The Impact of Persistence Images

An Analysis of Scholarly Citations of the Adams et al. Framework

Ali Bennett

December 10, 2025

Table of Contents

- 1. The Motivating Paper
- 2. Proposal
- 3. Data
- 4. Sampling the Data
- 5. Uses

The Motivating Paper

Persistence Images: A Stable Vector Representation of Persistent
Homology
Adams et al.[1]

Published in 2016

Published in 2016

 $\label{lem:approx} A \ stable, \ finite-dimensional \ vector \ representation \ of \ persistence \ diagrams.$

Published in 2016

A stable, finite-dimensional vector representation of persistence diagrams.

Basically a matrix of values

 \bullet Begin with a persistence diagram B

- Begin with a persistence diagram B
- Map B to an integrable function to get the persistence surface $ho_B:\mathbb{R}^2 \to \mathbb{R}$

4

- \bullet Begin with a persistence diagram B
- Map B to an integrable function to get the persistence surface $ho_B:\mathbb{R}^2 o \mathbb{R}$
- Discretize ρ_B to define a grid

- \bullet Begin with a persistence diagram B
- Map B to an integrable function to get the persistence surface $\rho_B:\mathbb{R}^2\to\mathbb{R}$
- Discretize ρ_B to define a grid
- Compute the integral of ρ_B on each grid box

- Begin with a persistence diagram B
- Map B to an integrable function to get the persistence surface $\rho_B:\mathbb{R}^2\to\mathbb{R}$
- Discretize ρ_B to define a grid
- Compute the integral of ρ_B on each grid box
- This gives us the vectorization of the persistence diagram

- Begin with a persistence diagram B
- Map B to an integrable function to get the persistence surface $\rho_B:\mathbb{R}^2\to\mathbb{R}$
- Discretize ρ_B to define a grid
- Compute the integral of ρ_B on each grid box
- This gives us the vectorization of the persistence diagram

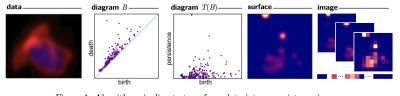


Figure 1: Algorithm pipeline to transform data into a persistence image.

Theoretical Guarantees:

1. The output of the representation is a vector in \mathbb{R}^{n}

- 1. The output of the representation is a vector in \mathbb{R}^n
- 2. The representation is stable with respect to input noise

- 1. The output of the representation is a vector in \mathbb{R}^n
- 2. The representation is stable with respect to input noise
- 3. The representation is efficient to compute

- 1. The output of the representation is a vector in \mathbb{R}^n
- 2. The representation is stable with respect to input noise
- 3. The representation is efficient to compute
- 4. The representation maintains an interpretable connection to the original PD

- 1. The output of the representation is a vector in \mathbb{R}^n
- 2. The representation is stable with respect to input noise
- 3. The representation is efficient to compute
- 4. The representation maintains an interpretable connection to the original PD
- 5. The representation allows one to adjust the relative importance of points in different regions of the PD

Theoretical Guarantees:

- 1. The output of the representation is a vector in \mathbb{R}^n
- 2. The representation is stable with respect to input noise
- 3. The representation is efficient to compute
- 4. The representation maintains an interpretable connection to the original PD
- 5. The representation allows one to adjust the relative importance of points in different regions of the PD

Nifty, right?

Since publication, the Persistence Images paper has been cited over 400 times

Since publication, the Persistence Images paper has been cited over 400 times

What are PIs being used for?

Since publication, the Persistence Images paper has been cited over 400 times
What are PIs being used for?
Let's find out!

Data

Search Web of Science for "Persistence Images"

Search Web of Science for "Persistence Images" What do you get?

As of July/August 2025, this <u>highly cited paper</u> received enough citations to place it in the top 1% of the academic field of **Computer Science** based on a highly cited threshold for the field and publication year.

Data from Essential Science Indicators

Cleaning

But first, let's do some cleaning.

Cleaning

But first, let's do some cleaning. Remove any entry that does not have an associated DOI

Cleaning

But first, let's do some cleaning. Remove any entry that does not have an associated DOI

- Began with 472 entries
- 77 were missing DOIs
- Leaves us with 395 entries to look at

Publication Year

Year	Number of Publications
2025	75
2024	69
2023	68
2022	61
2021	55
2020	40
2019	15
2018	6
2017	3
2026	3

Table 1: Publication Year Frequency

Publishers

Publisher	Record Count
IEEE	69
Springer Nature	61
Elsevier	48
JMLR-Journal Machine Learning Research	27
MDPI	23
Nature Portfolio	18
Amer Inst Mathematical Sciences-AIMS	16
Neural Information Processing Systems (NIPS)	16
Frontiers Media SA	14
Amer Physical Soc	13
Oxford Univ Press	13
AIP Publishing	11
Amer Chemical Soc	11
Public Library Science	10

Table 2: Publishers with ≥ 10 Records

WoS Categories vs Research Areas

Web of Science Categories more granular (92) Research Areas less granular (58)

For Example

Research Areas	WoS Categories	
Computer Science; Neurosciences & Neurol-	Computer Science, Artificial Intelligence; Neu-	
ogy	rosciences	
Engineering	Engineering, Biomedical	
Computer Science	Computer Science, Artificial Intelligence	
Pharmacology & Pharmacy; Chemistry; Com-	Chemistry, Medicinal; Chemistry, Multidisci-	
puter Science	plinary; Computer Science, Information Sys-	
	tems; Computer Science, Interdisciplinary Ap-	
	plications	
Chemistry; Engineering; Instruments & Instru-	Chemistry, Analytical; Engineering, Electrical	
mentation	& Electronic; Instruments & Instrumentation	
Biochemistry & Molecular Biology; Mathe-	Biochemical Research Methods; Mathematical	
matical & Computational Biology	& Computational Biology	
Computer Science	Computer Science, Software Engineering	
Computer Science	Computer Science, Cybernetics; Computer	
	Science, Information Systems	

Research Areas

Research Area	Record Count
Computer Science	161
Mathematics	83
Engineering	63
Physics	57
Chemistry	29
Science and Technology - Other Topics	29
Mathematical and Computational Biology	19
Materials Science	17
Neurosciences and Neurology	15
Biochemistry and Molecular Biology	14
Radiology, Nuclear Medicine and Medical Imaging	14
Astronomy and Astrophysics	13
Telecommunications	13

Table 3: Research Areas with ≥ 10 Occurrences

WoS Categories

Web of Science Category	Record Count
Computer Science, Artificial Intelligence	96
Mathematics, Applied	48
Computer Science, Theory and Methods	44
Computer Science, Interdisciplinary Applications	41
Engineering, Electrical and Electronic	40
Computer Science, Information Systems	35
Multidisciplinary Sciences	25
Computer Science, Software Engineering	25
Mathematics	24
Statistics and Probability	23
Mathematical and Computational Biology	19
Chemistry, Multidisciplinary	19
Materials Science, Multidisciplinary	16
Physics, Applied	15
Radiology, Nuclear Medicine and Medical Imaging	14
Astronomy and Astrophysics	13
Engineering, Biomedical	13
Telecommunications	13
Physics, Mathematical	12
Neurosciences	12
Physics, Multidisciplinary	12
Biochemical Research Methods	11
Mathematics, Interdisciplinary Applications	11

Table 4: WoS Categories with ≥ 10 Occurrences

Unexpected Keywords

Navigation Style Classification Using Persistent Homology Akai et al.

Unexpected Keywords

Navigation Style Classification Using Persistent Homology

Akai et al.

Research Areas

- Computer Science
- Engineering
- Government & Law

WoS Categories

- Computer Science, Interdisciplinary Applications
- Engineering, Electrical & Electronic
- Political Science

Unexpected Keywords

Navigation Style Classification Using Persistent Homology

Akai et al.

Research Areas

- Computer Science
- Engineering
- Government & Law

WoS Categories

- Computer Science, Interdisciplinary Applications
- Engineering, Electrical & Electronic
- Political Science

Does not use the Adams paper in a meaningful way

Sampling the Data

• Randomize the set of publications

- Randomize the set of publications
- Pull 50

- Randomize the set of publications
- Pull 50
- Of these 50, filter out those that do not use the paper in a meaningful way

- Randomize the set of publications
- Pull 50
- Of these 50, filter out those that do not use the paper in a meaningful way
- Look at these papers

Started with 50 papers to look at After initial filtering:

Started with 50 papers to look at After initial filtering:

• 20 deemed "good"

Started with 50 papers to look at After initial filtering:

- 20 deemed "good"
- 23 deemed "not good"

Started with 50 papers to look at After initial filtering:

- 20 deemed "good"
- 23 deemed "not good"
- 7 I couldn't access

Papers

Topological data analysis: Concepts, computation, and applications in chemical engineering

Relational Persistent Homology for Multispecies Data with Application to the Tumor Microenvironment

Persistent Homology for Breast Tumor Classification Using Mammogram Scans

 $Learning\ discriminative\ topological\ structure\ information\ representation\ for\ 2D\ shape\ and\ social\ network\ classification\ via\ persistent\ homology$

ToBaFu: Topology-based fusion model for classification of two-dimensional cancer images

Improving Classification Performance of Spatial Filters in Mammographic Microcalcifications Images Using Persistent Homology

The topology of data: opportunities for cancer research

Tape surfaces characterization with persistence images

Interpretable Structural Evaluation of Metal-Oxide Nanostructures in Scanning Transmission Electron Microscopy (STEM) Images via Persistent Homology

Bayesian Topological Learning for Classifying the Structure of Biological Networks

Perturbation Robust Representations of Topological Persistence Diagrams

The effects of topological features on convolutional neural networks—an explanatory analysis via Grad-CAM

Portfolio Selection via Topological Data Analysis

Can We Determine Whether a Set of Ethereum Transaction Data Contains Fraudulent Transactions?

Spatial nano-scaled organization of heterochromatin in nuclei of endothelial cells after exposure to uremic and dialytic milieu

Topological data analysis of spatial patterning in heterogeneous cell populations: clustering and sorting with varying cell-cell adhesion

Change Detection with Probabilistic Models on Persistence Diagrams

Learning persistent homology of 3D point clouds

Topological Data Analysis Applied to Wind Turbine Vibration Spectra for Blade Icing Detection

Persistent Homology in LiDAR-Based Ego-Vehicle Localization

Most prevalent use?

Most prevalent use? Vectorization of data to feed into a ML model

ML models for what?

• Delineating Cell Types

- Delineating Cell Types
- Medical Image Analysis

- Delineating Cell Types
- Medical Image Analysis
- Surface Classification

- Delineating Cell Types
- Medical Image Analysis
- Surface Classification
- Classifying Nanostructures

- Delineating Cell Types
- Medical Image Analysis
- Surface Classification
- Classifying Nanostructures
- Identifying Fraudulent Crypto Transactions

- Delineating Cell Types
- Medical Image Analysis
- Surface Classification
- Classifying Nanostructures
- Identifying Fraudulent Crypto Transactions
- Wind Turbine Ice Detection

- Delineating Cell Types
- Medical Image Analysis
- Surface Classification
- Classifying Nanostructures
- Identifying Fraudulent Crypto Transactions
- Wind Turbine Ice Detection
- Loop Closure Detection

- Delineating Cell Types
- Medical Image Analysis
- Surface Classification
- Classifying Nanostructures
- Identifying Fraudulent Crypto Transactions
- Wind Turbine Ice Detection
- Loop Closure Detection
- Stock Portfolio Selection

- Delineating Cell Types
- Medical Image Analysis
- Surface Classification
- Classifying Nanostructures
- Identifying Fraudulent Crypto Transactions
- Wind Turbine Ice Detection
- Loop Closure Detection
- Stock Portfolio Selection
- Image Noise Reduction

Other Uses:

• Medical specimen analysis

Other Uses:

- Medical specimen analysis
- Survey of TDA Methods for Chemical Engineering

Other Uses:

- Medical specimen analysis
- Survey of TDA Methods for Chemical Engineering
- Used as a technical benchmark

Other Uses:

- Medical specimen analysis
- Survey of TDA Methods for Chemical Engineering
- Used as a technical benchmark
- Theoretical Extensions of Persistence Images

Conclusion

Persistence Images have had a wide impact since their publication in 2016

Questions?

References

Henry Adams, Sofya Chepushtanova, Tegan Emerson, Eric Hanson, Michael Kirby, Francis Motta, Rachel Neville, Chris Peterson, Patrick Shipman, and Lori Ziegelmeier.

Persistence images: A Stable Vector Representation of Persistent Homology, -07-11 2016.