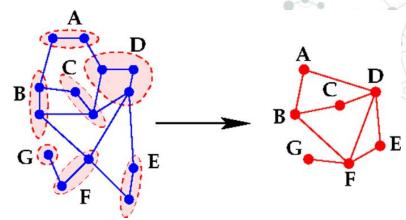
TDA Graph Coarsening Benchmark

Kelly Williams

Motivation for Graph Coarsening

- Large-scale graphs may involve complex structures
 - Difficult to compute and analyze key properties directly from large graphs
- Coarsened Graph Graph of reduced size that preserves important graph properties

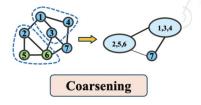
- Applications: GNNs, Biology, Graphics, etc.
- Related: Clustering unstructured point-cloud data
 - Ball Mapper & Mapper



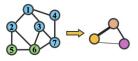
https://link.springer.com/article/10.1007/s40324-021-00282-x

Brief Aside

- A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening, and Condensation (2024) – Hashemi, et al.
- Graph Reduction General term for reducing the size of the graph dataset, including the number of graphs, nodes, and edges
 - Coarsening Group and aggregate similar nodes and edges to construct a smaller graph
 - Sparsification Selecting significant nodes and edges while discarding others
 - Condensation Learn a synthetic graph from scratch



Sparsification



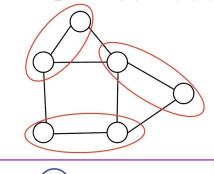
Condensation

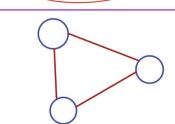
Coarsening Algorithms

Maximal Matching Coarsening

Basic Algorithm

- Find a maximal matching in the graph
 - 1. **Maximal Matching** maximal set of edges, no two of which are incident on the same vertex
- For each Matching Edge (i; j):
 - 1. Contract edge to **form new vertex v**
 - 2. Accumulate **vertex weight** \rightarrow weight(v) := weight(i) + weight_(J)
 - 3. Connect neighboring edges to new vertex v
 - 4. If i and j were both adjacent to a neighbor vertex k
 - Accumulate edge weight(v; k) := weight(i; k) + weight(j; k)





Spectral Guarantees Coarsening (a little more complicated...)

- 1: Input: Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{W})$, eigenvectors \mathbf{U} of the normalized Laplacian \mathcal{L} , target size n.
- 2: if $\lambda(N) \leq 1$ then
- 3: Set $k_1 \leftarrow n$

▷ Spectral Clustering

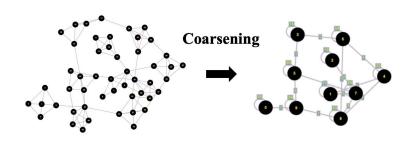
- 4: **else**
- 5: Set $k_1 \leftarrow \arg\min_k \{k : \lambda(k) \le 1, k \le n, \lambda(N n + k + 1) > 1\}$ > Iterative Spectral Coarsening
- 6: $k_2 \leftarrow N n + k_1$.
- 7: while $k_1 \leq n$ do
- 8: $U_{k_1} \leftarrow [U(1:k_1); U(k_2+1:N)]$
- 9: Apply k-means clustering algorithm on the rows of U_{k_1} to obtain graph partitions $\mathcal{P}_{k_1}^*$ that optimizes the following k-means cost:

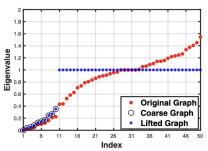
where r(i) is the i^{th} row of U_{k_1} .

- 10: $k_1 \leftarrow k_1 + 1, k_2 = N n + k_1$
- 11: **return** coarse graph \mathcal{G}_c generated with respect to the partitions with minimum k-means clustering cost as

$$\mathcal{P}^* = \arg\min_{k_1} \mathcal{F}(oldsymbol{U}_{k_1}, \mathcal{P}^*_{k_1})$$

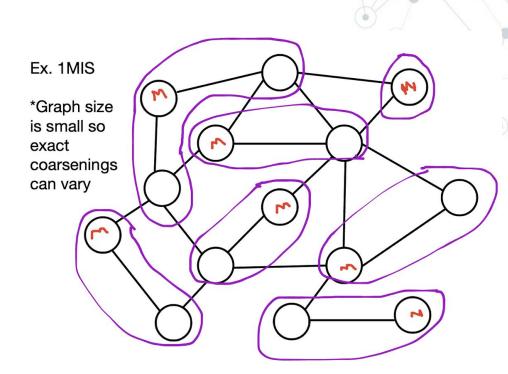
 Build a subgraph that is as structurally similar to the original graph as possible





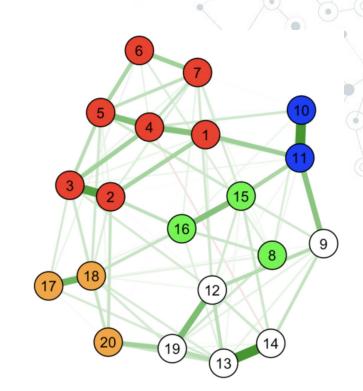
Parallel 2MIS

- Find the Maximal Independent Set in parallel to determine which nodes in the original graph G are Supernodes
- Nodes of the new coarsened graph become all nodes within 2 edges of the Supernodes in G [2MIS]
- Similar accumulation process to Maximal Matching



Adapted Walktrap Community Detection

- Algorithm based on Pons and Latapy's Community Detection
- Choose a set of nodes and perform random walks that are a specified set of steps away to determine communities
- Adapted for coarsening: the communities become Supernodes for the coarsened graph
- Chosen for its similarity to the BallMapper algorithm (Dlotko, 2019)
 - Radius of ball in point cloud = Steps from node in structured graph



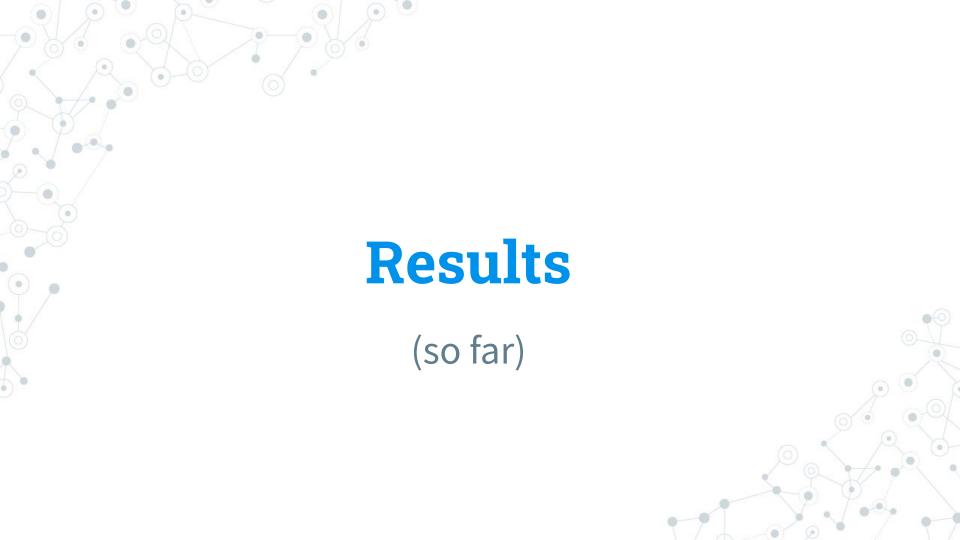
https://psych-networks.com/r-tutorial-identify-communities-items-networks/

Implementation

- Graph: bcspwr10 from Graph500
 - # of Vertices = 5300
 - # of Edges = 8271
- Coarsen the graph with each algorithm and analyze metrics
 - Do 1 round of coarsening
 - If the algorithm requires a coarsening goal, use **75%** of the original graph
- *Some algorithms are self-implemented and may not be in their most efficient state

Current Metrics

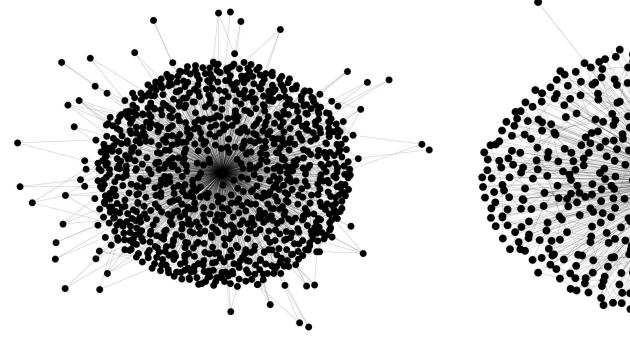
- # of Vertices
- # of Edges
- Approximate Connectivity
- O Density
- # of Connected Components
- # of Basis Cycles

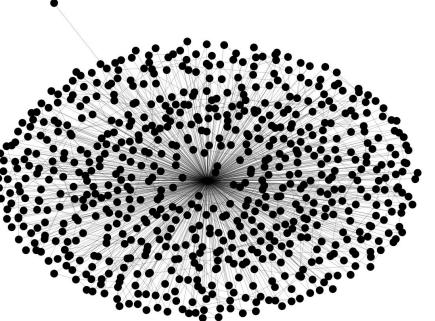


Results Table

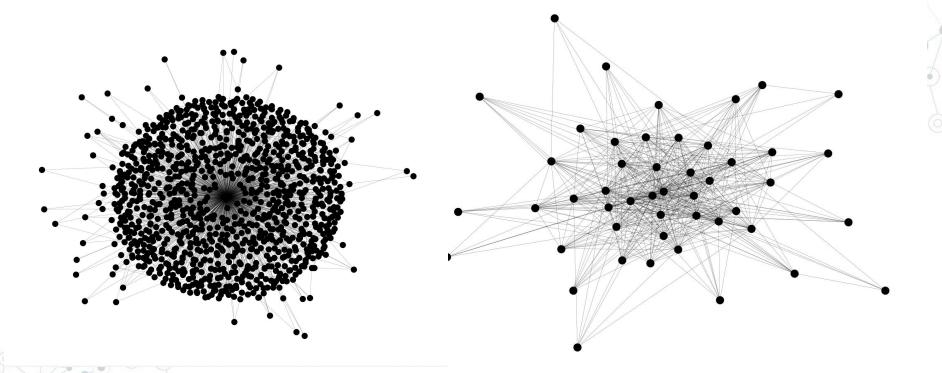
	V	E	~ Connectivity	Density	# CCs	# Basis Cycles	Time (s)
Original	5300	8271	1	0.000589	1	2972	
MaxMatch	2916 (0.55)	5406 (0.65)	1	0.001272	1	2491	0.0110979
Spectral r=0.25	2187 (0.41)	4176 (0.50)	1	0.001747	1	1990	2.0681710
2MIS	1090 (0.21)	4904 (0.59)	1	0.003598	1	1047	0.12111700
Walktrap step=4	47 (0.008)	86 (0.01)	1	0.079556	1	40	0.0636663

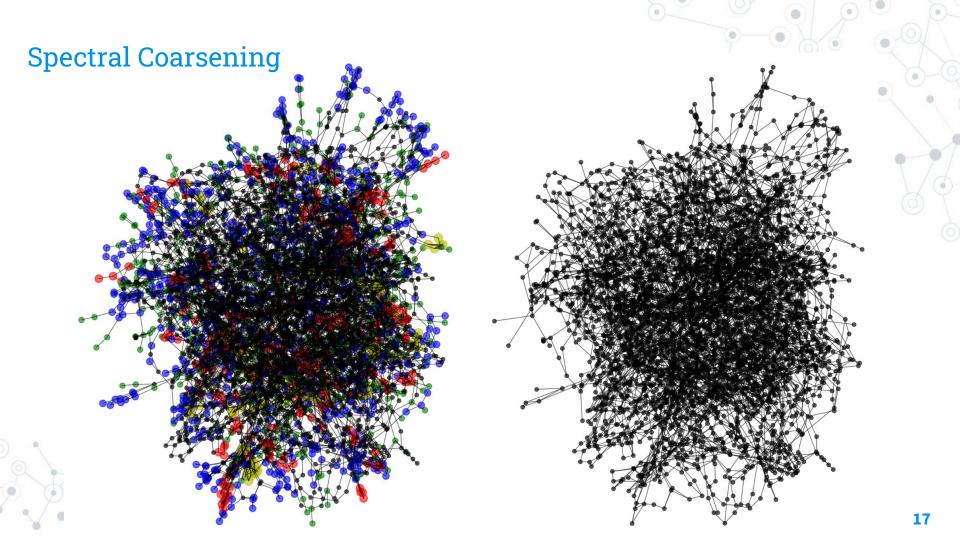
Maximal Matching Coarsening





Walktrap Coarsening





Time Complexity (Theoretical)

- Maximal Matching Coarsening = O(M) * O(k)
 - M = # of edges in Maximal Matching
 - k = time to edit graph (depends in data structures)
- Spectral Coarsening = O(KTNn²)
 - K = # of while loop k-cluster iterations w/ K ≤ n
 - TNn² = the complexity of the k-means clustering
 - T bounds the # of k-means iterations
- $\bigcirc \text{ Parallel 2MIS*} = O(V \log V + E \log V + V \log^2 V)$
 - Parallel algorithms are complex and this does not cover the whole coarsening process
- \bigcirc Walktrap = $O(n^2 \log n) * O(k)$
 - k = time to edit graph (depends in data structures)

Future Work

- Parallelize the algorithms more when applicable
- Adjust Walktrap step size if possible
- Explore at least 1 more algorithm in the current benchmark
- Include more metrics and include nicer visuals to better represent the results
- Compare the algorithms in C/C++ in order to compare performance on different architectures
- Apply benchmark to more complex algorithms [Zollner, 2011]

Final Report Goals (stay tuned)

- Involve persistence to track features as graph is coarsened
- See if Ball Mapper can be applied to data that is structured and has relations
- Add one or two more algorithms
- Analyze more metrics based on the coarsenings

References

- Jin, Loukas, JaJa. (2020). Graph Coarsening with Preserved Spectral Properties.
- O Pons, Latapy. (2005). Computing communities in large networks using random walks.
- Medrickson, Leland. (1997). A Multilevel Algorithms for Partitioning Graphs.
- Kelley, Rajamanickam. (2022). Parallel, Portable Algorithms for Distance-2 Maximal Independent Set and Graph Coarsening.
- Mashemi, Gong, Ni, et al. (2024). A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening, and Condensation.
- Zollner. (2011). A Potts model for junction limited grain growth.
- Madukpe, et al. (2024). Comparative analysis of Ball Mapper and conventional Mapper in investigating air pollutants' behavior.

