the bags or nodes of T and the vertices of G to avoid
confusion.

The width of a tree decomposition (T,X ) is maxX∈X |X |−1. The treewidth of
a graph is the minimum possible width of a tree decomposition of the graph. Any
graph of treewidth k has a tree decomposition with at most n− k+1 nodes [5].

Tree decompositions were originally introduced by Halin [12] and were rediscov-
ered (and popularized) by Robertson and Seymour [18]. While it is NP-complete to
decide if any graph has treewidth at most k [1], a tree decomposition can be con-
structed in linear time if k is a constant (the dependance on k is exponential) [4].
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We only consider tree decompositions T = (T,X ) with O(n) nodes where T is
rooted at some node r and every node of T has at most two children. We can mod-
ify any tree decomposition of width k and O(n) nodes to meet the last assumption
in O(kn) time without increasing the width of the decomposition by replacing any
node v with d children by d−1 nodes, each with 2 children and the same bag as v.

3 Computing the Partition Function

In this section we show how to compute the partition function for weighted cuts
of G. Let G = (V,E,w) be a positively edge-weighted graph (directed or not) with
treewidth k. Let s, t ∈V be the source and the sink, respectively, s 6= t. For an (s, t)-
cut C⊆V , s ∈C, t 6∈C, its weight w(C) is the product of weights for edges crossing
the cut, that is:

w(C) = ∏
(x,y):x∈C,y6∈C,(x,y)∈E

w(x,y).

We wish to compute the total weight, that is, the sum of weights over all (s, t)-cuts.
Let T be a tree decomposition of G with width k. For every edge e = (x,y) ∈ E,

choose exactly one bag Xu with x,y ∈ Xu as its designated bag. For a bag Xu, we
refer to the set Eu of edges e = (x,y) ∈ E such that x,y ∈ Xu and Xu is the designated
bag for e, as the designated edges for Xu.

We are now ready to present the algorithm. The idea is to compute, for each bag
and for each of its subsets, the total weight of the cuts that are consistent with the
subset, where the weight takes into account only the edges that are designated to this
bag or to one of its descendents. Algorithm 1 contains pseudocode for the algorithm.
The correctness of the algorithm is chiefly explained by Lemma 1 below.

We first analyze the running time of the algorithm. It does a single pass through
the tree T , where in each node it goes through 2O(k) operations. There are O(n)
nodes total in T , so we get an 2O(k)n running time. More precisely, each node ac-
tually has O(23kk) operations since there are 2k+1 choices for C, 22k+2 choices for
C1 and C2, and it takes O(k) time to verify that for each pair C1 and C2, we have
C1∩Xv =C∩Xv1 and C2∩Xv =C∩Xv2 . We get a total running time of O(23kkn).

Next we prove the correctness of our algorithm.

Lemma 1. Let v be a node of T and let P(v) be the set of all descendants of v in
T (including v). Let Ṽv = ∪u∈P(v)Xu be the union of all the bags corresponding to
P(v), and let Ẽv = ∪u∈P(v)Eu be the union of all the edges that are designated for
those bags. At the time when a node v is marked as done, the following holds for
each C ⊆ Xv:

weightDPv[C] = ∑
C̃⊆Ṽv,s/∈(Ṽv\C̃),t 6∈C̃,C̃∩Xv=C

 ∏
x,y:x∈C̃,y6∈C̃,(x,y)∈Ẽv

w(x,y)

 .
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Algorithm 1 Computing the partition function for weighted (s, t)-cuts in a graph G
with treewidth k
Require: A graph G, a corresponding tree decomposition T = (T,X ) of width k with T rooted

at node r, and distinct vertices s, t
1: Mark all nodes of T as not done.
2: for every leaf node u of T do
3: for every subset C ⊆ Xu such that s /∈ (Xu \C) and t 6∈C do
4: Let weightDPu[C] be the product of all the designated edges for Xu that are cut by C:

weightDPu[C] := ∏(x,y)∈Eu,x∈C,y6∈C w(x,y).
5: for all other subsets C ⊆ Xu do
6: Let weightDPu[C] := 0.
7: Mark u as done.
8: for every non-leaf node v of T such that all its children are done do
9: Let v1 be v’s child and v2 be the other child (if it exists).

10: for every subset C ⊆ Xv such that s /∈ (Xv \C) and t 6∈C do
11: Let weightDPv[C] := 0.
12: for every subset C1 ⊆ Xv1 such that C1 ∩Xv = C∩Xv1 and every subset C2 ⊆ Xv2 such

that C2∩Xv =C∩Xv2 (if applicable) do
13: Add weightDPv1

[C1] ·weightDPv2
[C2] to weightDPv[C].

(If there is no v2, take weightDPv2
[C2] = 1.)

14: Set weightDPv[C] := weightDPv[C] ·∏(x,y)∈Ev,x∈C,y 6∈C w(x,y).
15: for all other subsets C ⊆ Xv do
16: Let weightDPv[C] := 0.
17: Mark v as done.
18: return ∑C⊆Xr weightDPr[C].

Proof. We will prove the lemma by induction on the number of descendants of v.
For the base case, v is a leaf node of T . The summation goes through a single C̃ as
ṽ = Xv and C̃∩Xv =C implies that C̃ =C. The claim follows directly from steps 4
and 6 of the algorithm.

For the inductive case, suppose that v is not a leaf and that the claim holds for
all nodes with fewer descendants; in particular, the claim holds for v’s children.
Let C̃ ⊆ Ṽv be such that s /∈ (Ṽv \ C̃), t 6∈ C̃, and C̃ ∩ Xv = C. We will show that
the algorithm includes the weight ∏x,y:x∈C̃,y6∈C̃,(x,y)∈Ẽv

w(x,y) in the computation of
weightDPv[C].

Recall that v1 and v2 (if it exists) are v’s children in T . Let C̃i = C̃∩ Ṽvi be the
restriction of the cut C̃ to the descendants of vi and let Ci = C̃∩Xvi be its restriction
to the bag Xvi . Notice that Ci ∩Xv = C∩Xvi . Let π(C) = ∏(x,y)∈Ev,x∈C,y6∈C w(x,y).
The sum of weights for all C̃ as described above is

∑
C̃

π(C) · ∏
(x,y)∈Ẽv1 ,x∈C̃1,y6∈C̃1

w(x,y) · ∏
(x,y)∈Ẽv2 ,x∈C̃2,y 6∈C̃2

w(x,y)


= π(C)∑

C̃

 ∏
(x,y)∈Ẽv1 ,x∈C̃1,y6∈C̃1

w(x,y) · ∏
(x,y)∈Ẽv2 ,x∈C̃2,y 6∈C̃2

w(x,y)

 .
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By the definition of tree decompositions, any pair of choices for C̃1 and C̃2 as al-
lowed above will include or exclude the same members of Ṽ . By this fact and dis-
tribution, we see the expression above is equal to

π(C) ·weightDPv[C1] ·weightDPv[C2].

The lemma immediately yields the main theorem of this section.

Theorem 1. Algorithm 1 correctly computes the partition function for all (s, t)-cuts.
The running time is O(23kkn).

Proof. Apply the lemma to v = r. Then we get Ṽr = V , Ẽr = E. An (s, t)-cut C̃
will be accounted for by weightDPr[C] for C = C̃∩Xr. Summing across all C’s we
account for all (s, t)-cuts.

4 Sampling Cuts

One interesting application of our dynamic programming formulation is that it can
be easily modified to aid in repeatedly sampling cuts. Recall that in many appli-
cations, these weights are probabilities of some individual event’s occurrence, and
may be estimates or energies that correspond to probabilities but lack the scaling
factor. Therefore, sampling provides a method via which events can be repeatedly
selected from the given probability distribution.

Algorithm 1 given above builds a dynamic programming table that can be used
to randomly sample cuts proportionally to their weight. For a node v, the subset of
vertices Ṽv as described in Lemma 1, and a subset of vertices C⊆ Xv, we need a way
to sample a subset of vertices C̃ ⊆ Ṽv such that s /∈ (Ṽv \ C̃), t 6∈ C̃, and C̃∩Xv = C
proportionally to ∏x,y:x∈C̃,y6∈C̃,(x,y)∈Ẽv

w(x,y). Let v1 and v2 be the children of v in T
(assuming v2 exists). In order to sample this subset, our algorithm randomly selects
two subsets of vertices C1 ⊆ Xv1 and C2 ⊆ Xv2 such that C1 ∩ Xv = C ∩ Xv1 and
C2 ∩ Xv = C ∩ Xv2 . It does so proportionally to weightDPv1

[C1] ·weightDPv2
[C2].

Similar to before, if v2 does not exist, then our algorithm only selects C1 and it
assumes weightDPv2

[C2] = 1 when giving weights to the subsets. Once C1 and C2

are selected in O(k) time, it recursively selects subsets from Ṽv1 and Ṽv2 using the
same procedure.

In order to select an (s, t)-cut, it selects a set Cr ⊆ Xr from the root bag propor-
tionally to weightDPr[Cr] in O(k) time. It then uses the above procedure to select
the whole cut C̃. A random sample is performed once per tree node, so the entire
procedure takes O(kn) time.

Theorem 2. There exists an algorithm to sample (s, t)-cuts proportionally to their
weight in O(kn) time per sample after running Algorithm 1 once.
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5 Multiple Source-Sink Cuts

We now describe an extension to our previous algorithms to handle computing the
partition function when there are multiple sources and multiple sinks in the input
graph G. In essence, this is a simple modification to our previous algorithms, but as
far as we are aware it is the first result on evaluating cuts in the multiple sources and
sinks setting.

The extension works as follows. Let S be the set of source vertices and T be the
set of sink vertices. Our algorithms modify the graph G by adding two vertices s∗

and t∗. They then add an edge from s∗ to every member of S and an edge from every
member of T to t∗. Vertex s∗ is set as the only source and vertex t∗ is set as the only
sink.

These edges are given weight 0 so that any (s∗, t∗)-cut that divides S or T will
have weight 0. We can add s∗ and t∗ to every bag in any tree decomposition of G, in-
creasing the width of the decomposition by 2 while still maintaining it as a valid tree
decomposition after modifying G. The partition function and number of minimum
weight (S1,S2)-cuts can still be computed in O(23kkn) time.

6 Minimum (s, t)-cuts

In this section, we describe how to count and sample (s, t)-cuts that have minimum
summed edge weight. Our algorithm is very similar to the one used for computing
the partition function. The pseudocode appears in Algorithm 2. The key idea be-
hind our algorithm for counting minimum cuts is that our dynamic programming
procedure takes a subset of vertices for a bag and returns two values, the weight of
any minimum (s, t)-cut consistent with that subset, and the number of these mini-
mum weight cuts. When computing the two values for a node v’s bag, it enumerates
all consistent subsets for the children of v. The children’s subsets only contribute
to v’s number variable if the sum of their weight variables is minimum. The proof
of correctness is nearly the same as that given earlier for computing the partition
function.

Theorem 3. Algorithm 2 correctly computes the number of minimum weight (s, t)-
cuts. The running time is O(23kkn).

Similar to before, our algorithm for counting minimum (s, t)-cuts builds a dy-
namic programming table that can be used to sample minimum weight (s, t)-cuts
uniformly at random. The procedure is the same as the one given for sampling cuts
proportionally to multiplicative weight, except the sampling algorithm will pick sub-
sets of vertices C1 and C2 for each node v’s children proportionally to the product
of C1 and C2’s number variables. The algorithm only considers subsets C1 and C2
where the sum of their weight variables are minimum.

Theorem 4. There exists an algorithm to sample minimum weight (s, t)-cuts uni-
formly at random in O(kn) time per sample after running Algorithm 2 once.
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Algorithm 2 Counting the minimum weight (s, t)-cuts in a graph G with treewidth
k
Require: A graph G, a corresponding tree decomposition T = (T,X ) of width k with T rooted

at node r, and distinct vertices s, t
1: Mark all nodes of T as not done.
2: for every leaf node u of T do
3: for every subset C ⊆ Xu such that s /∈ (Xu \C) and t 6∈C do
4: Let countDPu[C] be the total weight and number of cuts designated by C: countDPu[C] :=(

∑(x,y)∈Eu,x∈C,y6∈C w(x,y),1
)
.

5: for all other subsets C ⊆ Xu do
6: Let countDPu[C] := (∞,0).
7: Mark u as done.
8: for every non-leaf node v of T such that all its children are done do
9: Let v1 be v’s child and v2 be the other child (if it exists).

10: for every subset C ⊆ Xv such that s /∈ (Xv \C) and t 6∈C do
11: Let (minWeight,cutCount) := (∞,0).
12: for every subset C1 ⊆ Xv1 such that C1 ∩Xv = C∩Xv1 and every subset C2 ⊆ Xv2 such

that C2∩Xv =C∩Xv2 (if applicable) do
13: (subWeighti,subCounti) := countDPvi [Ci] for i ∈ {1,2}.

(If there is no v2, take countDPv2 [C2] = (0,1).)
14: if subWeight1 + subWeight2 = minWeight then
15: Set (minWeight,cutCount) := (minWeight,cutCount+ subCount1 · subCount2).
16: if subWeight1 + subWeight2 < minWeight then
17: Set (minWeight,cutCount) := (subWeight1 + subWeight2,subCount1 ·

subCount2).
18: Set countDPv[C] := (minWeight+∑(x,y)∈Eu,x∈C,y6∈C w(x,y),cutCount).
19: for all other subsets C ⊆ Xv do
20: Let countDPu[C] := (∞,0).
21: Mark v as done.
22: Let (minWeight,cutCount) := (∞,0).
23: for every subset C ⊆ Xr do
24: (subWeight,subCount) := countDPr[C].
25: if subWeight = minWeight then
26: Set (minWeight,cutCount) := (minWeight,cutCount+ subCount).
27: if subWeight < minWeight then
28: Set (minWeight,cutCount) := (subWeight,subCount).
29: return cutCount.

7 Markov Chain Techniques: Slow Mixing

In this section we discuss using Markov chains to generate a random (s, t)-cut ap-
proximately proportional to its multiplicative weight. In particular, we provide a
simple undirected graph with bounded treewidth for which Markov chains that mod-
ify only a constant portion of the cut need exponential time to get close to the sta-
tionary distribution. We begin with a refresher on Markov chains before getting into
our results.



10 Ivona Bezáková, Erin W. Chambers, and Kyle Fox

7.1 Markov chain preliminaries

A Markov chain is a pair (Ω ,P), where Ω is a set of states and P is a (right)
stochastic matrix of size |Ω | × |Ω | that specifies the probabilities P(x,y) of tran-
sitioning from state x to state y. A distribution π on states Ω is stationary if
π(y) = ∑x∈Ω π(x)P(x,y) for all x,y ∈ Ω ; in other words, if starting from a state
chosen according to the distribution π , after one step of the Markov chain the states
are distributed according to π . Notice that Pt(x,y) is the probability of transitioning
from x to y in t steps. A Markov chain is irreducible if for every x,y there is a t such
that Pt(x,y) > 0; it is aperiodic if gcd{t : Pt(x,y) > 0} = 1 for every x,y. An irre-
ducible and aperiodic Markov chain has a unique stationary distribution; moreover,
if the transition matrix is symmetric (that is P(x,y) = P(y,x) for every x,y), then the
stationary distribution is uniform (that is π(x) = 1/|Ω |). The Metropolis-Hastings
technique can be used to modify the transition probabilities of a symmetric Markov
chain to achieve a desired stationary distribution σ . In particular, for an irreducible,
aperiodic, and symmetric Markov chain M = (Ω ,P), we can construct a Markov
chain Mσ = (Ω ,Pσ ) such that Pσ (x,y) = P(x,y)min{σ(y)/σ(x),1} for x 6= y.

The mixing time τ(ε) := maxx∈Ω min{t : dtv(Pt(x, .),π)< ε} is the time needed
to get ε-close to stationarity when starting from an arbitrary state x. The total vari-
ation distance dtv(µ,π) := ∑x∈Ω (µ(x)− π(x))/2 measures the closeness of two
distributions µ and π . For any A⊂ Ω , let π(A) := ∑x∈A π(x). A quantity known as
conductance

Φ := min
A⊂Ω ,π(A)≤1/2

∑x∈A,y∈Ω−A π(x)P(x,y)
π(A)

(1)

can be used to bound the mixing time of an ergodic Markov chain (from above and
below). In particular, for a Markov chain with P(u,u)≥ 1/2, for every u ∈Ω ,

1
2

(
1

2Φ
−1
)

log
(

1
2ε

)
≤ τ(ε)≤ 2

Φ2 log
(

1
πminε

)
, (2)

where πmin = minx∈Ω π(x) [15, 19]. The requirement on P(u,u) ≥ 1/2 is techni-
cal, typically used to guarantee that a chain is aperiodic. For every Markov chain
M = (Ω ,P) there exists a so-called lazy Markov chain Mlazy = (Ω ,Plazy) that
with probability 1/2 stays in the current state, otherwise it follows transitions of M;
formally, Plazy = 1/2(I+P) where I is the identity matrix. The stationary distribu-
tion of Mlazy is the same as that of M. Intuitively, a lazy Markov chain takes about
twice as long to mix compared to the original chain.

7.2 Glauber dynamics Markov chains for cuts

We discuss Markov chains for all (s, t)-cuts sampled proportionally to their multi-
plicative weight, as well as Markov chains for sampling just minimum (s, t)-cuts.
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We mentioned that our earlier dynamic programming results for bounded treewidth
graphs can be easily modified to use additive weights and/or to be restricted to only
minimum cuts. However, for Markov chain based sampling the situation is different
and we present slow mixing examples for both scenarios.

Let Ω be the set of all minimum (s, t)-cuts. Consider a Glauber dynamics Markov
chain that tries to modify a single site in each transition. Then, the transition from a
current state C is as follows:

1. choose a random vertex v ∈V −{s, t},
2. let C′ :=C⊕{v}, the symmetric difference of C and {v},
3. if C′ ∈Ω , then C′ is the next state; otherwise, the chain stays in C.

As this chain is symmetric, its stationary distribution is uniform. The chain moves
from C to C′ with probability 1/(n−2) if the chain is not lazy and with probability
1/(2(n−2)) for its lazy version. More general Glauber dynamics chains attempt to
modify more sites in one transition. For c modified sites the transition probabilities
are Θ(1/nc) and the chain is increasingly more likely to reject a move in step 3 due
to C′ 6∈ Ω . As such, Markov chains that modify the current state locally, in other
words, by changing only a constant-size part of the state, are generally preferred.

For weighted cuts, let Ω be the set of all (s, t)-cuts. The desired stationary distri-
bution is πw(C) =w(C)/Z, where Z =∑x∈Ω w(x) is the normalization factor, i.e, the
partition function. The Metropolis-Hastings variant of the Glauber dynamics chain
redefines step 3 as follows: if C′ ∈ Ω , then with probability min{π(C′)/π(C),1}
state C′ becomes the next state; otherwise, the chain stays in C. Notice that we do
not need to know the (generally difficult to compute) normalization factor Z, since
πw(C′)/πw(C) = w(C′)/w(C).

7.3 Slow mixing for all weighted cuts

We present a simple family of graphs for which the lazy Metropolis-Hastings variant
of the above Markov chain needs exponential time to mix.

Consider the following undirected weighted graph G = (V,E,w), where V =
{u1,u2, . . . ,un} with edges E = {(ui,ui+1) | i ∈ [n− 1]} of weights w(u1,u2) =
w(un−1,un) = 1 and w(ui,ui+1) = 1/2n for 2 ≤ i ≤ n− 2. Let s = u1 and t = un.
Graph G is a path and therefore has treewidth 1.

In this case Ω := {{s}∪S | S⊆V −{s, t}}. Notice that there are only two (s, t)-
cuts with weight 1, namely {u1} and {u1, . . . ,un−1}, and that the (multiplicative)
weight of any other (s, t)-cut is at most 1/2n. Therefore, Z≤ 1+1+(2n−2−2)/2n <
3.

Let A = {{s}}. Then, 1/3 < πw(A) = w(A)/Z = 1/Z < 1/2. The probability
of moving from cut {s} to another cut {s,ui} is at most 1/(2(n− 2)2n) since
we choose ui with probability 1/(2(n− 2)) and accept the move with probabil-
ity w({s,ui})/w({s})≤ 1/2n (more precisely, the acceptance probability is 1/2n if
i = 2 and (1/2n)2 otherwise).
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We claim that the conductance out of A is exponentially small, see (1):

Φ ≤ ∑x∈A,y∈Ω−A πw(x)Pw(x,y)
πw(A)

=
∑y∈Ω−A πw({s})Pw({s},y)

πw({s})
=

= ∑
y∈Ω−A

Pw({s},y)≤ (n−2)
1

2(n−2)2n =
1

2n+1 .

Therefore, we can bound the mixing time, see (2):

τ(ε)≥ 1
2
(

1
2Φ
−1) log(

1
2ε

)≥ 1
2
(2n−1) log(

1
2ε

).

The mixing time is exponential in n. If we instead want to bound the mixing time
in terms of input size, then note there are n− 1 edge weights, each of up to n bits.
Therefore, the size of the input is Θ(n2) and the mixing time is still super polyno-
mial, as it is exponential in the square root of the size of the input.

7.4 Slow mixing for minimum (s, t)-cuts

We conclude this paper with a family of graphs for which the Markov chain for
minimum (s, t)-cuts needs exponential time to mix. For simplicity we assume addi-
tive weights, as is standard for minimum (s, t)-cuts due to their correspondence to
maximum s-t flows. We note that the same example with edge weights 1/2 yields
slow mixing arguments in case of multiplicative weights.

For any integer ` ≥ 1, consider the following undirected unweighted graph
G = (V,E), where V = {s, t,u,a1,a2, . . . ,a`,b1,b2, . . . ,b`} and
E = {(s,ai),(ai,u),(u,bi),(bi, t) | i ∈ [`]}. Graph G is series-parallel and therefore
has treewidth at most 2. It has n= 2`+3 vertices. Any (s, t)-cut with value ` is mini-
mum (since the value of the maximum s-t flow is `). Therefore, A := {{s}∪Ca |Ca⊆
{a1, . . . ,a`}} and B := {{s,a1, . . . ,a`,u}∪Cb | Cb ⊆ {b1, . . . ,b`}} are sets of mini-
mum (s, t)-cuts. We claim that there are no other minimum (s, t)-cuts.

Lemma 2. If C is a minimum (s, t)-cut, then C ∈ A or C ∈ B.

Proof. Suppose that u 6∈ C. Then, for every i, either (s,ai) or (ai,u) is cut; for to-
tal cut cost `. If there is a b j ∈ C, then (b j, t) increases the cut cost beyond `, a
contradiction. In this case, C ∈ A.

Suppose that u ∈C. Then, for every j, either (u,b j) or (b j, t) is cut; for total cut
cost `. If there is an ai 6∈C, then (s,ai) increases the cut cost beyond `, a contradic-
tion. In this case, C ∈ B.

Therefore, Ω =A∪B. Notice that to move from A to B one has to pass through the
state y′ := {s,a1, . . . ,a`,u}; however, there is a single state x′ := {s,a1, . . . ,a`} in A
that can move to y′. Since |A|= |B|= 2`, we have π(A) = 1/2 and π(x) = 1/2`+1 for
any x ∈Ω . Therefore, we can bound the conductance of the lazy chain as follows:
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Φ ≤ ∑x∈A,y∈Ω−A π(x)P(x,y)
π(A)

=
1/(2`+1)1/(2(n−2))

1/2
=

1
2(n−1)/2(n−2)

.

Then, the mixing time is bounded by:

τ(ε)>
1
2
(

1
2Φ
−1) log(

1
2ε

)≥ (2(n−5)/2(n−2)−1) log(
1

2ε
).

Thus, we need exponential mixing time in n to get ε-close to the uniform distribution
even if ε is a constant. The computation can be adapted to show exponential mixing
time for Glauber dynamics Markov chains that change c vertices at a time for any
constant c.

8 Conclusions

In this paper, we presented a simple dynamic programming algorithm to compute
the partition function for weighted cuts of a bounded treewidth graph. This algo-
rithm easily extends to multiple source multiple sink cuts as well. We also provided
an algorithm to sample cuts under our framework in the same amount of time, and
demonstrated that Markov chain techniques to generate cuts require exponential
time to converge in our setting.

We remark that in many computer vision applications the graph is a grid graph
with two extra vertices, the source and the sink, that are each connected to a set
of grid vertices. This situation arises, for example, for the Random Markov Field
model. When using maximum likelihood to determine the best parameters for the
model, one needs to compute the partition function across all weighted cuts. Unfor-
tunately, this graph does not have bounded treewidth. We leave the study of evalu-
ating cut problems for planar graphs with two apices, the source and the sink, for
future work.
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