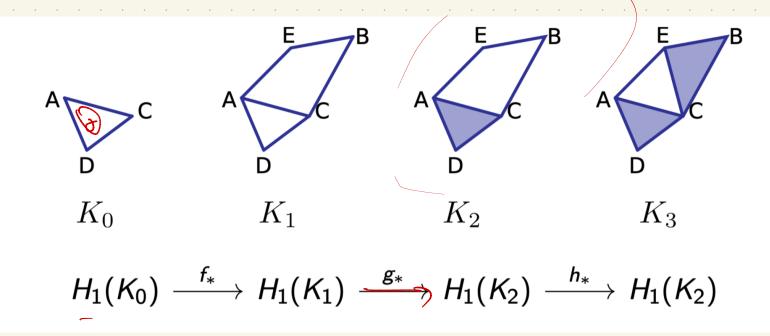
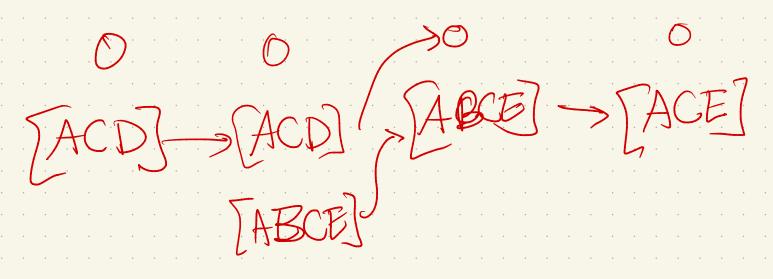

TDA- fall 2025

Persistence

oftw2-due in 1 week · Next week: special assignment Intro: le AARTN a Next week: no class (at a workshop)

And back to persistence.


Induced maps on homology Each Ki Cookin, so we get induced maps Hp(Ki) >> Hp(Kim) Homology module (simplicial Oase): Hp (F(K)): \$= #\(\kappa \) \\
\phi = #\(\kappa \) \\
\ph Ki Carana Ki



$$H_0(K_1) \longrightarrow H_0(K_2) \longrightarrow H_0(K_3) \longrightarrow H_0(K_4) \longrightarrow H_0(K_5) \longrightarrow H_0(K_6) \longrightarrow H_0(K_7) \longrightarrow H_0(K_8)$$

$$\begin{bmatrix}
A \end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A
\end{bmatrix} \longrightarrow \begin{bmatrix}
A$$

Another:

The Pth-persistent homology groups are the images induced by inclusion. $H_{p}^{i,j} = Im \left(H_{p}(K_{i}) \xrightarrow{i} H_{p}(K_{j}) \right)$ $K_{i} \subseteq K_{j}$ The persistent Betti numbers
are $B_{p}^{i,j} = rank (H_{p}^{i,j})$

for a persistence module $H_p(K_0) \longrightarrow H_p(K_1) \longrightarrow H_p(K_2) \longrightarrow H_p(K_3)$

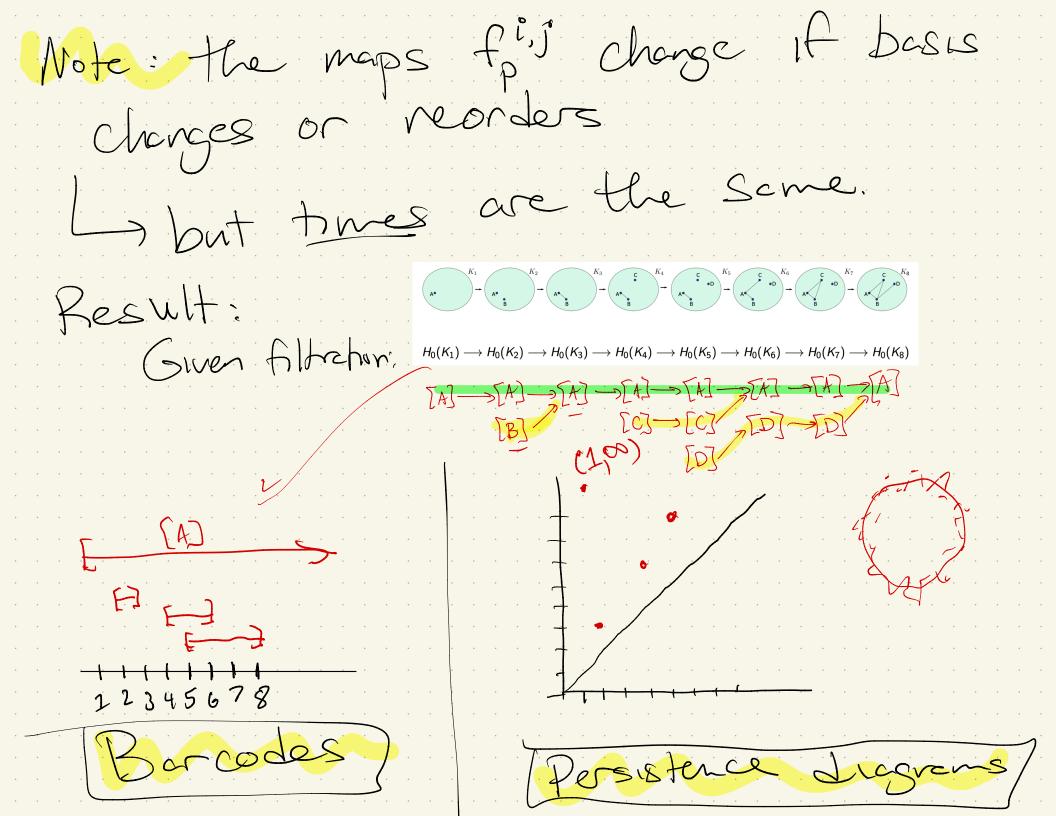
Birth & death We say a homology class 8 & Hp (Ki) is born at Ki It It is not in Hp) of dies entering Ki if it meges with an older class, ie if fiv-10) & Hp 1-1,j-1 but fp 1 (X) & Hp 1,j Worning: not Darks version! $H_p(X_{i-1})$ $H_p(X_i)$ $H_p(X_{j-1})$

Book's version of dock Y dues entering tij th o $\chi \in \mathcal{H}_p(\chi_{j-1})$ is but f(x) = 0

$$H_p(X_{i-1})$$
 $H_p(X_i)$ $H_p(X_{j-1})$ $H_p(X_j)$

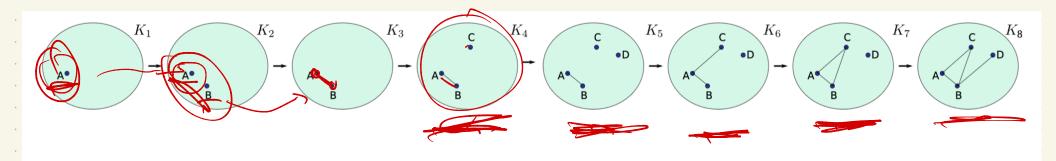
Only issue: no birth/death pairs


Parring (book dh) Let Ic7 be a pth homology class that

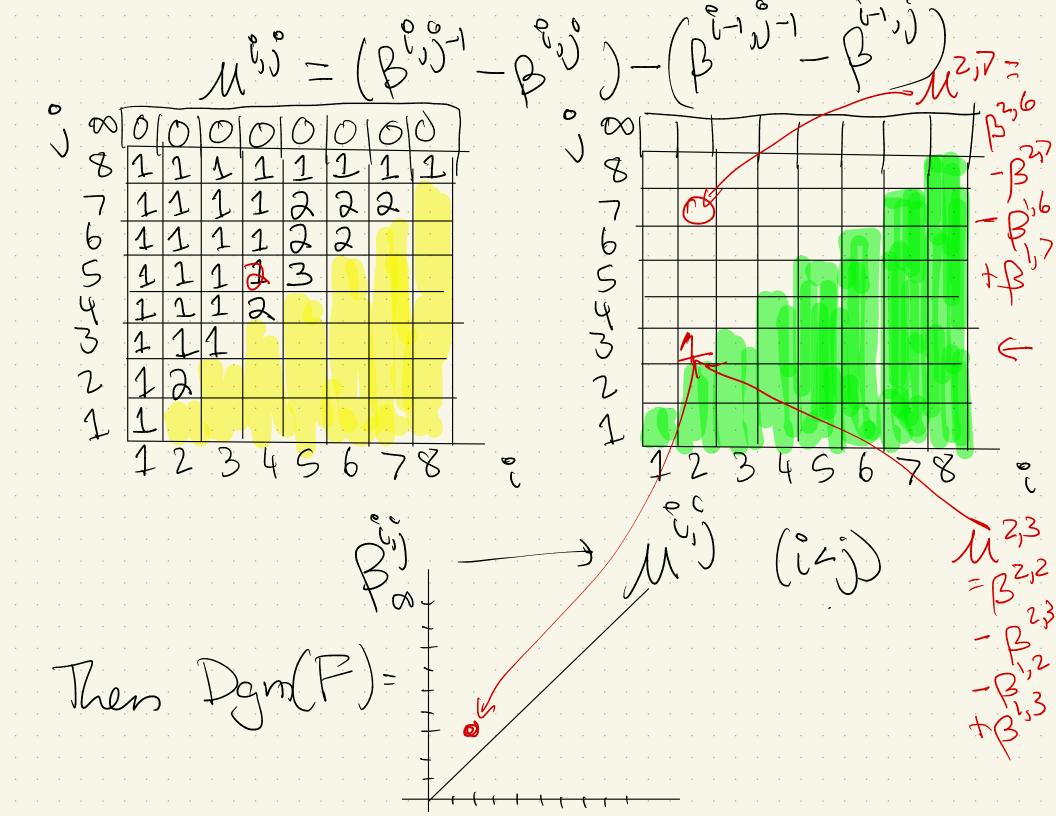

dies entering X3. Then, it is born

at Xi if only if 7 is = iz = -4 ix = i (with k≥1) s.t. · [Cie] is born at Xie (le[1..k]) 6 [C]= flaj-1 ([Ciz])+ -+ flxj-1 ([Ciz]) 6 [x= 1 15 Smellest possible choice

Revisiting: When are births & deaths?

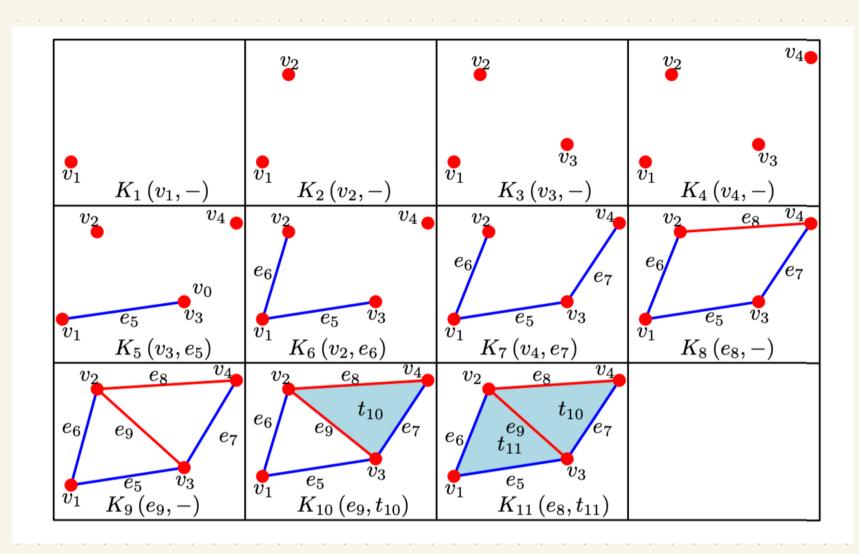

$$H_0(K_1) \longrightarrow H_0(K_2) \longrightarrow H_0(K_3) \longrightarrow H_0(K_4) \longrightarrow H_0(K_5) \longrightarrow H_0(K_6) \longrightarrow H_0(K_7) \longrightarrow H_0(K_8)$$

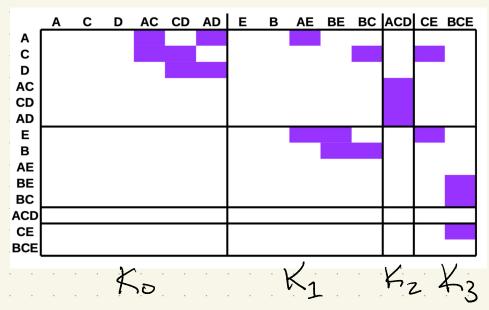
More formally! Counting classes $O \rightarrow H_p(K_1) \rightarrow H_p(K_2) \rightarrow \cdots \rightarrow H_p(K_n) \rightarrow O$ · Attach O vector space at end · Associate n+1 to ann = 00 Then Bris counts alosses born before i which die after is are ative in How can we get # of classes
born at i which die at j?
Hp > Hp > +>> +>> +>> Pairing Aunctions for O < i < j = n+1, define $\mathcal{M}_{p,j} = \left(\beta_{p,j}^{i,j-1} - \beta_{p,j}^{i,j} - \beta_{p,j}^{i-1,j-1} - \beta_{p,j}^{i-1,j-1} - \beta_{p,j}^{i-1,j-1}\right)$ J# of classes born, at that he at $H_{p}(X_{i-1}) \xrightarrow{f_{p}} H_{p}(X_{i}) \xrightarrow{f_{p}} H_{p}(X_{i})$ When Mp 7 + 0, the persitence of a class [c], Per ([c]), which is born at Xi + dies at Xi 15 defined as a; - ai. L> length of barcode lifetne [Tf]=NH with anti=0, Pors(C]=0]. Persistence diggram Damp (F) (also written Damp(f)) Filtration F on K induced by f.


Damp (F) is obtained by drawing a point (ai, ai) with non-zero multiplicity up (iz) on extended plane, mut = 2 where points on the diagonality $\Delta = \{(x,x) \in \mathbb{R}^2 \}$ are added with infinite moltiplicity

$$H_0(K_1) \longrightarrow H_0(K_2) \longrightarrow H_0(K_3) \longrightarrow H_0(K_4) \longrightarrow H_0(K_5) \longrightarrow H_0(K_6) \longrightarrow H_0(K_7) \longrightarrow H_0(K_8)$$

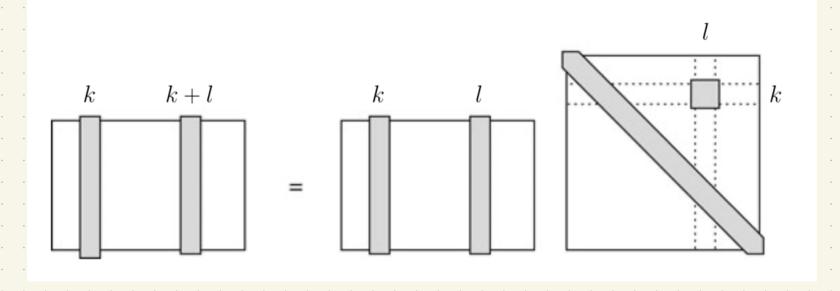
		٠						
	0	0	0		0	0	\bigcirc	0
8	7	t	4	7	17	1	1	1
7	1	4	1	1	Q)	9	10	
16	1	त्र	1	1	4	9		
5	1	1	1(2	3	1/1		
ا بر	7	2	4	8	101		M	
13	1	H	4	111		W		
2	7	y						
	1							
	1	2	3	: 4	25	6	7	8


(30 0)


OK, let's avoid ever doing this by hand again. Let f: K-> M que the index where a simplex 6 appoirs in filtretion. A compatible ordering of the Simplices
15 a sequence 8, 82 5 5m s.t. $-f(\sigma_i) < f(\sigma_j) \Rightarrow i < j$ A C A D C A D C

Essentially, we now have a simplex-wise Altration: assume K; / Kj-1 = 50 LS a single simplex. When psimple of is added, two possibilities! (1) A non-boundary p-cycle c along with its classes [c]+h for he Hp(Kj-1) are born. Call 6; positive (or a creator). 2) An existing (p-1)-cycle c along with 1t3 class [c] dies. Call 5; hegative orecto (Cor a destroyer).

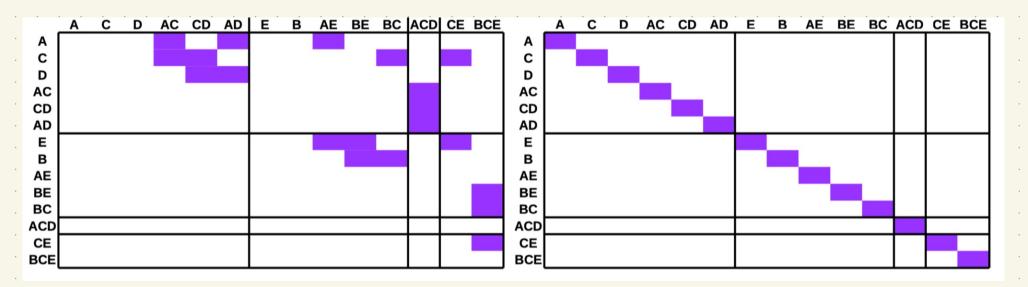
Examples



An algorithm Take boundary matrix, with rows & Columns in simplex-vise order:

· Let low(s) = row of lowest 1 in column j (+ if all 0's, low(j) = NcN)

R is reduced if low(j) # low(j) for any Matrix operations
To add row k to row l, can


Here;

for $j = 1 \cdots m$ do

while $\exists j' < j$ with low(j') = low(j) do

add column j' to column jend while

end for

· B 15 upper triengular, + if we add from left it steys that wey · If a column is entirely O, that Simplex created a homology class (So it is positive) o If a column has a lowest 1, then this simplex killed a class from the previous Step.

Simplex must a premous positive BC ACD CE BCE AC CD AD ΑE BE BC ACD

CE

The number of unpared p-simplices a sumplex-wise thitretion of Its pto Betti number. se pairs to build persistence

	Α	С	D	AC	CD	AD	E	В	ΑE	BE	вс	ACD	CE	BCE	
Α															
С				*											
D					*										٠
C D AC															
CD															
AD												*			
Е									*						
В										*					٠
ΑE															٠
BE															
ВС															٠
ACD															
CE														*	
BCE															

History
Matrix algorithm 18 from Edelsbrunner-Letscher-Zomorodian 2006
Algebraic formulation given in Carlsson + Formorodian 2004
Independent formulations Frosni 1990 - manifold comparison in Endideen space Robbins 1999 - crysteline structures 4 periodicity