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Abstract
We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that
form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles
that generates the 1-dimensional (Z2)-homology classes) of an undirected graph embedded on
an orientable surface of genus g. The problems are closely related, because the minimum cycle
basis of a graph contains its minimum homology basis, and the minimum homology basis of the
1-skeleton of any graph is exactly its minimum cycle basis.

For the minimum cycle basis problem, we give a deterministic O(nω + 22gn2)-time algorithm.
The best known existing algorithms for surface embedded graphs are those for general sparse
graphs: an O(nω) time Monte Carlo algorithm [2] and a deterministic O(n3) time algorithm [27].
For the minimum homology basis problem, we give an O(g3n logn)-time algorithm, improving
on existing algorithms for many values of g and n.
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1 Introduction

Minimum cycle basis

Let G = (V,E) be a connected simple undirected graph with n vertices and m edges. We
define a cycle of G to be a subset E′ ⊆ E where each vertex v ∈ V is incident to an even
number of edges in E′. The cycle space of G is the vector space over cycles in G where
addition is defined as the symmetric difference of cycles’ edge sets. It is well known that the
cycle space of G is isomorphic to Zm−n+1

2 ; in particular, the cycle space can be generated
by the fundamental cycles of any spanning tree of G. A cycle basis is a maximal set of
independent cycles. A minimum cycle basis is a cycle basis with a minimum number of
edges (counted with multiplicity) or minimum total weight if edges are weighted1. Minimum

∗ This material is based upon work supported by the National Science Foundation under grants CCF-
12-52833, CCF-10-54779, IIS-13-19573, CCF-11-61359, IIS-14-08846, CCF-15-13816, and IIS-14-47554;
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1 There is a notion of minimum cycle bases in directed graphs as well, but we focus on the undirected
case in this paper.
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23:2 Minimum cycle and homology bases of surface embedded graphs

cycle bases have applications in many areas such as electrical circuit theory [9,24], structural
engineering [8], surface reconstruction [29], and the analysis of algorithms [26].

Sets of independent cycles form a matroid, so the minimum cycle basis can be computed
using the standard greedy algorithm. However, there may be an exponential number of cycles
in G. Horton [21] gave the first polynomial time algorithm for the problem by observing
that every cycle in the minimum cycle basis is the fundamental cycle of a shortest path tree.
Several other algorithms have been proposed to compute minimum cycle bases in general
graphs [2, 3, 10, 17, 23, 27]. The fastest of these algorithms are an O(nω) time Monte Carlo
randomized algorithm of Amaldi et al. [2] and an O(nm2/ logn + n2m) time deterministic
algorithm of Mehlhorn and Michail [27]. Here, O(nω) is the time it takes to multiply two
n× n matrices using fast matrix multiplication.

For the special case of planar graphs, faster algorithms are known. Hartvigsen and
Mardon [20] observed that the cycles in the minimum cycle basis nest, implicitly forming a
tree; in fact, the edges of each cycle span an s, t-minimum cut between two vertices in the dual
graph, and the Gomory-Hu tree [18] of the dual graph is precisely the tree of minimum cycle
basis cycles in the primal. Hartvigsen and Mardon [20] gave an O(n2 logn) time algorithm
for the minimum cycle basis problem in planar graphs, and Amaldi et al. [2] improved their
running time to O(n2). Borradaile, Sankowski, and Wulff-Nilsen [4] showed how to compute
an oracle for the minimum cycle basis and dual minimum cuts in O(n log4 n) time that is
able to report individual cycles or cuts in time proportional to their size. Borradaile et al. [5]
recently generalized the minimum cut oracle to graphs embeddable on surfaces of genus g.
Their oracle takes O(2O(g2)n log3 n) time to construct (improving upon the original planar
oracle by a factor of logn). Unfortunately, their oracle does not help in finding the minimum
cycle basis in higher genus graphs, because there is no longer a bijection between cuts in the
dual graph and cycles in the primal graph.

That said, it is not surprising that the cycle basis oracle has not been generalized beyond
the plane. While cuts in the dual continue to nest in higher genus surfaces, cycles do not.
In fact, the minimum cycle basis of a toroidal graph must always contain at least one pair of
crossing cycles, because any cycle basis must contain cycles which are topologically distinct,
in different homology classes of the surface.

Minimum homology basis

Given a graph G embedded in a surface Σ of genus g, the homology of G is an algebraic
description of the topology of Σ and of G’s embedding. In this paper, we focus on orientable
surfaces and one-dimensional cellular homology over the coefficient ring Z2. Homology of
this type allows for simplified definitions. We say a cycle η is null-homologous if η is the
boundary of a subset of faces F ′ ⊆ F . Two cycles η and η′ are homologous or in the same
homology class if their symmetric difference η ⊕ η′ is null-homologous. The homology
classes form a vector space isomorphic to Z2g

2 known as the homology space. A homology
basis of G is a set of 2g cycles in linearly independent homology classes, and the minimum
homology basis of G is the homology basis with either the minimum number of edges or
with minimum total weight if edges of G are weighted.

Erickson and Whittlesey [15] described an O(n2 logn + gn2 + g3n) time algorithm for
computing the minimum homology basis. Like Horton [21], they apply the greedy matroid
basis algorithm to a set of O(n2) candidate cycles. A set of 22g candidate cycles containing
the minimum homology basis can be computed easily by applying the algorithms of Italiano
et al. [22] or Erickson and Nayyeri [14] for computing the minimum homologous cycle in
any specified homology class. These algorithms take gO(g)n log logn and 2O(g)n logn time
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Figure 1. Two homologous cycles, one shown in red and the other in blue.

respectively. Dey, Sun, and Wang [11] generalized these results to arbitrary simplicial com-
plexes, and Busaryev et al. [6] improved the running time of their generalization from O(n4)
to O(nω+n2gω−1). Note that all of the algorithms above either take quadratic time in n (or
worse) or they have exponential dependency on g. In contrast, it is well understood how to
find exactly one cycle of the minimum homology basis of G in only O(g2n logn) time, since
the minimum weight non-separating cycle will always be in the basis [7, 13].

Our results

We describe new algorithms for computing the minimum cycle basis and minimum homology
basis of the graph G. Our algorithm for minimum cycle basis is deterministic and runs in
O(nω + 22gn2) time, matching the running time of the randomized algorithm of Amaldi
et al. [2] when g is sufficiently small. Our algorithm for minimum homology basis is also
deterministic and runs in O(g3n logn) time assuming shortest paths are unique2. Ours is
the first algorithm for minimum homology basis that has a running time simultaneously
near-linear in n and polynomial in g.

At a high level both of our algorithms are based on theO(nm2+n2m logn) time algorithm
of Kavitha et al. [23] who in turn use an idea of de Pina [10]. We compute our basis cycles
one by one. Over the course of the algorithm, we maintain a set of support vectors that
form the basis of the subspace that is orthogonal to the set of cycles we have already
computed. Every time we compute a new cycle, we find the one of minimum weight that
is not orthogonal to a chosen support vector S, and then update the remaining support
vectors so they remain orthogonal to our now larger set of cycles. Using the divide-and-
conquer approach of Kavitha et al. [23], we are able to maintain these support vectors in
only O(nω) time total in our minimum cycle basis algorithm and O(gω) time total in our
minimum homology basis algorithm. Our approaches for picking the minimum weight cycle
not orthogonal to S form the more technically interesting parts of our algorithms and are
unique to this work.

For our minimum cycle basis algorithm, we compute a collection of O(22gn) cycles that
contain the minimum cycle basis and then partition these cycles according to their homology
classes. The cycles within a single homology class nest in a similar fashion to the minimum
cycle basis cycles of a planar graph. Every time we compute a new cycle for our minimum
cycle basis, we walk up the 22g trees of nested cycles and find the minimum weight cycle
not orthogonal to S in O(n) time per tree. Overall, we spend O(22gn2) time finding these
cycles; if any improvement is made on the time it take to update the support vectors, then
the running time of our algorithm as a whole will improve as well.

2 This assumption is only necessary to use the multiple-source shortest path data structure of Cabello,
Chambers, and Erickson. It can be avoided with high probability by using randomization or determin-
istically by increasing the running time of our algorithm by a factor of O(log n) [7]. For simplicity, we
will assume shortest paths are unique during presentation of our minimum homology basis algorithm.
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23:4 Minimum cycle and homology bases of surface embedded graphs

Our minimum homology basis algorithm uses a covering space called the cyclic double
cover. As shown by Erickson [13], the cyclic double cover provides a convenient way to
find a minimum weight closed walk γ crossing an arbitrary non-separating cycle λ an odd
number of times. We extend his construction so that we may consider not just one λ but any
arbitrarily large collection of cycles. Every time we compute a new cycle in our minimum
homology basis algorithm, we let S determine a set of cycles that must be crossed an odd
number of times, build the cyclic double cover for that set, and then compute our homology
basis cycle in O(g2n logn) time by computing minimum weight paths in the covering space3.

The rest of the paper is organized as follows. We provide more preliminary material on
surface embedded graphs in Section 2. In Section 3, we describe a characterization of cycles
and homology classes using binary vectors. These vectors are helpful in formally defining
our support vectors. We give a high level overview of our minimum cycle basis algorithm
in Section 4 and describe how to pick individual cycles in Section 5. Finally, we give our
minimum homology basis algorithm in Section 6.

2 Preliminaries

In this paper, we will be working with an edge-weighed undirected graph G = (V,E) cel-
lularly embedded on an orientable surface of genus g without boundary. To simplify the
exposition, we assume G is connected and simple. We let F denote the faces of G and
let f∞ denote an arbitrary face we refer to as the infinite face for convenience. Let n, m,
and ` be the number of vertices, edges, and faces of G respectively. The Euler charac-
teristic χ of Σ is 2 − 2g. By Euler’s formula, χ = n −m + `. We assume g = O(n1−ε)
for some constant ε > 0 (otherwise, our algorithms offer no improvement over previously
known results.) This assumption implies m = O(n) and ` = O(n). Embedded graphs can
be dualized: G∗ is the graph embedded on the same surface, with a vertex in G∗ for every
face in G and a face in G∗ for every vertex of G. Two vertices in G∗ are then adjacent if the
corresponding faces are separated by an edge in G. We generally do not distinguish between
edges in the primal and dual graphs.

A spanning tree of the graph G is a subset of edges of G which is a tree containing
every vertex. Similarly, a cotree C is a spanning tree of the dual graph G∗. A tree-cotree
decomposition of G is a partition of G into 3 edge disjoint subsets, (T, L,C), where T is a
spanning tree of G, C is a cotree, and L is the set of leftover edges E \ (T ∪C) [12]. Euler’s
formula implies that |L| = 2g.

A w,w′-path p is an ordered sequence of edges {u1v1, u2v2, . . . , ukvk} where w = u1,
w′ = vk, and vi = ui+1 for all positive i < k; a closed path is a path which starts and ends
on the same vertex. A path is simple if it repeats no vertices (except the first and last). A
path in the dual graph G∗ is referred to as a co-path and (abusing terminology) a closed
path in the dual is referred to as a co-cycle. We sometimes use simple cycle to mean
a simple closed path. Every member of the minimum cycle basis (and subsequently the
minimum homology basis) is a simple cycle [21]. We let σ(u, v) denote an arbitrary shortest
(minimum weight) u, v-path in G. Let p[u, v] denote the subpath of p from u to v. Given a
u, v-path p and a v, w-path p′, let p ·p′ denote their concatenation. Two paths p and p′ cross

3 In addition to the above results, we note that it is possible to improve the gO(g)n log log n time algorithm
of Italiano et al. [22] for minimum homology basis to run in 2O(g)n log log n time. However, this
improvement is a trivial adaption of techniques used by Fox [16] to get a 2O(g)n log log n time algorithm
for minimum weight non-separating and non-contractible cycle in undirected graphs. We will not further
discuss this improvement in the paper.
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if their embeddings in Σ cannot be be made disjoint through infinitesimal perturbations;
more formally, they cross if there is a maximal (possibly trivial) common subpath p′′ of p
and p′ such that, upon contracting p′′ to a vertex v, two edges each of p and p′ alternate in
their embedded around v. Two closed paths cross if they have subpaths which cross.

Let γ be a closed path that does not cross itself. We define the operation of cutting
along γ and denote it G Qγ. Graph G Qγ is obtained by cutting along γ in the drawing
of G on the surface, creating two copies of γ. The two copies of γ each form boundary
components in the cut open surface.

Let F ′ ⊆ F be a subset of faces and let η be the boundary of F ′. We sometimes call F ′
a cut of G∗ and say η spans the cut. A co-path p with edge uv ∈ η crosses the cut at uv.

3 Cycle and Homology Signatures

We begin the presentation of our algorithms by giving a characterization of cycles and
homology classes using binary vectors. These vectors will be useful in helping us determine
which cycles can be safely added to our minimum cycle and homology bases. Let (T, L,C)
be an arbitrary tree, co-tree decomposition of G; set L contains exactly 2g edges e1, . . . , e2g.
For each index i ∈ {1, . . . , 2g}, let pi denote the unique co-cycle in C ∪ {ei}. Let f∞ be any
designated face of G. Let p2g+1, . . . , pm−n+1 be any collection of simple co-paths from f∞
to each of the m− n+ 1− 2g other faces of G.

For each edge e in G, we define its cycle signature [e] as an (m − n + 1)-bit vector
whose ith bit is equal to 1 if and only if e appears in pi. The cycle signature [η] of any
cycle η is the bitwise exclusive-or of the signatures of its edges. Equivalently, the ith bit
of [η] is 1 if and only if η and pi share an odd number of edges. Similarly, for each edge e
in G, we define its homology signature [e]h as a 2g-bit vector whose ith bit is equal to 1
if and only if e appears in pi. The homology signature of cycles are defined similarly.

The following lemma is immediate.

I Lemma 1. Let η and η′ be two cycles. We have [η⊕η′] = [η]⊕[η′] and [η⊕η′]h = [η]h⊕[η′]h.

Cycle and homology signatures provide a convenient way to distinguish between cycles
and their homology classes as shown by the following lemmas.

I Lemma 2 (Erickson and Nayyeri [14, Corollary 3.3]). Two cycles η and η′ are homologous
if and only if [η]h = [η′]h.

I Lemma 3. Let η and η′ be two homologous cycles and let η ⊕ η′ be the boundary of a
subset of faces F ′ such that f∞ /∈ F ′ (set F ′ may be empty.) Cycle signatures [η] and [η′]
differ at bit i if and only if pi is a co-path with exactly one endpoint in F ′.

Proof: By Lemma 2, the first 2g bits of [η] and [η′] are identical. Now, consider any other
bit i. The boundary of set F ′ is a cut in G∗ that does not contain f∞, and η⊕ η′ spans the
cut. Suppose one endpoint of pi lies in F ′. Co-path pi must cross the cut an odd number of
times. In particular, pi intersects exactly one of η and η′ an odd number of times and the ith
bits of [η] and [η′] differ. Now, suppose instead that both endpoints of pi lie outside F ′.
Here, pi crosses the cut an even number of times. Co-path pi either intersects both η and η′
an even number of times or it intersects them both an odd number of times. Either way,
the ith bits of [η] and [η′] are equal. �

I Lemma 4. Let η and η′ be two cycles. We have η = η′ if and only if [η] = [η′].

SoCG 2016



23:6 Minimum cycle and homology bases of surface embedded graphs

Proof: Necessity is trivial. Now, suppose [η] = [η′]. Lemma 2 states that η and η′ are
Z2-homologous. In particular, η ⊕ η′ forms the boundary of a subset F ′ of faces such
that f∞ /∈ F ′. However, subset F ′ must be empty by Lemma 3. We conclude η = η′. �

I Corollary 5. Cycle signatures are an isomorphism between the cycle space and Zm−n+1
2 ,

and homology signatures are an isomorphism between the first homology space and Z2g
2 .

4 Minimum Cycle Basis

Our algorithm for computing a minimum cycle basis is based on one of Kavitha, Mehlhorn,
Michail and Paluch [23] which is in turn based on an algorithm of de Pina [10]. Our algorithm
incrementally adds simple cycles γ1, . . . , γm−n+1 to the minimum cycle basis. In order to do
so, it maintains a set of (m−n+1)-bit support vectors S1, . . . , Sm−n+1 with the following
properties:

The support vectors form a basis for Zm−n+1
2 .

When the algorithm is about to compute the jth simple cycle γj for the minimum cycle
basis, 〈Sj , [γj′ ]〉 = 0 for all j′ < j.

Our algorithm chooses for γj the minimum weight cycle γ such that 〈Sj , [γ]〉 = 1. Note
that Sj must have at least one bit set to 1, because the set of vectors S1, . . . , Sm−n+1 forms
a basis. Therefore, such a γ does exist; in particular, we could choose [γ] to contain exactly
one bit equal to 1 which matches any 1-bit of Sj . The correctness of choosing γj as above
is guaranteed by the following lemma.

I Lemma 6. Let S be an (m + n − 1)-bit vector with at least one bit set to 1, and let η
be the minimum weight cycle such that 〈S, [η]〉 = 1. Then, η is a member of the minimum
cycle basis.

Proof: Let η1, . . . , η2m−n+1 be the collection of cycles ordered by increasing weight, and
choose j such that ηj = η. For any subset Υ of {η1, . . . , ηj−1}, we have 〈[

⊕
η′∈Υ η

′], S〉 =
0, where

⊕
is the symmetric difference of its operands. Therefore, η is independent

of {η1, . . . , ηj−1}. Sets of independent cycles form a matroid, so η must be a member
of the minimum weight cycle basis. �

4.1 Computing support sets
Our algorithm updates the support vectors and computes minimum cycle basis vectors in a
recursive manner. Initially, each support vector Si has only its ith bit set to 1. Borrowing
nomenclature from Kavitha et al. [23], we define two procedures, extend(j, k) which extends
the current set of basis cycles by adding k cycles starting with γj , and update(j, k) which
updates support vectors Sj+bk/2c, . . . , Sj+k−1 so that for any j′, j′′ with j+bk/2c ≤ j′ < j+k
and 1 ≤ j′′ < j + bk/2c, we have 〈Sj′ , [γj′′ ]〉 = 0. Our algorithm runs extend(1,m− n+ 1)
to compute the minimum cycle basis.

We implement extend(j, k) in the following manner: If k > 1, then our algorithm re-
cursively calls extend(j, bk/2c) to add bk/2c cycles to the partial minimum cycle basis. It
then calls update(j, k) so that support vectors Sj+bk/2c, . . . , Sj+k−1 become orthogonal to
the newly added cycles of the partial basis. Finally, it computes the remaining dk/2e basis
cycles by calling extend(j + bk/2c, dk/2e). If k = 1, then 〈Sj , [γj′ ]〉 = 0 for all j′ < j. Our
algorithm is ready to find basis cycle γj . We describe an O(22gn) time procedure to find γj
in Section 5.
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We now describe update(j, k) in more detail. Our algorithm updates each support vec-
tor Sj′ where j+bk/2c ≤ j′ < j+k. The vector Sj′ becomes S′j′ = Sj′+αj′0Sj+αj′1Sj+1 +
· · · + αj′(bk/2c−1)Sj+bk/2c−1 for some set of scalar bits αj′0 . . . αj′(bk/2c−1). After updating,
the set S1, . . . , Sm−n+1 remains a basis for Zm−n+1

2 regardless of the choices for the α bits.
Further, 〈S′j′ , [γj′′ ]〉 = 0 for all j′′ < j for all choices of the α bits, because extend(j, k)
is only called after its support vectors are updated to be orthogonal to all minimum basis
cycles γ1, . . . , γj−1. However, it is non-trivial to guarantee 〈S′j′ , [γj′′ ]〉 = 0 for all j′′ where
j ≤ j′′ < j+ bk/2c. Kavitha et al. [23, Section 4] describe how to select the new vectors S′j′
in O(nkω−1) time using linear algebraic manipulations and fast matrix multiplication.

We can bound the running time of extend(j, k) using the following recurrence:

T (k) =
{

2T (k/2) +O(nkω−1) if k > 1
O(22gn) if k = 1

The total time spent in calls to extend(j, k) where k > 1 is O(nkω−1). The total time
spent in calls to extend(j, 1) is O(22gnk). Therefore, T (k) = O(nkω−1+22gnk). The running
time of our minimum cycle basis algorithm is T (O(n)) = O(nω + 22gn2).

5 Selecting cycles

A Horton cycle is a simple cycle given by a shortest x, u-path, a shortest x, v-path, and the
edge uv; in particular, the set of all Horton cycles is given by the set of m−n+1 elementary
cycles for each of the n shortest path trees [21]. Thus, in graphs of fixed genus, there are
O(n2) Horton cycles. A simple cycle γ of a graph G is isometric if for every pair of vertices
x, y ∈ γ, γ contains a shortest x, y-path. Hartvigsen and Mardon prove that the cycles of
any minimum cycle basis are all isometric [20]. Therefore, it suffices for us to focus on the
set of isometric cycles to find the cycle γj as needed for Section 4.1.

Amaldi, Iuliano, Jurkiewicz, Mehlhorn, and Rizzi show how to, in a graph with n vertices
and m edges, extract a set of distinct isometric cycles from a set of Horton cycles in O(nm)
time [2]. Each isometric cycle is identified by a shortest path tree’s root and a non-tree edge.

Here, we show that there are, in fact, at most O(22gn) isometric cycles in a graph of genus
g (Section 5.1), and they can be partitioned into sets according to their homology classes.
We can represent the isometric cycles in a given homology class using a tree that can be
built in O(n2) time (Section 5.2). We then show that we can use these trees to find the
minimum-cost cycle γj as needed for Section 4.1 in linear time per homology class of isometric
cycles. We close with a discussion on how to improve the running time for computing and
representing isometric cycles (Section 5.4). While these improvements do not improve the
overall running time of our algorithm (by maintaining separate representations of the cycles
according to their homology class, we require linear time per representation to process the
support vector with respect to which γj is non-orthogonal; we also require O(nω) time to
update the support vectors), it does further emphasize the bottleneck our algorithm faces
in updating and representing the support vectors.

5.1 Isometric cycles in surface embedded graphs
Here we prove some additional structural properties that isometric cycles have in surface
embedded graphs. To this end, we herein assume that shortest paths are unique. Hartvigsen
and Mardon show how to achieve this assumption algorithmically when, in particular, all
pairs of shortest paths are computed, as we do [20]. We first prove a generalization of the
following lemma for the planar case by Borradaile, Sankowski and Wulff-Nilsen.

SoCG 2016



23:8 Minimum cycle and homology bases of surface embedded graphs

I Lemma 7 (Borradaile et al. [4, Lemma 1.4]). Let G be a graph in which shortest paths are
unique. The intersection between an isometric cycle and a shortest path in G is a (possibly
empty) shortest path. The intersection between two distinct isometric cycles γ and γ′ in G
is a (possibly empty) shortest path; in particular, if G is a planar embedded graph, γ and γ′
do not cross.

I Lemma 8. Two isometric cycles in a given homology class in a graph with unique shortest
paths do not cross.

Proof: Let γ and γ′ be two isometric cycles in a given homology class. Suppose for a
contradiction that γ and γ′ cross. By the first part of Lemma 7, and the assumption that γ
and γ′ cross, γ ∩ γ′ is a single simple path p. Therefore, γ and γ′ cross exactly once.

Suppose γ and γ′ are not null-homologous. Cutting the surface open along γ results in a
connected surface with two boundary components which are connected by γ′. Cutting the
surface further along γ′ does not disconnect the surface. Therefore γ⊕γ′ does not disconnect
the surface, and so γ and γ′ are not homologous, a contradiction.

If γ and γ′ are null-homologous, then cutting the surface open along γ results in a
disconnected surface in which γ′ \ p is a path, but between different components of the
surface, a contradiction. �

I Corollary 9. There are at most ` distinct isometric cycles in a given homology class in a
graph with ` faces and unique shortest paths.

Proof: Consider the set {C1, C2, . . .} of distinct isometric cycles in a given homology class
other than the null homology class. We prove by induction that {C1, C2, . . . , Ci} cut the sur-
face into non-trivial components, each of which is bounded by exactly two of C1, C2, . . . , Ci;
this is true for C1, C2 since they are homologous, distinct and do cross. Ci+1 must be con-
tained in one component, bounded by, say, Cj and Ck since Ci+1 does not cross any other
cycle. Cutting this component along Ci+1 creates two components bounded by Cj , Ci+1 and
Ck, Ci+1, respectively. Since the cycles are distinct, these component must each contain at
least one face. A similar argument holds for the set of null-homologous isometric cycles. �

Since there are 22g homology classes and ` = O(n), we get:

I Corollary 10. There are O(22gn) distinct isometric cycles in a graph of genus g with
unique shortest paths.

5.2 Representing isometric cycles in each homology class
We begin by determining the homology classes of each of the O(22gn) isometric cycles in
the following manner. Let p be a simple path, and let [p]h denote the bitwise exclusive-or of
the homology signatures of its edges. Let r be the root of any shortest path tree T . Recall,
σ(r, v) denotes the shortest path between r and v. It is straightforward to compute [σ(r, v)]h
for every vertex v ∈ V in O(gn) time by iteratively computing signatures in a leafward order.
Then, the homology signature of any isometric cycle γ = σ(r, u)·uv ·σ(v, r) can be computed
in O(g) time as [σ(r, u)]h ⊕ [uv]h ⊕ [σ(r, v)]h. We spend O(22ggn) = O(22gn2) time total
computing homology signatures and therefore homology classes. For the remainder of this
section, we consider a set of isometric cycles C in a single homology class.

Let γ, γ′ ∈ C be two isometric cycles in the same homology class. The combination
γ ⊕ γ′ forms the boundary of a subset of faces. That is, G Q(γ ∪ γ′) contains at least two
components. We represent the cycles in C by a tree TC where each edge e of TC corresponds
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to a cycle γ(e) ∈ C and each node v in TC corresponds to a subset of faces F (v); specifically,
the nodes correspond to sets of faces in the components of G QC. This tree generalizes the
region tree defined by Borradaile, Sankowski and Wulff-Nilsen for planar graphs [4] to more
general surface embedded graphs. We also designate a single representative cycle γ(C) of C
and pre-compute its cycle signature [γ(C)] for use in our basis cycle finding procedure. See
Figure 2.

Figure 2. Two collections of homologous cycles and their generalized region trees. Left: The cycles are
null-homologous. Right: The cycles lie in a non-trivial homology class.

We describe here the construction of TC . Initially, TC is a single vertex with one (looping)
edge to itself (we will guarantee TC is a tree later). Let γ0 be an arbitrary cycle in C. We
compute G′ = G Qγ0. For the one vertex v of TC , we set F (v) to be every face of G′ and
for the one edge e, we set γ(e) = γ0.

We maintain the invariants that every component of G′ is bound by at least two cycles
of C (initially the cycle γ0 is used twice), each vertex of TC is associated with all faces in one
component of G′, and each edge e in TC is associated with the cycle in C bounding the faces
for the two vertices incident to e. Assuming these invariants are maintained, and because
cycles in C do not cross, each cycle in C lies entirely within some component of G′. For each
cycle γ ∈ C \ {γ0}, we set G′ := G′ Qγ, subdivide the vertex associated with the faces of
C’s component, associate the two sets of faces created in G′ with the two new vertices of
TC , and associate the new edge of TC with γ.

Let r be the vertex of TC associated with f∞. If cycles in C have trivial homology, then
they each separate G, and TC is a tree. We root TC at r and let γ(C) be an arbitrary cycle.
Otherwise, let e be an arbitrary edge incident to r. We set γ(C) to be γ(e), remove e from TC ,
and root T at r. Observe that T has exactly one leaf other than r in this case.

Computing G′ Qγ for one cycle γ takes O(n) time. Therefore, we can compute TC
in O(n2) time total.

5.3 Selecting an isometric cycle from a homology class
Let S be an (m − n + 1)-bit support vector. We describe a procedure to compute 〈S, [γ]〉
for every isometric cycle γ in G in O(22gn) time. Using this procedure, we can easily return
the minimum weight cycle such that 〈S, [γ]〉 = 1.

We begin describing the procedure for cycles in the trivial homology class. Let C be
the collection of null-homologous isometric cycles computed above, and let TC be the tree
computed for this set. Consider any edge e of TC . The first 2g bits of [γ(e)] are equal
to 0 [14, Lemma 3.2]. Cycle γ(e) bounds a subset of faces F ′ such that f∞ /∈ F ′. In
particular, F ′ is the set of faces associated with vertices lying below e in TC . By Lemma 3,
the ith bit of [γ(e)] is 1 if and only if F ′ contains an endpoint of pi. Therefore, the ith bit
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of [γ(e)] is 1 if and only if the endpoint of pi other than f∞ is associated with a vertex lying
below e in TC .

We compute 〈S, [γ]〉 for every cycle γ ∈ C in O(n) time by essentially walking up TC in
the following manner. For each edge e in TC going to a leaf v, we maintain a bit z initially
equal to 0 and iterate over the faces in F (v). Each face is the endpoint of some path pi. If
the ith bit of S is equal to 1 then we flip z. After going through all the faces, z is equal
to 〈S, [γ(e)]〉.

We then iterate up the edges of TC toward the root. For each edge e, we let v be the
lower endpoint of e and set bit z equal to the symmetric difference over all 〈S, γ(e′)〉 for
edges e′ lying below v. We then iterate over the faces of F (v) as before and set 〈S, [γ(e)]〉
equal to z as before. We iterate over every face of G at most once during this procedure, so
it takes O(n) time total.

Now, consider the set of isometric cycles C for some non-trivial homology class. Consider
any edge e of TC . Let F ′ be the subset of faces bound by γ(C)⊕γ(e) such that f∞ /∈ F ′. By
Lemma 3, the ith bit of [γ(e)] disagrees with the ith bit of [γ(C)] if and only if path pi has
one endpoint in F ′. By construction, γ(C) lies on the boundary of F (r) and F (v) where r
and v are the root and other leaf of TC respectively. Root r is the only node of TC associated
with f∞. We conclude the ith bit of [γ(e)] disagrees with [γ(C)] if and only if the endpoint
of pi other than f∞ is associated with a vertex lying below e in TC .

We again walk up TC to compute 〈S, [γ]〉 for every cycle γ ∈ C. Recall, [γ(C)] is pre-
computed and stored with TC . For each edge e of TC in rootward order, let v be the lower
endpoint of e. Let e′ be the edge lying below e in TC if it exists. If e′ does not exist, we
denote γ(e′) as γ(C). We set z equal to 〈S, γ(e′)〉. We then iterate over the faces of F (v)
as before, flipping z once for every bit i where pi has an endpoint in F (v) and bit i of S is
equal to 1. We set 〈S, γ(e)〉 := z. As before, we consider every face at most once, so the
walk up TC takes O(n) time.

We have shown the following lemma, which concludes the discussion of our minimum
cycle basis algorithm.

I Lemma 11. Let G be a graph with n vertices cellulary embedded in a surface of genus g.
We can preprocess G in O(22gn2) time so that for any (m− n+ 1)-bit support vector S we
can compute the minimum weight cycle γ such that 〈S, γ〉 = 1 in O(22gn) time.

I Theorem 12. Let G be a graph with n vertices, cellularly embedded in an orientable surface
of genus g. We can compute a minimum weight cycle basis of G in O(nω + 22gn2) time.

5.4 Improving the time for computing and representing isometric cycles
Here we discuss ways in which we can improve the running time for finding and representing
isometric cycles using known techniques, thereby isolating the bottleneck of the algorithm
to updating the support vectors and computing γj .

The set and representation of isometric cycles can computed recursively using O(√gn)
balanced separators (e.g. [1]) as inspired by Wulff-Nilsen [30]. Briefly, given a set S of
O(√gn) separator vertices (for a graph of bounded genus), find all the isometric cycles in
each component of G\S and represent these isometric cycles in at most 22g region trees per
component, as described above. Merging the region trees for different components of G \ S
is relatively simple since different sets of faces are involved. It remains to compute the set
of isometric cycles that contain vertices of S and add them to their respective region trees.
First note that a cycle that is isometric in G and does not contain a vertex of S is isometric
in G \ S, but a cycle that is isometric in G \ S may not be isometric in G, so indeed we are
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computing a superset of the set of isometric cycles via this recursive procedure. However, it
is relatively easy to show that an isometric cycle of G \ S can cross an isometric cycle of G
at most once, so, within a given homology class, isometric cycles will nest and be, therefore,
representable by a region tree.

To compute the set of isometric cycles that intersect vertices of S, we first compute
shortest paths trees rooted at each of the vertices of S, generating the Horton cycles rooted
at these vertices; this procedure takes O(√gn · n) time using the linear time shortest path
algorithm for graphs excluding minors of sub-linear size [28]. We point out that the al-
gorithm of Amaldi et al. [2] works by identifying Horton cycles that are not isometric and
by identifying, among different Horton-cycle representations of a given isometric cycle, one
representative; this can be done for a subset of Horton cycles, such as those rooted in vertices
of S, and takes time proportional to the size of the representation of the Horton cycles (i.e.,
the O(

√
n) shortest path trees, or O(√gn1.5)).

For a given homology class of cycles, using the shortest-path tree representation of the
isometric cycles, we can identify those isometric cycles in that homology class by computing
the homology signature of root-to-node paths in the shortest path tree as before; this process
can be done in O(√gn1.5) time. We must now add these cycles to the corresponding region
tree. Borradaile, Sankowski and Wulff-Nilsen [4] describe a method for adding n cycles to
a region tree in O(n poly logn) time that is used in their minimum cycle basis algorithm
for planar graphs; this method will generalize to surfaces for nesting cycles. Therefore
computing the homology classes of these isometric cycles and adding these isometric cycles
to the region trees takes a total of O(22g√gn1.5) time.

In total, this recursive method for computing and building a representation of a super-
set of the isometric cycles takes time given by the recurrence relation T (n) = 2T (n/2) +
O(22g√gn1.5) or O(22g√gn1.5) time.

6 Homology Basis

At a high level, our algorithm for minimum homology basis is very similar to our al-
gorithm for minimum cycle basis. As before, our algorithm incrementally adds simple
cycles γ1, . . . , γ2g to the minimum homology basis by maintaining a set of 2g support vec-
tors S1, . . . , S2g such that the following hold:

The support vectors form a basis for Z2g
2 .

When the algorithm is about to compute the jth cycle γj for the minimum homology
basis, 〈Sj , [γj′ ]h〉 = 0 for all j′ < j.

Our algorithm chooses for γj the minimum weight simple cycle γ such that 〈Sj , [γ]h〉 = 1.
The following lemma has essentially the same proof as Lemma 6.

I Lemma 13. Let S be a 2g-bit vector with at least one bit set to 1, and let η be the minimum
weight cycle such that 〈S, [η]h〉 = 1. Then, η is a member of the minimum homology basis.

As before, our algorithm updates the support vectors and computes minimum homology
basis cycles in a recursive manner. We define extend(j, k) and update(j, k) as before, us-
ing homology signatures in place of cycle signatures when applicable. Our algorithm runs
extend(1, 2g) to compute the minimum homology basis.

The one crucial difference between our minimum cycle basis and minimum homology
basis algorithms is the procedure we use to find each minimum homology basis cycle γj
given support vector Sj . This procedure takes O(g2n logn) time instead of O(22gn) time
and requires no preprocessing step. We describe the procedure in Sections 6.1 and 6.2.
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The procedure update(j, k) takes only O(gkω−1) time in our minimum homology basis
algorithm, because signatures have length O(g). Therefore, we can bound the running time
of extend(j, k) using the following recurrence:

T (k) =
{

2T (k/2) +O(gkω−1) if k > 1
O(g2n logn) if k = 1

The total time spent in calls to extend(j, k) where k > 1 is O(gkω−1). The total time
spent in calls to extend(j, 1) is O(g2kn logn). Therefore, T (k) = O(gkω−1+g2kn logn). The
running time of our minimum homology basis algorithm4 is T (O(n)) = O(gω + g3n logn) =
O(g3n logn).

6.1 Cyclic double cover
In order to compute minimum homology basis cycle γj , we lift the graph into a covering
space known as the cyclic double cover . Our presentation of the cyclic double cover is
similar to that of Erickson [13]. Erickson describes the cyclic double cover relative to a
single simple non-separating cycle; however, we describe it relative to an arbitrary set of
non-separating co-cycles determined by a support vector S, similar to the homology cover
construction of Erickson and Nayyeri [14].

Figure 3. Constructing the cyclic double cover. Left to right: A pair of co-cycles Ψ on the torus Σ;
the surfaces (Σ′, 0) and (Σ′, 1); identifying copies of one co-cycle; preparing to identify copies of the other
co-cycle; the cyclic double cover.

Let S be a 2g-bit support vector for the minimum homology basis problem as defined
above. We define the cyclic double cover relative to S using a standard voltage construc-
tion [19, Chapter 4]. Let G2

S be the graph whose vertices are pairs (v, z), where v is a vertex
of G and z is a bit. The edges of G2

S are ordered pairs (uv, z) := (u, z)(v, z ⊕ 〈S, [uv]h〉) for
all edges uv of G and bits z. Let π : G2

S → G denote the covering map π(v, z) = v. The
projection of any vertex, edge, or path in G2

S is the natural map to G induced by π. We
say a vertex, edge, or path p in G lifts to p′ if p if the projection of p′. A closed path in G2

S

is defined to be a face of G2
S if and only if its projection with regard to π is the boundary

of a face of G. This construction defines an embedding of G2
S onto a surface Σ2

S (we will
prove G2

S and Σ2
S are connected shortly).

We can also define G2
S in a more topologically intuitive way as follows. Let Ψ be a set of

co-cycles which contains each co-cycle pi for which the ith bit of S is equal to 1. Let Σ′ be
the surface obtained by cutting Σ along each cycle of Ψ. Note that Σ′ may be disconnected.
Each co-cycle pi ∈ Ψ appears as two copies on the boundary of Σ′ denoted p−i and p+

i

(note that p−i and p+
i may themselves be broken into multiple components if pi crosses

4 Our minimum homology basis algorithm can be simplified somewhat by having extend(j, k) recurse
on extend(j, 1) and extend(j + 1, k − 1) and by using a simpler algorithm for update(j, k). This change
will increase the time spent in calls to extend(j, k) where k > 1, but the time taken by calls with k = 1
will still be a bottleneck on the overall run time.
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other co-cycles of Ψ). Create two copies of Σ′ denoted (Σ′, 0) and (Σ′, 1), and let (p−i , z)
and (p+

i , z) denote the copies of p−i and p+
i in surface (Σ′, z). For each co-cycle pi ∈ Ψ, we

identify (p+
i , 0) with (p−i , 1) and we identify (p+

i , 1) with (p−i , 0), creating the surface Σ2
S and

the graph G2
S embedded on Σ2

S . See Figure 3.
The first three of the following lemmas are immediate.

I Lemma 14. Let γ be any simple cycle in G, and let s be any vertex of γ. Then γ is the
projection of a unique path in G2

S from (s, 0) to (s, 〈S, [γ]h〉).

I Lemma 15. Every lift of shortest path in G is a shortest path in G2
S.

I Lemma 16. Let γ be the minimum weight simple cycle of G such that 〈S, [γ]h〉 = 1, and
let s be any vertex of γ. Then γ is the projection of the shortest path in G2

S from (s, 0)
to (s, 1).

I Lemma 17. The cyclic double cover G2
S is connected.

Proof: There exists some simple cycle γ in G such that 〈S, [γ]h〉 = 1. Let s be any vertex
of γ. Let v be any vertex of G. We show there exists a path from (v, z) to (s, 0) in G2

S for
both bits z. By Lemma 14, there is a path in G2

S from (s, 0) to (s, 1). There exists a path
from v to s in G so there is a path from (v, z) to one of (s, 0) or (s, 1) in G2

S . The other of
(s, 0) or (s, 1) may be reached by following the lift of γ. �

Observe that G2
S has 2n vertices and 2m edges. Each co-cycle pi shares an even number of

edges with each face f of G. By Lemma 14, both lifts of f to G2
S are cycles; in particular both

lifts are faces. We conclude G2
S contains 2` faces. Surface Σ2

S has Euler characteristic 2n−
2m+ 2` = 2χ = 2− 2(2g − 1). The genus of G2

S is exactly 2g − 1.

6.2 Selecting homology basis cycles
Let S be any 2g-bit support vector. We now describe our algorithm to select the minimum
weight cycle γ such that 〈S, [γ]h〉 = 1. Our algorithm is based on one by Erickson and
Nayyeri [14] for computing minimum weight cycles in arbitrary homology classes, except
we use the cyclic double cover instead of their Z2-homology cover. We begin by computing
a greedy tree-cotree decomposition (T ∗, L∗, C∗) of G where T ∗ is a shortest path tree of
an arbitrary vertex r and C∗ is an arbitrary co-tree. Again, set L∗ contains 2g edges
{u1v1, . . . , u2gv2g}. Let Λ = {λ1, . . . , λ2g} be the set of 2g loops where λi = σ(r, u1) · u1v1 ·
σ(v1, r). Set Λ is called a greedy system of loops; cutting along each loop of Λ unfolds Σ
into a topological disk [15]. Minimum homology basis cycle γ is non-separating; therefore,
it crosses some loop of Λ at least once. Our algorithm constructs set Λ in O(n logn + gn)
time5. Let G2

S be the cyclic double cover of G with regard to S. Our algorithm constructs G2
S

in O(gn) time.
Suppose our desired cycle γ crosses loop λi ∈ Λ. Simple cycle γ intersects one of two

shortest paths, σ(r, ui) or σ(vi, r). Without loss of generality, it intersections σ(r, ui) at
some vertex s. By Lemma 16, simple cycle γ is the projection of the shortest path in G2

S

from (s, 0) to (s, 1). Let γ̂ be this shortest path in G2
S . Let σ̂ be the lift of σ(r, ui) to G2

S

that contains vertex (s, 0). By Lemma 15, path σ̂ is also a shortest path in G2
S . If γ̂ uses any

5 We only need to construct Λ once for the entire minimum homology basis algorithm, but constructing
it once per basis cycle does not affect the overall run time.
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other vertex (v, z) of σ̂ other than (s, 0), then it can use the entire subpath of σ̂ between (s, 0)
and (v, z).

Now, consider the surface Σ2
S Q σ̂ which contains a single face bounded by two copies

of σ̂ we denote σ̂− and σ̂+. For each vertex (v, z) on σ̂, let (v, z)− and (v, z)+ denote its two
copies on σ̂− and σ̂+ respectively. From the above discussion, we see γ̂ is a shortest path
in Σ2

S Qσ̂ from one of (s, 0)− or (s, 0)+ to (s, 1).
To find γ, we use the following generalization of Klein’s [25] multiple-source shortest

path algorithm:

I Lemma 18 (Cabello et al. [7]). Let G be a graph with n vertices, cellularly embedded in
a surface of genus g, and let f be any face of G. We can preprocess G in O(gn logn) time
and O(n) space so that the length of the shortest path from any vertex incident to f to any
other vertex can be retrieved in O(logn) time.

Our algorithm iterates over the O(g) shortest paths present in loops of Λ. For each
such path σ, it computes a lift σ̂ in G2

S , cuts Σ2
G along σ̂, and runs the multiple-source

shortest path procedure of Lemma 18 to find the shortest path from some vertex (s, z)±
on σ̂± to (s, z ⊕ 1). Each shortest path it finds projects to a closed path γ′ such that
〈S, [γ′]h〉 = 1. By the above discussion, the shortest such projection can be chosen for γ.
Running the multiple-source shortest path procedure O(g) times on a graph of genus O(g)
takes O(g2n logn) time total. We conclude the discussion of our minimum weight homology
basis algorithm.

I Lemma 19. Let G be a graph with n vertices cellulary embedded in a surface of genus g.
For any 2g-bit support vector S we can compute the minimum weight cycle γ such that
〈S, γ〉 = 1 in O(g2n logn) time.

I Theorem 20. Let G be a graph with n vertices, cellularly embedded in an orientable surface
of genus g. We can compute a minimum weight homology basis of G in O(g3n logn) time.
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