Reconstructing surfaces
from point scans

TDA, tall 2025

Combinatorial surfaces

 Many times this semester, I've given you the same

 But how do we get here” In graphics and
geometry processing, usually we start from a point
scan or some other method of scanning an object.

Representing shapes

* A fundamental problem: given a set of points
scanned from some input, reconstruct the
underlying shape they represent

Images courtesy of Wikipedia

Reconstructing shape

* However, sometimes it isn't so clear what shape we
want:

Image courtesy of the SIAM Journal
of Applied Algebra and Geometry

Algorithms for shape
reconstruction

 (Goal today: Survey some classical shape
reconstruction algorithms

e Note that this Is also an active area of research,
and methods vary widely

* |'ll focus on computational geometry and graphics
algorithms, many of which build on the complexes
we discussed early in the semester

Goals for any method

» Qutput a triangulation which is:
* Homeomorphic to original shape
* Close geometrically to original shape
* Approximates the normals
* |nterestingly, while I'd classifty these as topology,

the computational geometry winds up being the
Key thing to consider.

Recall: alpha shapes

 (Given a radius a and a set of points, we take the
union of all radius a balls at those points.

Recall: alpha complex

* [he a-complex is then the nerve of this set of balls:

3d a-shapes

* In fact, one early reconstruction algorithm was just
based on using a-shapes directly [Edelsbrunner-
Mucke 1994]

Downside of alpha shapes

e However, there is a downside:

e Finding the “perfect” alpha is
difficult

* And there might not even be one

* Alpha shapes also overfill certain
types of objects

e Some variations (anisotropic alpha
shapes) attempt to compensate by
scaling the ball according to local
features

Teichmann and Capps 1998

Ball-rolling algorithm

* Another nice early extension which used the a-
shape was the ball pivot algorithm [Bernardini et

all:

e Starting at a seed triangle, pivot a ball around
each edge of the triangle until a new sample
point Is hit.

 Add that triangle to the mesh and continue.

* Fast and generates nice things, but also tricky

Ball rolling algorithm (cont.)

* Pros: Conceptually simple,
very fast to implement

e Cons:

* No theoretical guarantee of
quality in terms of the

topology

* Not even always a surface

* Choice of ball is key: can
miss things or fall through
holes

The crust algorithm: 2d

* |t we go back to a 2d idea:

* The Voronoi diagram is the division of the plane
iINnto cells where each cell consists of points
closest to one of the input points:

Related: medial axis

 [he medial axis of a shape is the set of points with
more than one closet point on the shape.

* Noisy, but correct topology gt

:JJT\
N
N

|
e

The connection

* In 2d, the Voronoi diagram of a point set that
closely samples an underlying shape will contain
an approximate medial axis of the shape:

Back to curve reconstruction

Recall the dual to the Voronoi diagram: the
Delaunay triangulation is the set of simplicies
where the circumcircle of those simplicies is empty
of other sites

Delaunay Voronoi Delaunay
triangulation diagram and Voronoi

20 crust algorithm

* |n 2d, we want to select any edge of the Delaunay
triangulation whose circumcircle is empty not only
of sample points, but also of the Voronoi vertices:

2d crust alaorithm

CRUST(P)
1 compute Vor P;
2 let V be the Voronoi vertices of Vor P;
compute Del (P U V);
E = 0;
for each edge pg € Del(P U V) do
if pe Pandg € P
E:=FEU pg;
endif

O 00 9 ON L B W

output E.

Crust algorithm (2d)

Why?

 Key lemma: Any Voronoi disk of a set of points
sampled from a curve in the plane must contain a
medial axis point of the curve.

» Sketch: Essentially, the Voronoi disk’s center is
equidistant from more than 1 point on the curve,
so it should be on the medial axis.

Why?

 Key lemma: For a fine enough sample S of a curve,
an edge between two non-adjacent samples
cannot be circumscribed by a circle that is empty
of both Voronoi vertices and sample points.

* Proof by picture:

‘FIne enough”™ sample

 More precisely: we must sample based on local
feature size, Ifs

 For any x from the curve F, Ifs(x) is the distance
from x to the nearest medial axis point

 We say it is e-sampled if every point p on the
underlying curve is within exlts(p) of a sample point

Algorithm for 24a:

 Compute the Delaunay triangulation and the
Voronol diagram of the point set. Include an edge
from the triangulation if its circumcircle is empty of
all Voronoil vertices.

 Theorem: The crust of an e-sample of a smooth
(twice ditferentiable) curve, for €<.25, will
connect only adjacent sample points.

Moving to 30

e Unfortunately, this simple filtering will NOT work tor
surfaces in 3d, because Voronol vertices do not
have to lie near the medial axis, no matter how

dense the sample.

FINdINg a good subset

 However, some of the points are good!

ntuitively, we want to S

take cells that exclude
the points of the cell that
are tfarthest away; @

these are the ones
near the medial axis.

Poles

e Jo formalize this, in [Amenta-Bern] they define the
poles of a sample point to be the two farthest
vertices of its Voronoi cell, one on each side of the
surface.

» Of course, the algorithm doesn’t know the
surface!

* |nstead, it chooses the point furthest away as the
first pole, and then the second is chosen to be the
farthest in the opposite halt space.

How do to this;

 More formally: it s is the sample point and p the first
pole chosen, among all vertices g of the Voronoi
cell with the angle -psqg > n/2, choose the furthest

one

* Lemma: Given an e-sample of a surface, with
e<1/4, and a sample point s with farthest pole p.
Then the second pole v will be the farthest Voronoi
vertex where the vector sv has negative dot
poroduct with sp.

HOow to prove:

* | won't go into detail - they get fairly technical:

Lemma 3.4 (Edge Normal.) For an edge pq with |p — q| < 2f(p), the

; . Ilp—q|
unyle éa(ﬁ,np) is ul least % — arcsin 5o

Dey 2006

LT

Figure 3.5: Illustration for the Edge Normal Lemma 3.4.

The crust

* We then take the Delaunay triangulation of the input
points and their poles.

* The crust is the set of Delaunay triangles from this
triangulation where all three vertices are sample
points.

Quality

* At this point we have a fairly weak theoretical
guarantee: it Is pointwise convergent to the
underlying surface as the sampling density
INncreases.

e Howeve
the resu

at each 1

normals

, we can still clearly have extra triangles in
t, as there is no guarantee that the normals

riangle are close to the actual surface

Additional filtering

* [he next step in the algorithm is to filter:

 [he bad triangles we want to remove are nearly
perpendicular to the underlying surface.

 However, we don’'t know the underlying surface!

Using the poles

* |nstead, we go back to the poles: we can prove
that the line from a sample point to each of its pole
'S nearly orthogonal to the surface, given a
sufficiently dense sample.

Next step In the algorithm;

« Remove any triangle T for which the normal to T
and the vector to the pole at a vertex of the
triangle are too large.

* (Greater than O for the largest angle vertex of T,
and greater than 36/2 for all others.

* O is another input parameter, which they set to
be 4¢ to get good practical results, but this can
also be varied to find a “nice” output.

I'heoretical guarantee

 More precisely: Take an e-sample, and set B6=4¢.
Let T be a triangle of the crust, trimmed as
described on last slide, and take any point tel.
Then the angle between T's normal and the normal
to the actual underlying surface at the point closet
to t measures O(v/g).

Final cleanup

o After filtering by normals, remaining triangles are
roughly parallel to the original surface.

* Can prove that this set of triangles still contains a
piece-wise linear surface homeomorphic to F.

* However, we don’'t necessarily have a surface, since

there could be small remaining triangles that enclose
nockets:

* All 4 faces of a very flat tetrahedra may make it past
the filtering step.

Sharp edges

* Define a sharp edge as one which has a dihedral
angle greater than 3m/2 between a successive pair of
incident triangles in the cyclic order around the edge.

* In other words, an edge is sharp it all incident
triangles are in a small wedge.

* |t only one incident triangle, then automatically
sharp.

not sharpx‘ &/sharp

Dey 2006

Cleaning up

e Can use the wedges to prove that no Delaunay
triangle we need to keep will have a sharp edge -
SO can trim without losing anything important.

* Even with sharp edges trimmed, we still may have

‘pockets”, where we kept both an inner and outer
layer.

Dey 2006

Final trimming

* [he final step:
e orients triangles and poles consistently
e greedily remove triangles with sharp edges

e take the “outside” of remaining triangles (which
makes sense since we oriented things)

Crust: takeaway

* This was the first algorithm with
good, provable guarantees on
the quality of the reconstruction.

 The main drawback is e-
samples: it's hard to guarantee
a good enough approximation.

e |tis also only good for smooth
iInputs: anything with sharp
edges can have holes

Extension: cocone

 The Cocone algorithm uses the poles from the
crust algorithm in order to enumerate a set of
triangles that will contain a good reconstruction:

We tind any Voronoi edges
that intersect the "cocone’, P s
and take triangles from the

Delaunay triangulation that are

dual to one of these edges. Y

Cocone result

* |n the end, the output of cocone is homeomorphic
to the original surface, for £€<.05.

* |[n addition, they are also isotopic.

* (Really, same guarantees as in crust, but much
simpler to prove and faster to implement.)

Extension: power crust

* The power crust algorithm computes a weighted
Voronol diagram:

* Think of a point ¢ with
weight p2 as a ball Be .

* [Then the power distance
between a point x and a
ball Bcp as d2(c,x)-p?

Power crust

* The power crust algorithm then just uses the pole
vertices (and their Voronoi balls)

* |t computes the power diagram of these polar balls,
and does a similar filtering as the normal crust
algorithm afterwards.

* |t does do better on poorly sampled inputs and things
with sharp corners, Iin practice.

* However, the known theoretical guarantees are
similar to crust.

Vlore recent trends

e [tis difficult to know the “correct” value of €

e Also, e may not be needed everywhere: really, the key
value is local feature size

 Near finer features with higher curvature, you need
to sample more

e On flatter features, want to sample less

* [he withess complex attempts to balance this by
selecting a subset of the points to keep.

Withess complex

* Introduced by de Silva in 2003:

A simplex ¢ = {qo, q1, - - ., qr } is weakly witnessed by a point
rif Vi e [0,k],g € Q\{qo,...,qr},d(q;) < d(q,x)

* Given Q a subset of P, the withess complex
W(Q,P) is the collection of simplices with vertices
from Q whose all subsimplices are weakly
witnessed by a point in P.

 Why use it? Allows reduction in number of points,
and can work well.

Withess complex

F; i W(L,P)

* This leads towards a notion they call € sparsity

Example application

 Example algorithm [Chazal-Oudot 2007]:
 Compute a withess complex

e |teratively add points from the witness complex,
computing their persistent homology as you go

* At some point along the way (assuming a “nice”
sample), the prove that you will find a pair of Rips
complexes that contain a complex with the homology of
X In between them

e (Recall that C(X,r) ¢ VR(X,r) ¢ C(X,2r))

Dealing with singularities

* Newer algorithms have tried various ways to deal
with corners or non-manifold shapes:

e SOme Incorporate persistence to detect “big”
features, and use offsets instead of Voronoi
diagrams to compute representations:

Cazals and Cohen-Steiner 2012

More singularities

» Other algorithms used have used tools like Reeb
graphs and Laplacians in order to detect the
different patches or irregularities, and recover
smooth surfaces in between

”

Dey et al 2012

(a) (b) (d)

The list continues

* |'ve focused on Delaunay-based methods in this
talk, but there are also offset surfaces, implicit
surfaces, and numerous other types of algorithms
to explore - often your data even constrains you.

