Topological Regression Model

TDA Final Project

Persistence Diagram

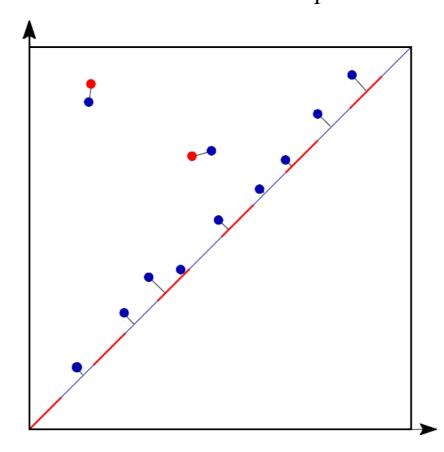
Topological Descriptor

- Representation of topological features such as loops, voids and connected components
- Visualizes b (birth) and d (death) of a topological feature
- Useful in realizing the significant components in vast data.
- Interpretation of Persistence Diagram in Applications

Distance for Persistence Diagrams Bottleneck distance

The bottleneck distance between PD_1 and PD_2 is defined by

$$d_B(PD_1, PD_2) = \inf_{\gamma} \sup_{x \in PD_1 \cup \Delta} \|x - \gamma(x)\|_{\infty}$$



Motivation

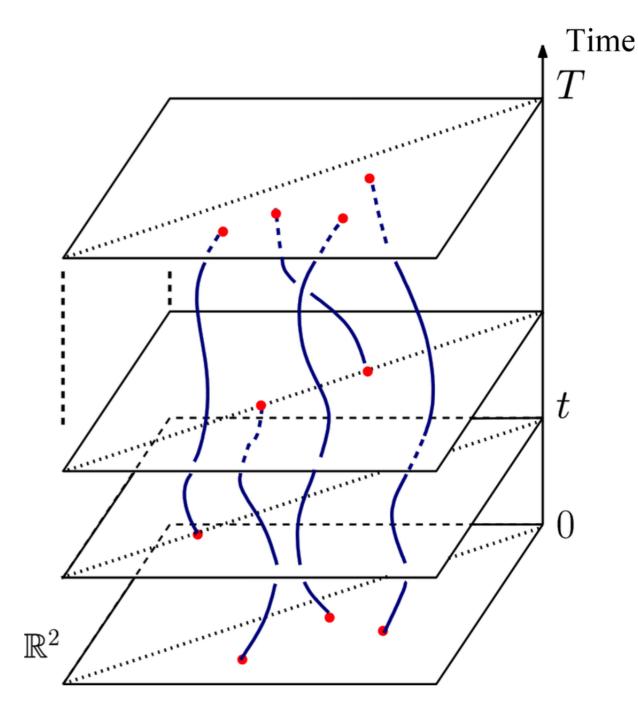
Vine and Vineyard

[Steiner et al, 2006]

- Vine: The trajectory of a single persistent feature as the parameter t changes.
- Vineyard : the collection of all the vines for the entire family $\{f_t\}$

Similar to time-series model

→ Build the regression model for PDs!



Motivation

Regression between probability distributions

Persistence diagram and probability distribution lies in non-Euclidean space.

Several methodologies for regression between probability distributions

Wasserstein Regression [Chen et al, 2021]

Regression between tangential maps from each distribution

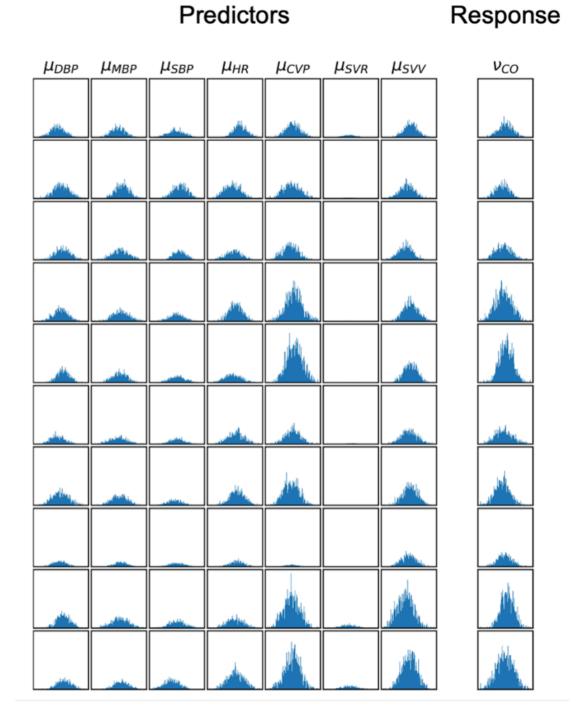
 Distribution-on-Distribution Regression [Ghodrati et al, 2022]

Regression between distribution by optimal transport map ${\cal T}$

Application

Distributional Data Analysis

Finance, climate science, medical science.



Distributional predictors and responses from intraoperative anesthesia records

Regression Model for PDs

Topological Regression Model

Goal : To predict response PDs $\{D_i^{(R)}\}_{i=1}^n$ from predictor PDs $\{D_i^{(P)}\}_{i=1}^n$.

We define topological regression model

$$D_i^{(R)} = (T_{\varepsilon_i} \circ T^*)_{\#} D_i^{(P)}, \qquad \mathbb{E} \big[T_{\varepsilon_i}(z) \, \Big| \, z \big] = z,$$

where

- $T^{\star}:\overline{\mathcal{U}}\to\overline{\mathcal{U}}$ is a model parameter map
- Pushforward $T_\#D = \left\{T(b_i,d_i)\right\}_{i\in I}$ where $D = \left\{(b_i,d_i)\right\}_{i\in I}$
- $\mathcal{U} = \{(b, d) : b < d\}$

Regression Model for PDs

Estimation of parameter T

Finding the map T that minimizes average squared-L2 distance from optimal matchings from $PD^{(P)}$ to $PD^{(R)}$, i.e.

$$\hat{T} \in \arg\min_{T \in \mathcal{T}} L(T) := \frac{1}{n} \sum_{i=1}^{n} \sum_{x \in D_{i}^{(P)}} || T(x) - \gamma_{i}(x) ||_{2}^{2},$$

$$\bullet \ \mathcal{T} := \left\{ \left. T : \overline{\mathcal{U}} \to \overline{\mathcal{U}} \, \right| \, T(\Delta) = \Delta, \, d'(b,d) - b'(b,d) \geq 0 \right\},$$

• γ_i is an optimal matching from $D_i^{(P)}$ to $D_i^{(R)}$, i.e.

$$\gamma_i \in \arg\min_{\gamma \in \Gamma(D_i^{(P)}, D_i^{(R)})} \sum_{x \in D_i^{(P)}} \|x - \gamma(x)\|_{\infty},$$

Regression Model for PDs

Estimation of parameter T

T can be parametrized into $T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$, so that

$$\hat{\theta} \in \arg\min_{\theta \in \Theta} \tilde{L}(\theta) := \frac{1}{n} \sum_{i=1}^{n} \sum_{x \in D_{i}^{(P)}} \left\| T_{\theta}(x) - \gamma_{i}(x) \right\|_{2}^{2}$$

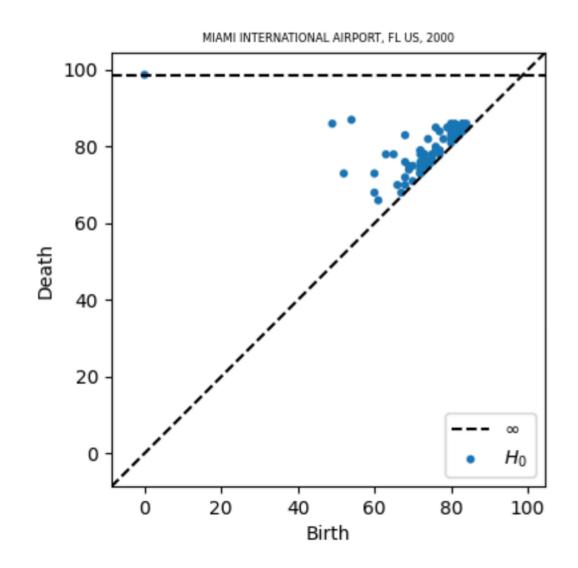
- T_{θ} can be linear model, polynomial, and neural network, etc.
- If T_{θ} is affine (i.e. $T_{\theta}(x) = Ax + b$, where $\theta = \left\{ A \in \mathbb{R}^{2 \times 2}, b \in \mathbb{R}^2 \right\}$), the loss function $\tilde{L}(T_{\theta})$ is strictly convex, guaranteeing a unique solution.

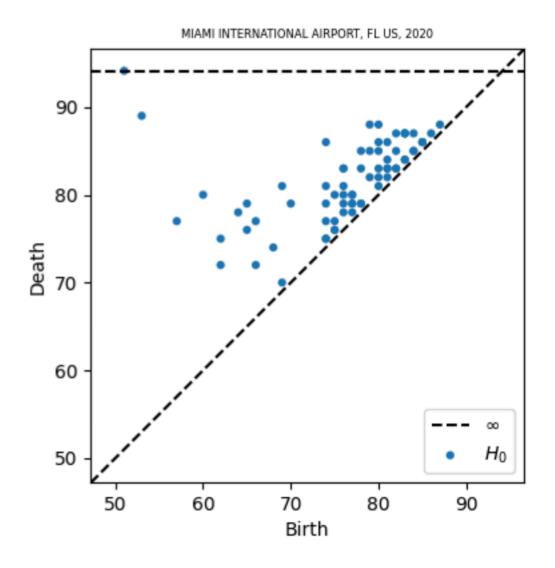
Preliminary Analysis

- 2 climate datasets from NOAA (National Centers For Environmental Information)
- Records of daily temperature in a single year at 10 different stations (airports) in 2000 and 2020.
- Perform regression analysis with $T_{\theta} = Ax + b$ between the persistence diagram at each station using the measured temperature at their respective years.

Numerical StudiesPreliminary Analysis

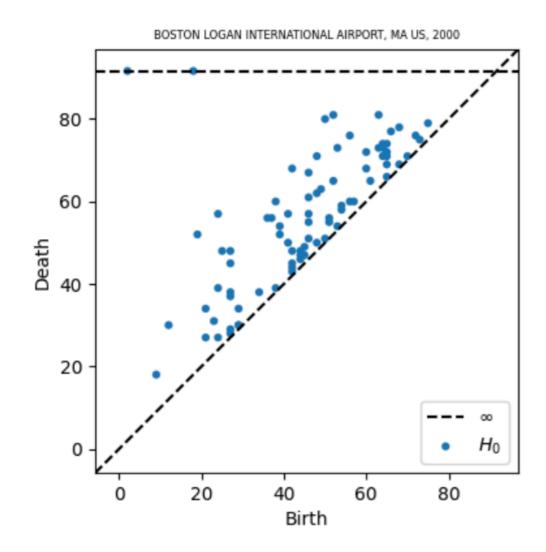
Persistence Diagram (Miami)

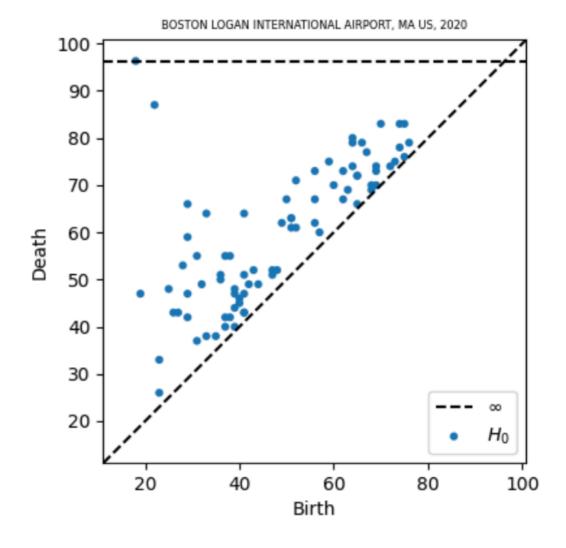




Preliminary Analysis

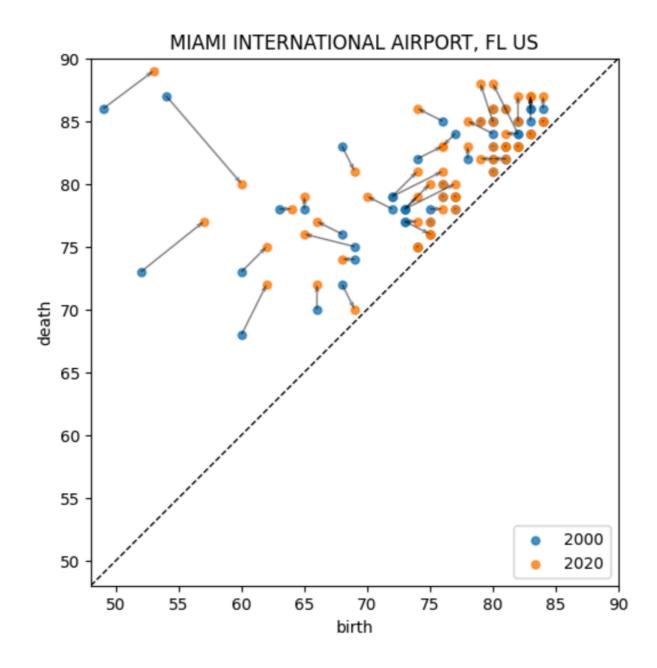
Persistence Diagram (Boston)





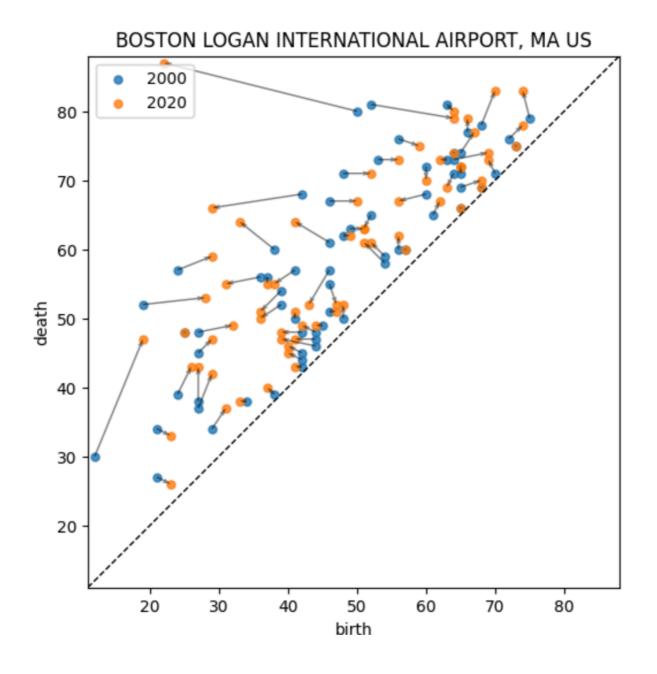
Preliminary Analysis

Pairing using bottleneck distance between persistence diagrams



Preliminary Analysis

Pairing using bottleneck distance between persistence diagrams



Result & Analysis

• Estimated parameter : $\hat{T}(x) = Ax + b$

where
$$A = \begin{pmatrix} 0.9562 & 0.0377 \\ 0.0165 & 0.9455 \end{pmatrix}$$
 and $b = \begin{pmatrix} 0.1785 \\ 3.006 \end{pmatrix}$.

- Interpretation for $A : ||A||_{op} = 0.9786 < 1$.
 - From 2000 to 2020, the point clouds in the PDs has moved down.
- Interpretation for b
 - ullet Compared to the scale of persistence diagrams, the effect of b is minor.

Future Research

- Prediction Tasks
 - Try more data examples ex. image dataset, financial time-series
 - Model evaluation using metrics
 - Parametrize T(x) with more complicated methodologies ex. Neural Network

- Build theories
 - Stability theory, Asymptotic theories

Thank you!