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Abstract

Thinning is a commonly used approach for computing skeleton descriptors. Traditional thinning algorithms often

have a simple, iterative structure, yet producing skeletons that are overly sensitive to boundary perturbations.

We present a novel thinning algorithm, operating on objects represented as cell complexes, that preserves the

simplicity of typical thinning algorithms but generates skeletons that more robustly capture global shape features.

Our key insight is formulating a skeleton significance measure, called medial persistence, which identify skeleton

geometry at various dimensions (e.g., curves or surfaces) that represent object parts with different anisotropic

elongations (e.g., tubes or plates). The measure is generally defined in any dimensions, and can be easily computed

using a single thinning pass. Guided by medial persistence, our algorithm produces a family of topology and shape

preserving skeletons whose shape and composition can be flexible controlled by desired level of medial persistence.

1. Introduction

Skeletons are common shape descriptors in vision and
graphics, and are widely used in applications such as object
segmentation, matching and retrieval, and animation. Thin-
ning is a classical approach for computing skeletons. The
concept originates from an illustrative definition of the me-
dial axes, a construct closely related to skeletons: set the
object boundary on fire and the medial axes is formed by
the loci where the fire fronts meet and extinguish each other
[Blu67]. Thinning simulates the fire-front propagation in a
discrete manner, iteratively removing boundary elements of
the object (like peeling off layers of an onion) until a thin
piece is left. To produce skeletons useful for downstream ap-
plications as mentioned above, a thinning algorithm needs to
retain important properties of the object such as its connec-
tivity and major components.

Thinning algorithms are usually developed on objects rep-
resented as digital pictures [KR89], consisting of object
points on a spatial grid. Traditional thinning algorithms con-
sider local neighborhood of each point on the grid to identify
points critical for preserving the topology or shape of the ob-
ject. While simple to implement, these local criteria are very
sensitive to small boundary perturbations (e.g., bumps), eas-
ily producing skeletons with spurious pieces. While more
global measures can be used to identify meaningful skeleton

parts during thinning, these measures are typically costly to
compute (see next section for a brief review).

We introduce a new thinning algorithm that, on one hand,
preserves the simplicity of a typical digital thinning algo-
rithm, and on the other hand, yields stable and controllable
skeletons that capture global shape features. The algorithm is
developed on a discrete representation of objects as cell com-

plexes [ZJH07]. Our key observation is formulating a global
skeleton significance measure that can be easily computed
by a single pass of iterative cell removal on the cell com-
plex. This measure, called medial persistence (MP), records
the duration in which a discrete cell (e.g., an edge) persists in
an isolated form (e.g., not adjacent to a face) during the re-
moval process. We observed that faces and edges with high
MP values lie respectively centered in significant plate-like
and tube-like object parts (see Figure 1 (b,c) for an exam-
ple). Guided by the measure, our algorithm can produce a
family of surface and curve skeletons that robustly depict
the object’s topology and shape (see Figure 1 (d,e)).

Contributions Compared to existing thinning algorithms,
our algorithm has the following unique set of features:

• Simple: The core of the algorithm is a simple iterative
thinning procedure involving only local removal criteria.
The same algorithm can be applied without changes to
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Figure 1: To compute a skeleton of a 3D cell complex (a), our algorithm is guided by a skeleton significance measure, medial
persistence (MP), which highlights faces (b) and edges (c) of the complex that lie respectively centered to plate-like and tube-

like object parts (these faces and edges are shown with redder color and in more contiguous pieces; see Section 4.2 for details

on the rendering style). By varying the desired level of MP, the algorithm produces a family of skeletons containing surfaces

and/or curves (d,e). Both MP and the skeletons are computed by simple, iterative cell removals.

cell complexes in any dimensions, and to produce skele-
tons of any dimensions (e.g., curve or surface skeletons).

• Robust: The resulting skeletons faithfully capture
anisotropic shape elongations (e.g., tubular and plate-like
parts) by geometry at corresponding dimensions (e.g.,
skeletal curves and surfaces). The skeletons are stable un-
der minor boundary perturbation or changes in the resolu-
tion of the cell complex.

• Controllable: The shape and dimensionality of the skele-
ton can be flexibly controlled by a small number of pa-
rameters. Varying the parameters produces a family of
topology-preserving skeletons with different composition
of surfaces and curves.

2. Previous work

There is a sizable literature on computing skeletons, and
we refer readers to a recent survey book [SP08] and arti-
cles [SB98,CM07] for extensive reviews. For the purpose of
this work, we will focus on methods related to thinning.

2.1. Thinning on digital pictures

Thinning on 2D and 3D objects represented as disjoint lat-
tice points (i.e., digital pictures) has been extensively stud-
ied in the area of digital topology [Ros79]. A typical thin-
ning scheme involves, at each iteration, identifying bound-
ary points and deleting those whose removal would not in-
troduce a topological change (e.g., breaking or piercing) or
loss of geometric features (e.g., shrinking of curves or sur-
faces). The discrete setting makes it is possible to identifying
these points based on a point’s local neighborhood on the lat-
tice [Ber94, Ber95, PK99]. Employing local criteria makes
the thinning algorithm straight-forward to implement, and
numerous algorithms were developed based on this simple
scheme (see survey and reviews in [LLS92, Pal08, SP08]).
While simple to implement, these local criteria are very sen-
sitive to small perturbations on the object’s boundary. As a
result, thinning based on local criteria often leads to skele-
tons containing spurious branches that do not reflect global

shape features (see examples in Figure 8 on the last page),
and post-process pruning [SB98, JBC07] is required.

To improve the stability of skeletons, thinning can be
guided by criteria that consider more global properties of
the shape. These criteria, which we call skeleton significance

measures, can be obtained by functions over the entire object
such as distance fields [BNSdB99], vector fields [SBTZ02],
and force fields [CTK00, BB08], or by geometric relations
between the skeleton point and the object boundary, such as
the distance or angle formed by a skeleton point to its clos-
est boundary points [Blu67,ACK01,DZ02,DDS03,SFM05],
and the surface geodesic metrics between these boundary
points [OK95, DS06, RvWT08].

Although these global measures can significantly improve
the stability of skeletons, their computation is typically
costly and involves global operations at each point being
considered. We also point out that most of these measures
are designed for skeletons at a specific dimension, such as a
surface skeleton or a curve skeleton in 3D. In contrast, our
significance measure (medial persistence) has a unified for-
mulation for skeleton elements at different dimensions (e.g.,
edges or faces), and the measured values at all skeleton ele-
ments can be easily computed by a single thinning pass.

2.2. Thinning on other model representations

The disjoint nature of points in a digital picture can cre-
ate obstacles for topology and geometry analysis [Ros79].
Such difficulty has led several researchers to explore alter-
native discrete representations as media for thinning. Ko-
valevsky [Kov04], Wiederhold and Morales [WM08] con-
sider an abstract cell complex, a connected and possibly
open (boundary-less) set consisting of cells at various di-
mensions. Theoretical properties of the representation are
presented and a topology-preserving thinning algorithm is
proposed. However, the algorithm still results in noisy skele-
tons as it uses local criteria, similar to those in thinning al-
gorithms on digital pictures, for deciding what cells should
be preserved during thinning.

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



L. Liu, E. W. Chambers, D. Letscher & T. Ju / Thinning on cell complexes

In this work, we consider a more restricted type of cell
complex that is a closed set of cells, which was first consid-
ered by Zhou and colleagues [ZJH07, JZH07] in the context
of topology repair of 3D models. In these works, the orig-
inal complex is reduced, using a topology-preserving cell
removal operator (to be detailed in Section 3), to a mini-
mal skeleton that only preserves the object’s topology (e.g.,
a banana will be reduced to a point). The skeleton is sub-
sequently used for modifying the topological structure of
the object. With a different aim in mind, we consider in this
work the same cell complex representation and the cell re-
moval operator as in [ZJH07, JZH07], but focus on devel-
oping a robust shape-preserving criteria to protect skeletal
elements during thinning that are important to capture the
object’s shape, in addition to its topology.

3. Cell complexes and cell removal

We start by briefly reviewing the cell complex representation
and an associated removal operator, which are first consid-
ered by Zhou et. al. [ZJH07] for topology-preserving thin-
ning. Unlike digital pictures, a cell complex consists of a
connected set of explicit geometric elements (e.g., edges and
faces) that are ideal for representing skeletons at different di-
mensions (e.g., curve and surface skeletons).

3.1. Cell complexes

A cell complex is a closed set of k-cells, each homeomorphic
to an open ball in k-dimensions. For example, a point is a 0-
cell, an edge without its end points is a 1-cell, and a polygon
without its border is a 2-cell. By definition, if a cell δ is in a
cell complex S, all cells on the border of δ, called the facet of
δ, are also in S. A 2D example of a cell complex is shown in
Figure 2 (a), where a cell δ (a triangle) and one of its facets
σ (an edge) are marked.

Figure 2: A cell complex (a), and results after one (b) and

two (c) simple pair removals.

A cell complex can be constructed in several ways. If the
input object is already represented as a digital picture (which
can be converted from other representations using voxeliza-
tion techniques such as [Ju04]), we can build the complex
by creating a 0-cell for each object point on the grid, a 1-cell
for each grid edge connecting two object points, a 2-cell for
each grid face whose corners are all object points, and so on.
Alternatively, cell complexes can be built from any spatial
decomposition, such as the triangulation of a 2D polygon or
the tetrahedralization of a 3D polyhedron.

3.2. A removal operator

To perform thinning on cell complexes, Zhou et. al. [ZJH07]
consider a pair-wise cell removal operator, which is a coun-
terpart to point-removal in digital thinning. Let S be a cell
complex, we define:

Definition 1 A simple pair is a pair of cells {δ,σ} ∈ S such
that σ is a facet of δ, and that δ is the only cell of which σ is
a facet. In a simple pair, δ is called the simple cell, and σ is
the witness facet.

It was shown in [ZJH07] that removing a simple pair from
a cell complex S results in a sub-complex S′ that is a valid
cell complex and homotopy equivalent to S. An example of
removing simple pairs in shown in Figure 2. Note that the
complexes in (b,c) preserve the topology of that in (a).

4. Medial persistence

While removing simple pairs preserves the topology of a cell
complex, exhaustive removal may cause significant loss of
shape features. For shape description, thinning needs to ad-
ditionally identify and preserve those cells that carry impor-
tant shape information. Note that different kinds of cells are
good at describing different shape features. For example, 1-
cells (edges) on a skeleton curve depict well tubular shapes,
while 2-cells (faces) on a skeleton surface mimic plate-like
shapes. Intuitively, a k-cell on the skeleton describes well a
shape that has anisotropic elongation in k directions (e.g.,
k = 1 for tubes and k = 2 for plates).

In the following, we will develop a significance measure
to guide thinning, which computes for each k-cell on the
skeleton the amount of k-directional anisotropy of the sur-
rounding shape. The measure itself is motivated and defined
by an iterative thinning process, which we will explain first.

4.1. Iterative thinning

Consider the following iterative cell removal process. At
each iteration, we identify all simple cells (according to Def-
inition 1) at all dimensions, and remove them simultane-
ously from the complex together with their witness facets. If
a simple cell has multiple facets that are candidates as wit-
ness facets, an arbitrary one is selected.

This process is illustrated on a 2D square cell complex in
Figure 3 top. Observe that each iteration “strips off” a layer
of the object, due to the simultaneous removal of simple cells
that lie at the boundary of the object. As the iterations pro-
ceed, the 2D object is shrunk to some 1D skeleton curves,
which continue to be eroded from their ends. Notice also
that the object’s topology is retained under the simultaneous
removal of simple pairs. To see why, it suffices to note that
the simple pairs selected to be removed at each iteration are
disjoint from each other, and that each pair stays “simple”
when other simple pairs are removed.
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Figure 3: Top: first 23 iterations during the iterative thinning on a 2D cell complex. Bottom: isolation iteration (I(δ)), removal

iteration (R(δ)), and medial persistence (Mabs(δ),Mrel(δ)) for all isolated edges δ during thinning (visualized on a heat color

scale) .

4.2. Formulating medial persistence

Motivation Here is the key observation that motivates our
formulation: a k-cell that lies centered to a shape part with
prominent k-directional anisotropy tends to persist in an iso-
lated form during the above iterative thinning process. Here,
we say a k-cell is isolated if it is not a facet to any (k + 1)-
cell. Consider again the 2D thinning process shown in Figure
3 top. Note that the edges centered at the elongated parts of
the object (e.g., legs, tail, neck and torso) remain isolated in
the complex for many more iterations during thinning than
other edges in the cell complex. Likewise, when thinning on
a 3D cell complex, we observed that faces centered at flat
and wide parts, and edges centered at long and thin parts, re-
main isolated for more iterations than other faces and edges
(see the accompanying video).

The observation can be explained intuitively as follows.
Let I(δ) be the earliest thinning iteration after which a k-cell
δ is isolated, and R(δ) be the iteration at which δ is removed.
In an approximate sense, I(δ) and R(δ) respectively measure
the maximum isotropic elongation of shape in k + 1 and k

directions around δ. For example, at an edge δ of a 2D com-
plex, I(δ) measures the shortest (discrete) distance from δ to
the object boundary, which depicts the size of the maximum
disk centered at δ and inscribed in the object. On the other
hand, R(δ) measures the longest distance from δ to the object
boundary along the skeleton curves, which depicts how far
the object stretches sideways from δ. As a result, the duration
in which δ remains isolated in thinning, which is the differ-
ence between I(δ) and R(δ), reflects how much anisotropic

elongation the shape has in k directions.

Formulation Based on the observation, we formulate a
skeleton significance measure, called medial persistence

(MP), as the duration in which a cell remains isolated during

thinning. Specifically, for a k-cell δ that is isolated at some
iteration during iterative thinning, we compute two scores to
capture the absolute and relative duration of isolation:

Mabs(δ) = R(δ)− I(δ)

Mrel(δ) = 1− I(δ)
R(δ)

Properties We note that I(δ) 6 R(δ), hence both MP scores
are non-negative and Mrel(δ) 6 1. Some cells may never be
removed by thinning if it is critical for retaining the topology
of the object. For example, iterative thinning on a torus will
terminate with a closed curve, while thinning on a ball with
an internal cavity will result in a closed surface. For a cell
δ that remains after thinning, we intuitively set R(δ) = ∞, in
which case both MP scores would reach their maximum.

The MP scores are defined and computed in a dimension-
oblivious manner. They are suited to rate skeleton geome-
try at any k dimensions for a d-dimensional complex where
k < d. Regardless of the dimension of the complex, both
measures Mabs,Mrel for all cells at dimension k < d can be
computed by a single pass of iterative thinning.

Examples As a 2D example, Figure 3 bottom plots the iso-
lation iteration, removal iteration, and MP scores for all iso-
lated edges during the thinning process at the top. Observe
that while Mabs scores higher in parts with greater absolute
length (e.g., torso versus legs), Mrel describes elongation in
a scale-invariant way. The scale-invariance of Mrel also im-
plies that it may evaluate high on small perturbations on the
boundary, where Mabs would be low. Therefore cells with
high values in both scores would represent parts that are both
sharp in shape and large in size.

Figure 4 (b) shows the MP scores in 3D for faces and
edges resulted from thinning the cell complex in (a). To fa-
cilitate visualization, the faces and edges (in this and other
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Figure 4: Algorithm flow: an input cell complex (a), medial persistence computed after one pass of thinning (faces and edges

colored by their Mrel scores and scaled by their Mabs scores) (b), clustered medial edges and faces (c), and the final skeleton

(curves and surfaces shown in blue and red) after another pass of thinning that preserves the medial edges and faces (d).

figures) are colored by their Mrel scores and drawn at a scale
proportional to their Mabs scores. Observe that faces and
edges with high scores in both Mrel and Mabs (shown in (c))
lie respectively at visually prominent plate-like and tube-like
parts of the object.

Comparisons A distinctive feature of medial persistence is
that it captures the “aspect ratio” of shape features rather
than their sizes. This is illustrated well in Figure 4 (b) right,
where the edge MP score Mrel (indicated by coloring) is
much higher on the centerline of the cylinder, which exhibits
a dominant elongation in 1 dimension, than on the center-
lines of the bottom plate, which has a rather uniform elon-
gation in 2 dimensions, even though the plate appears to be
larger than the cylinder. In contrast, a standard pruning ap-
proach based on lengths of skeleton branches would favor
the centerlines of the plate, which appear longer than the
centerline of the cylinder.

There has been few global skeleton significance measures
proposed for 3D skeletons. Here we compare our medial per-
sistence with a recent measure of Reniers et al. [RvWT08] in
Figure 5. Reniers extended the Feature Distance measure in
2D [OK95], which expresses the length of the shortest curve
on the shape boundary between the closest boundary points
to a skeleton point, to evaluate 3D surface skeletons using
lengths of geodesic curves and 3D curve skeletons using ap-
proximated areas of geodesic patches. Observe from Figure
5 (d,e) that FD measures favor regions on the skeleton closer
to the center of the object. In comparison, the medial per-
sistence highlights regions with high anisotropy, such as flat
and wide regions (e.g., wings and tail) and long and thin
parts (e.g., wings and tail trunk), even though they may be
located away from the object center.

5. The algorithm

Guided by the medial persistence measure, it is straight-
forward to compute a topology-preserving and shape-
depicting skeleton. All it needs is to perform the same it-
erative thinning process (Section 4.1) while retaining cells
with high MP scores. It is tempting to combine the two tasks,
computing MP and retaining cells, within a single thinning
pass. However, retaining cells during thinning may have an

Figure 5: Compare medial persistence on faces (b) and

edges (c) in a cell complex with the extended Feature Dis-

tance measure [Reniers et al. 2008] on skeleton surfaces (d)

and curves (e).

impact on the MP values of other cells computed at later
iterations. As a result, we split the tasks into two separate
thinning passes, and insert an optional clustering stage to
improve the skeleton contiguity. The algorithm proceeds as
follows for a d-dimensional cell complex (see Figure 4):

Step 1 (Thinning): Perform iterative thinning on the input
cell complex and compute scores Mabs,Mrel for all cells
(Figure 4 (b)).

Step 2 (Clustering): For each k < d, identify connected
components, whose sizes are greater than some threshold
τk, of k-cells that score higher than thresholds εk

abs,ε
k
rel .

The clustered cells are called medial cells (Figure 4 (c)).

Step 3 (Thinning): Perform iterative thinning again on the
original complex while maintaining the medial cells (Fig-
ure 4 (d)).

Note that the algorithm results in a skeleton that is guaran-
teed to be homotopy equivalent of the input complex. Even
though the collection of medial cells found by the second
step can exhibit a different topology than the object, the fi-
nal thinning step enforces the topology-preservation. The fi-
nal skeleton is composed of the medial cells and a minimal
set of cells necessary to maintain the connectivity and topo-
logical structure of the input complex.
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Figure 6: The result of our algorithm on an original model (a) and one with synthetically added noise (e), showing MP scores

on faces (b,f) and edges (c,g) (in the same rendering style as Figure 4 (b)) and the surface-and-curve skeletons (d,h).

The composition of the skeleton can be intuitively con-
trolled using the provided parameters. In particular, by set-
ting the absolute MP threshold εk

abs = ∞ for some k < d,
the algorithm would produce a skeleton that is void of k-
dimensional geometry, unless such geometry is critical for
preserving the topology. For example, setting ε2

abs = ∞ when
thinning a 3D cell complex would result in a curve-only
skeleton except for complexes with internal cavities, which
would additionally have closed surfaces in their skeletons.

6. Results

We demonstrate our algorithm on computing skeletons for a
suite of 3D models. The input cell complexes are converted
from triangular meshes as discussed in Section 3.1. We show
skeletons generated at two parameter settings: surface-and-
curve skeletons at εk

abs = 0.05L,εk
rel = 0.5 for both k = 1,2

where L is the width of the bounding box, and curve-only
skeletons at the same setting except ε2

abs = ∞. The minimum

component size is τk = (0.05L)k for k = 1,2 in all examples.

We first examine the stability of the MP scores and skele-
tons under boundary perturbation and varying discretization
levels. In Figure 6, we compare the result on a hand model
(a) and a synthetically damaged model (e) produced by ap-
plying two iterations of thinning on (a) during which simple
pairs are randomly removed. Observe that, despite the severe
boundary perturbation, the distribution of MP scores is not
significantly affected. Faces and edges with high MP scores
in both models faithfully depict the plate-like parts (e.g., the
palm) and tubular parts (e.g., the fingers) of the object, yield-
ing skeletons with similar structures. Figure 7 tests our algo-
rithm on a same model voxelized at increasing resolutions
(using the Fish model shown in Figure 8 top). Notice that
the resulting skeletons, computed with the same parameter
setting, maintain a stable structure.

We present a gallery of examples in Figure 8. Observe that
faces (2nd row) and edges (3rd row) with high MP scores
capture well the plate-like and tube-like parts of these mod-
els. We compare our skeletons with curve skeletons gen-
erated by a typical thinning algorithm on digital pictures
[PK99] (bottom row). Both our algorithm and [PK99] in-
volve a simple iterative thinning process with local removal

Figure 7: Skeletons computed on cell complexes at increas-

ing grid resolutions.

criteria. Notice that the results of the latter often contain spu-
rious branches (which are typical for digital thinning algo-
rithms of comparable complexity), while ours are more sta-
ble due to the guidance by medial persistence. The running
times and memory footprints of our algorithm for these mod-
els are shown at the bottom of the 5th row.

7. Conclusion and discussions

In this paper, we present a simple and robust algorithm to
compute discrete skeleton descriptors by iterative thinning.
The algorithm shares a similar structure as most thinning al-
gorithm on digital pictures, but generates skeletons that more
stably capture global shape features. This is achieved by for-
mulating a novel skeleton significance measure (medial per-
sistence) that captures anisotropic shape elongations and is
simple to compute. The algorithm additionally offers flexi-
ble control over the shape and composition of the resulting
skeletons.

Discussions There are a number of aspects of our algorithm
that leave room for further improvement. First, we use an
arbitrary, fixed ordering when selecting from multiple wit-
ness facets of a simple cell for removal. Although we have
not noticed any significant difference in results with differ-
ent orderings, further analysis on the effect of ordering is
in order. Second, as our thinning follows the grid structure
of the cell complex, the resulting skeletons may be biased
by the anisotropy of the grid in addition to that of the ob-
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ject. We have noticed in our tests that applying our algo-
rithm to irregularly arranged cells (e.g., an octree) does not
result in skeletons that represent the shape in a meaningful
way. Even on cells arranged as regularly as a cubic complex,
the MP scores may still be affected by the grid orientation
(e.g., along the diagonals of the wheels in Figure 1 (b,c)). To
this end, we are currently exploring ideas such as distance-
guided removal of simple pairs at each iteration. Third, due
to the iterative and parallel nature of simple pair removals,
our algorithm can be significantly accelerated by a parallel,
hardware-accelerated implementation.

Another promising direction of future research is inves-
tigating a continuous formulation of our discrete thinning
procedure and the medial persistence measure. In particu-
lar, the iterative thinning described in Section 4.1 mimics
a continuous erosion of a manifold simultaneously from all
open boundaries (corresponding to simultaneous simple-pair
removals), during which lower-dimensional manifolds are
formed (corresponding to a cell becoming isolated) when the
erosion fronts along a higher-dimensional manifold meet. In
this analogy, medial persistence becomes the difference in
the arrival time of erosion fronts on manifolds at different
dimensions. We believe such a continuous formulation ex-
ists, as suggested by the results when running the algorithm
at increasing discretization levels (see Figure 7).
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Figure 8: Results on a gallery of 3D models (top row, all converted at resolution 2563), showing MP scores for faces (2nd

row) and edges (3rd row) (rendered in the same style as Figure 4 (b)), surface-and-curve skeletons (4th row) and curve-only

skeletons (5th row), and curve skeletons computed by a digital thinning algorithm [Palagyi and Kuba 1999]. Time and memory

used for computing curve-only skeletons are provided (on a PC with 2GB of main memory and 2.2GHz CPU).
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