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Combinatorial surfaces
• Many times this semester, I’ve given you the same 

picture of a surface: 

• But how do we get here?  In graphics and 
geometry processing, usually we start from a point 
scan or some other method of scanning an object.



Representing shapes
• A fundamental problem: given a set of points 

scanned from some input, reconstruct the 
underlying shape they represent

Images courtesy of Wikipedia



Reconstructing shape
• However, sometimes it isn’t so clear what shape we 

want:

Image courtesy of the SIAM Journal  
of Applied Algebra and Geometry



Algorithms for shape 
reconstruction

• Goal today: Survey some classical shape 
reconstruction algorithms 

• Note that this is also an active area of research, 
and methods vary widely 

• I’ll focus on computational geometry and graphics 
algorithms, many of which build on the complexes 
we discussed early in the semester



Goals for any method
• Output a triangulation which is: 

• Homeomorphic to original shape 

• Close geometrically to original shape 

• Approximates the normals 

• Interestingly, while I’d classify these as topology, 
the computational geometry winds up being the 
key thing to consider.



Recall: alpha shapes
• Given a radius α and a set of points, we take the 

union of all radius α balls at those points.



Recall: alpha complex
• The α-complex is then the nerve of this set of balls:



3d α-shapes
• In fact, one early reconstruction algorithm was just 

based on using α-shapes directly [Edelsbrunner-
Mucke 1994]



Downside of alpha shapes
• However, there is a downside: 

• Finding the “perfect” alpha is 
difficult 

• And there might not even be one 

• Alpha shapes also overfill certain 
types of objects 

• Some variations (anisotropic alpha 
shapes) attempt to compensate by 
scaling the ball according to local 
features 

Teichmann and Capps 1998



Ball-rolling algorithm
• Another nice early extension which used the α-

shape was the ball pivot algorithm [Bernardini et 
al]: 

• Starting at a seed triangle, pivot a ball around 
each edge of the triangle until a new sample 
point is hit.   

• Add that triangle to the mesh and continue. 

• Fast and generates nice things, but also tricky



Ball rolling algorithm (cont.)
• Pros: Conceptually simple, 

very fast to implement 

• Cons: 

• No theoretical guarantee of 
quality in terms of the 
topology 

• Not even always a surface 

• Choice of ball is key: can 
miss things or fall through 
holes



The crust algorithm: 2d
• If we go back to a 2d idea:  

• The Voronoi diagram is the division of the plane 
into cells where each cell consists of points 
closest to one of the input points:



Related: medial axis
• The medial axis of a shape is the set of points with 

more than one closet point on the shape. 

• Noisy, but correct topology



The connection
• In 2d, the Voronoi diagram of a point set that 

closely samples an underlying shape will contain 
an approximate medial axis of the shape:



Back to curve reconstruction
• Recall the dual to the Voronoi diagram: the 

Delaunay triangulation is the set of simplicies 
where the circumcircle of those simplicies is empty 
of other sites



2d crust algorithm
• In 2d, we want to select any edge of the Delaunay 

triangulation whose circumcircle is empty not only 
of sample points, but also of the Voronoi vertices:



2d crust algorithm

Crust algorithm (2d)



Why?
• Key lemma: Any Voronoi disk of a set of points 

sampled from a curve in the plane must contain a 
medial axis point of the curve. 

• Sketch: Essentially, the Voronoi disk’s center is 
equidistant from more than 1 point on the curve, 
so it should be on the medial axis.  



Why?
• Key lemma: For a fine enough sample S of a curve, 

an edge between two non-adjacent samples 
cannot be circumscribed by a circle that is empty 
of both Voronoi vertices and sample points.   

• Proof by picture: 



“Fine enough” sample
• More precisely: we must sample based on local 

feature size, lfs 

• For any x from the curve F, lfs(x) is the distance 
from x to the nearest medial axis point 

• We say it is ε-sampled if every point p on the 
underlying curve is within ε×lfs(p) of a sample point



Algorithm for 2d:
• Compute the Delaunay triangulation and the 

Voronoi diagram of the point set.  Include an edge 
from the triangulation if its circumcircle is empty of 
all Voronoi vertices. 

• Theorem: The crust of an ε-sample of a smooth 
(twice differentiable) curve, for ε≤.25, will 
connect only adjacent sample points.



Moving to 3d
• Unfortunately, this simple filtering will NOT work for 

surfaces in 3d, because Voronoi vertices do not 
have to lie near the medial axis, no matter how 
dense the sample.



Finding a good subset
• However, some of the points are good!  

Intuitively, we want to  
take cells that exclude 
the points of the cell that  
are farthest away;  
these are the ones  
near the medial axis.



Poles
• To formalize this, in [Amenta-Bern] they define the 

poles of a sample point to be the two farthest 
vertices of its Voronoi cell, one on each side of the 
surface. 

• Of course, the algorithm doesn’t know the 
surface! 

• Instead, it chooses the point furthest away as the 
first pole, and then the second is chosen to be the 
farthest in the opposite half space.



How do to this:
• More formally: if s is the sample point and p the first 

pole chosen, among all vertices q of the Voronoi 
cell with the angle ∠psq > π/2, choose the furthest 
one 

• Lemma: Given an ε-sample of a surface, with 
ε<1/4, and a sample point s with farthest pole p.  
Then the second pole v will be the farthest Voronoi 
vertex where the vector sv has negative dot 
product with sp.  



How to prove:
• I won’t go into detail - they get fairly technical:

Dey 2006



The crust
• We then take the Delaunay triangulation of the input 

points and their poles. 

• The crust is the set of Delaunay triangles from this 
triangulation where all three vertices are sample 
points.



Quality
• At this point we have a fairly weak theoretical 

guarantee: it is pointwise convergent to the 
underlying surface as the sampling density 
increases.   

• However, we can still clearly have extra triangles in 
the result, as there is no guarantee that the normals 
at each triangle are close to the actual surface 
normals.



Additional filtering
• The next step in the algorithm is to filter:  

• The bad triangles we want to remove are nearly 
perpendicular to the underlying surface. 

• However, we don’t know the underlying surface!



Using the poles
• Instead, we go back to the poles: we can prove 

that the line from a sample point to each of its pole 
is nearly orthogonal to the surface, given a 
sufficiently dense sample. 



Next step in the algorithm:
• Remove any triangle T for which the normal to T 

and the vector to the pole at a vertex of the 
triangle are too large. 

• Greater than θ for the largest angle vertex of T, 
and greater than 3θ/2 for all others. 

• θ is another input parameter, which they set to 
be 4ε to get good practical results, but this can 
also be varied to find a “nice” output. 



Theoretical guarantee
• More precisely: Take an ε-sample, and set θ=4ε.  

Let T be a triangle of the crust, trimmed as 
described on last slide, and take any point t∈T.  
Then the angle between T’s normal and the normal 
to the actual underlying surface at the point closet 
to t measures O(√ε).



Final cleanup
• After filtering by normals, remaining triangles are 

roughly parallel to the original surface.   

• Can prove that this set of triangles still contains a 
piece-wise linear surface homeomorphic to F. 

• However, we don’t necessarily have a surface, since 
there could be small remaining triangles that enclose 
pockets: 

• All 4 faces of a very flat tetrahedra may make it past 
the filtering step.



Sharp edges
• Define a sharp edge as one which has a dihedral 

angle greater than 3π/2 between a successive pair of 
incident triangles in the cyclic order around the edge.   

• In other words, an edge is sharp if all incident 
triangles are in a small wedge. 

• If only one incident triangle, then automatically 
sharp.

sharpnot sharp
Dey 2006



Cleaning up
• Can use the wedges to prove that no Delaunay 

triangle we need to keep will have a sharp edge - 
so can trim without losing anything important. 

• Even with sharp edges trimmed, we still may have 
“pockets”, where we kept both an inner and outer 
layer.

Dey 2006



Final trimming
• The final step:  

• orients triangles and poles consistently 

• greedily remove triangles with sharp edges 

• take the “outside” of remaining triangles (which 
makes sense since we oriented things)



Crust: takeaway
• This was the first algorithm with 

good, provable guarantees on 
the quality of the reconstruction. 

• The main drawback is ε-
samples: it’s hard to guarantee 
a good enough approximation. 

• It is also only good for smooth 
inputs: anything with sharp 
edges can have holes



Extension: cocone
• The Cocone algorithm uses the poles from the 

crust algorithm in order to enumerate a set of 
triangles that will contain a good reconstruction:

We find any Voronoi edges 
that intersect the “cocone”,  
and take triangles from the  
Delaunay triangulation that are 
dual to one of these edges.



Cocone result
• In the end, the output of cocone is homeomorphic 

to the original surface, for ε≤.05. 

• In addition, they are also isotopic. 

• (Really, same guarantees as in crust, but much 
simpler to prove and faster to implement.) 



Extension: power crust
• The power crust algorithm computes a weighted 

Voronoi diagram: 

• Think of a point c with 
weight ρ2 as a ball Bc,ρ.   

• Then the power distance 
between a point x and a 
ball Bc,ρ as d2(c,x)-ρ2



Power crust
• The power crust algorithm then just uses the pole 

vertices (and their Voronoi balls) 

• It computes the power diagram of these polar balls, 
and does a similar filtering as the normal crust 
algorithm afterwards. 

• It does do better on poorly sampled inputs and things 
with sharp corners, in practice.  

• However, the known theoretical guarantees are 
similar to crust.



More recent trends
• It is difficult to know the “correct” value of 

• Also,   may not be needed everywhere: really, the key 
value is local feature size 

• Near finer features with higher curvature, you need 
to sample more 

• On flatter features, want to sample less 

• The witness complex attempts to balance this by 
selecting a subset of the points to keep.

✏
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Witness complex
• Introduced by de Silva in 2003: 

• Given Q a subset of P, the witness complex  
W(Q,P) is the collection of simplices with vertices 
from Q whose all subsimplices are weakly 
witnessed by a point in P. 

• Why use it?  Allows reduction in number of points, 
and can work well.

A simplex � = {q0, q1, . . . , qk} is weakly witnessed by a point

x if 8i 2 [0, k], q 2 Q \ {q0, . . . , qk}, d(qi)  d(q, x)
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Witness complex

• This leads towards a notion they call    sparsity

P W(L,P)L

✏
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Example application
• Example algorithm [Chazal-Oudot 2007]: 

• Compute a witness complex 

• Iteratively add points from the witness complex, 
computing their persistent homology as you go 

• At some point along the way (assuming a “nice” 
sample), the prove that you will find a pair of Rips 
complexes that contain a complex with the homology of 
X in between them 

• (Recall that Ć(X,r) ⊆ VR(X,r) ⊆ Ć(X,2r))



Dealing with singularities
• Newer algorithms have tried various ways to deal 

with corners or non-manifold shapes: 

• Some incorporate persistence to detect “big” 
features, and use offsets instead of Voronoi 
diagrams to compute representations:

Cazals and Cohen-Steiner 2012



More singularities
• Other algorithms used have used tools like Reeb 

graphs and Laplacians in order to detect the 
different patches or irregularities, and recover 
smooth surfaces in between

Dey et al 2012



The list continues
• I’ve focused on Delaunay-based methods in this 

talk, but there are also offset surfaces, implicit 
surfaces, and numerous other types of algorithms 
to explore - often your data even constrains you.

Reconstruction

X,Ray/imaging


