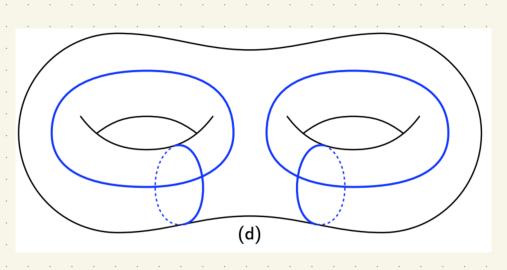
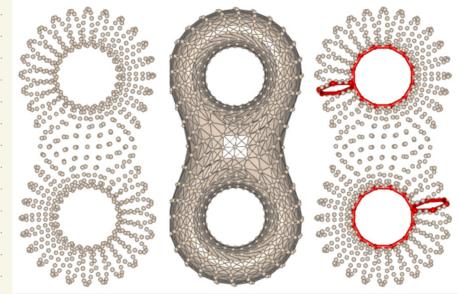
DA-fall 2025

Optimal Cycles (cont)

Last time: Optimal homology basis





Gwen a weight function, find the set of cycles with min total weight which generate Hp.

In opneral

Related question: homology localization Given a p-cycle c, find minimum weight cycle c' such that [c']=[c] Interesting 1/2 · For Z2-homology, NP-Herd · With Z-coefficients, polymonial time (if no torsion)

Algorithm (Z-homology)
Reduce to integer progremming Given p-chain X= \(\int \times \times \) \(\int \int \int \) let $\chi \in \mathbb{Z}^m$ be $\chi = (\chi_0, -\chi_i, -\chi_{ij}, -\chi_{mi})$ Recall: ||X||_ = = ||Xi| of Dp be boundary metrix Op Cp-Cp, Let W be weight matrix:

Why? Take cycle X. \mathcal{L} = \mathcal{L} \mathcal{L} W Xm

Then / WX =

Then: ILP 1S Given a p-chain c, weights W. minimize 1/Wx1/1 X, Y $X = C + D_{p+1} Y$ X E Z M $y \in \mathbb{Z}^{n}$

wher m= # of p-simplices

a n= # of (p+1)-simplices

Problem! Integer Linear Programming

But:

If determinent of every squere submetrix is 0 ±1, then metrix is totally unimodular

Fact: If a matrix is totally unimodulary then the LP also solves the ILP.

Claim: Den 15 totally unimodular when K triangulates a (PtD-dim compact orientable manifold Why? . Each p-simplex is facet of 42
pt/ Simplices =) each row t

> o Known sufficiency conditions for 0-1 matrices work for Dp+1 Heller-Tompkin 56

Orsion Unfortunctely, not 0,1-matrix for Di with icptly of fails for Z2 homology entrely. More generally: Any group G can be written as $G = F \oplus T$ OFS (ZO-DZ) $\circ T = (\mathbb{Z}/t_1 \oplus - \oplus \mathbb{Z}/t_1)$ Jorsian Subgroup

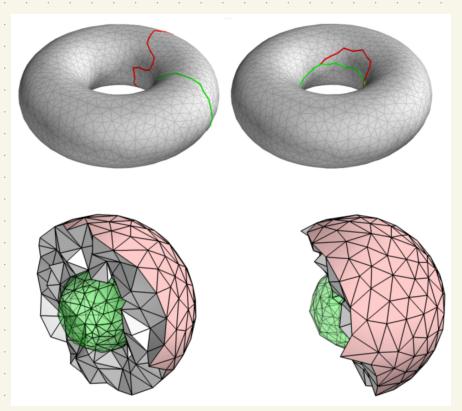
Theorem: DpH 1s totally unimodular

(2) Hp (LyLo) is torsion-free

(3) all pure subcomplexes Lo + L

IN K of dimensions p + pH respectively,

where Lo C L



Dey-Hirani-Krishvamoorthy 204 Optimal persistent cycles Inside a filtration, how to get best' cycle un a persistent homology class?

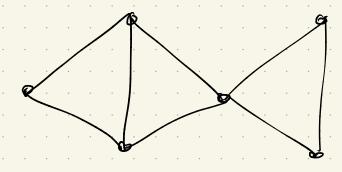
Recall: had barcodes

or diggrams but K_0 K_1 K_2 many choices of représentative:

Again, assume simplices have a weight Function w: Kt -> TR 20 (KP the p-simplices). We say a cycle C= Sx; Si, X; E lz, 15 a persistent cycle for [b, d) if c Is born at KEB and becomes a Dorndey in Kd. A cycle is optimal if it has the least weight for all such cycle for a bar [b,d) [Note: could have $d=\infty$, then no death?

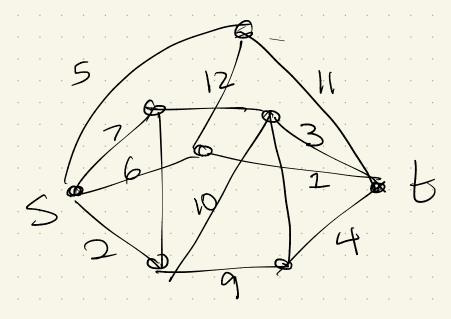
Unfortunately, NP-Hard Dey-How-Mandal 2018 in general (even just H1). However, possible in some cases! A simplicial complex K is a weak (pt)-pseudomenitold if each p-simplex 18 a face of no more than 2 (pH)-5 unplices

Example:



Algorithm for finite intervels (pH)-pseudomanifolds: Based on cuts ? Given G= (V, E) with 2 designated vertices sitts a capacity cle) & R20 Cor can have a collection of source vortices + sink vortices) A cut is a portition s of V into (S,T) st. 2 4 · SES, tet

The acpacity of a cut (ST) is defined as $\leq c(uv)$



Dual graphs In a planer greph, the dual graph a well studied object: G= (V, E) (in blue)

From persistent cycles to cuts Build a dual complex: Sinco Connor vertices: (pH) simplices edges: p-Simplices Plus infinite vortex for boundary (PH)-simplices

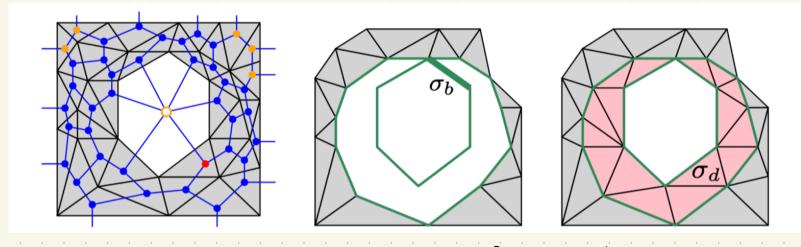
If 6 & 6 are creator or destructor Simplices, make 6 the source of Sink in Va plus simplices not in Kd. Edge capacities:

of 6 or before, capacity = weight.

ofherwise = 00

So, what is a cut here?

Inhator



Consider a persistent [b,d) cycle C

The first of the context of t

(S,T) has finite capacity which edges cross it? In fact: any (St) out must yield a persistent cycle in (b,d), since con't use the or-eages Result Works well on many date sets

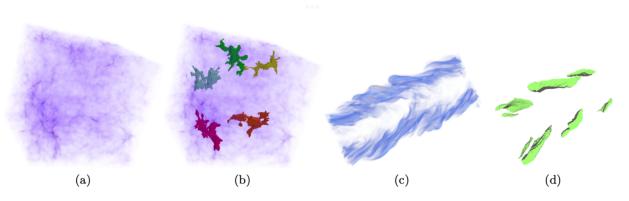


Figure 4: (a,b) Cosmology dataset and the minimal persistent 2-cycles of the top five longest intervals. (c,d) Turbulent combustion dataset and its corresponding minimal persistent 2-cycles.

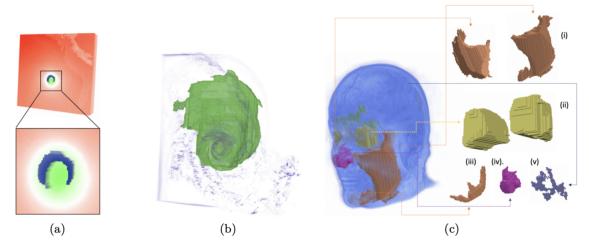


Figure 5: (a,b) Minimal persistent 2-cycles for the hurricane model. (c) Minimal persistent 2-cycles of the larger intervals for the human skull. i: Right and left cheek muscles with the right one rotated for better visibility. ii: Right and left eyes. iii: Jawbone. iv: Nose cartilage. v: Nerves in the parietal lobe.

Take away
Can connect some interesting classical
graph algorithms to homology!

