DA-fall 2025

Monodromy

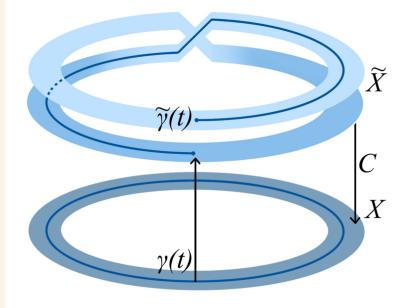
Last time: Directional Transforms Take ACTRd, a compute topological Signature (ECC, PD, Reeb graph) for Sublevelset Atrahon for every Lirection WE Sd-1 Big result/surprise:

Monodromy: effect where loops in a base space don't lift to loops a covering space Consider space X, loop 8, covering X, and a lift 8. IF $\%(2\pi)$ then & exhibits monodromy. (Usually Studied for polynomials on points We say 8 hus Monodromy of the order k if k repetitions of the covering loop returns to the starting point, + k is minimal such value!

$$\widetilde{Y}(0) = \widetilde{X}^{k}(k2\pi)$$

$$= \widetilde{X}^{0} - 0\widetilde{X}$$

$$= \widetilde{X}^{0} + 0\widetilde{X}$$

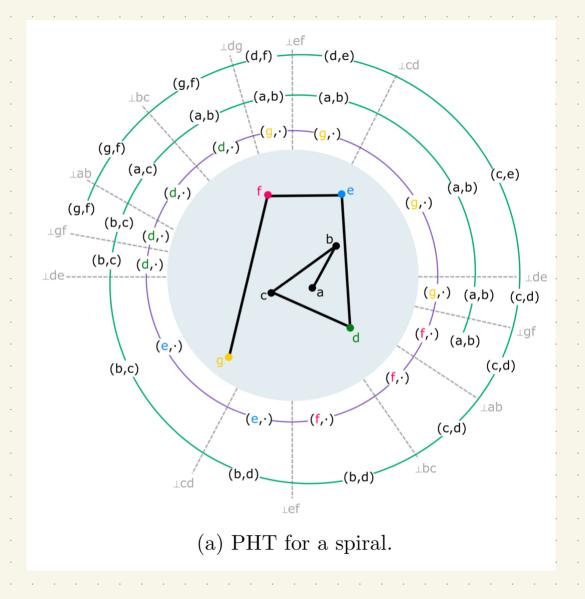


Here: K=2

Monodromy & directional transforms

Recently Ayra et al 2024 studied monodromy

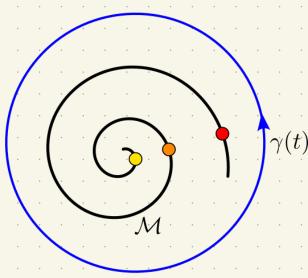
for the directional transform:



Star-Shaped objects in TR2 A shape Mis Star shoped if 7 point CEM such that for any x ∈ M, the line is Contained inside of M. Arya et al prove that if $A \subseteq \mathbb{R}^2 + A$ ster-shaped => PHT(A) has no mono dromy. Proof technique: de compose X_4 M_3 M_4 M_5 M_6 M_0 X_1 Into Sectors, & Show PHO(A) = (P) PHO(Mi)
sector
Mi

Generalizing Unfortunately, unclear if reverse holds, so not (jet) a complete characterization of what monodromy is catching. In IRd for 1-3, proof does not work: there are star-snoped objects where PHo Cannot be decomposed into sectors

Other direction: how much mor	no drowy
Can we find? Vineyard viewpoint:	
Monodromy is a permutation	
of points in "z-avus"	
Back to that spirel:	



Adifferent transform Onus et al Let d(ox): M > R be the distance from any X e TRd to M C TRd

C) called radial distance for Fix a loop 8: [0,217] -> TZd Set X= X(t) for t E [0,217] Granity of filtrations d(., 8tt)) M Closed Uneyard map: CVm: S' -> S'x Dgm Dgm(d(0,x)m) that (t, Dam (d(o, Xt)) M))

Re-doing the spiral In this example, the vines	will still
induce a map from Dam (d(0, 800))m) to itself which permutes the points	
Vineyord!	$\mathrm{Dgm}_0(d(\cdot,\gamma(t))_{\mathcal{M}})$
Here, we have monodromy of	order 3.

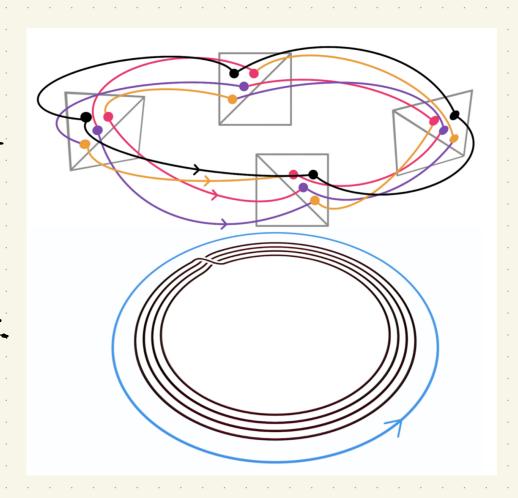
Arya et al 2024 Can we demonstrate monodromy in higher dimensions! Which objects have it, a how much? Theorem C., Fill more, Stephenson, Wintreeden Monodromy of any order K can be created in the l-vineyard of the radial transform of a manifold M embedded in Ret

Idea for how to prove

We know the radial vineyard can reflects
parts of the topology of input space M.

If M were a Draid, with period 2114, we could get order k monodromy.

Braids have previously connected to monodromy.
Cohon + Social 1997,
Cogollado - Agustra 2011
Salter 2023, Salter 2024



Braids A braid on M strands is the equivalence class of the disjoint union of m intervals B: I > D2xI, monotonically inrecsing wrt I, such that end points are a permutation of start points, under ambient braid 150 topy. Variant of Redementer Moves

Figure 4: The Reidemeister moves. Left to right: Type I, Type II, Type III.

Composing brain If we look a rineyards, can see some of the Same patterns Low can ask if they Contain braids

Braids of knots

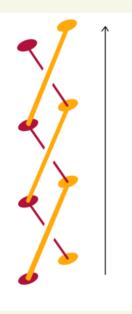
If we identify endpoints of a 1

ID3

If we identify endpoints of a Draid & map canonically to torus in IR3, we get a closed Draid

Theorem Alexander 1923

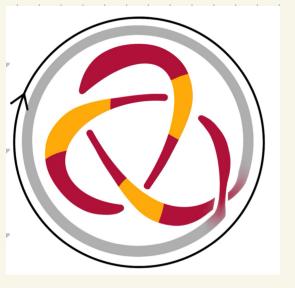
Every knot or link is equivalent to a closed braid.

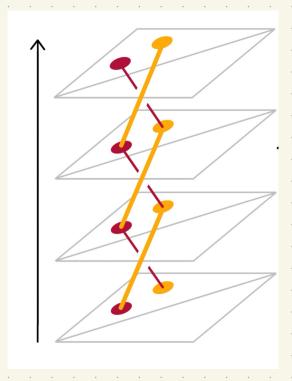


Question: can vineyards "brend"?

Theorem C.-Fillmore-Stephenson-Wintrecken

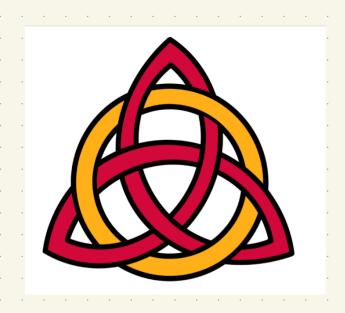
Gwen any braid B, there exists a manifold MCTZd 4 a closed curve & CTRd Such that identifying the ends of the vineyard of d(, X(t))m will yield a braid B' which is Equivalent to B after removing Spurious components.





Construction
Note that both M and 8 must be
carefully constructed to work together!
Overview:

Start with a closed broad BCR2, with k components and strands.



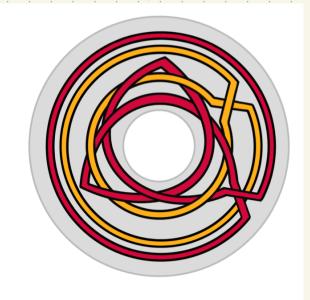
[Note: Not showing the broad here, but k=2 and S=3]
We'll convert this to a manifold in \mathbb{R}^3

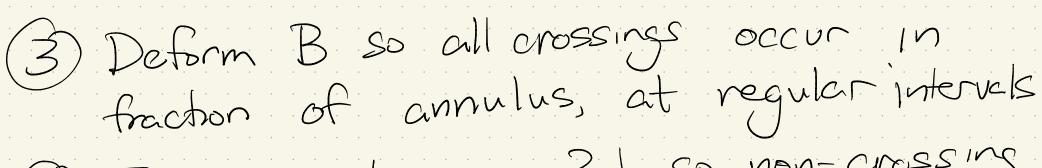
(1) Redrow in a small neighborhood of an annulus, where strands follow

fixed radii

2) Then, introduce an extra 'twist" per component, 4 wrap loop around outside of annulus

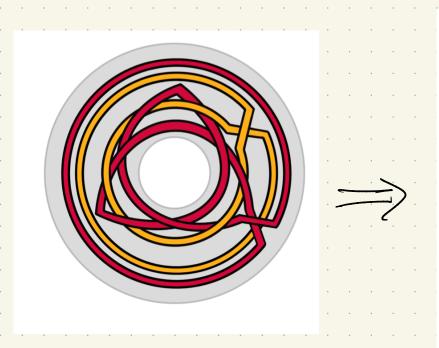
=) adds O(sk) crossings and gives n=S+K Strands total

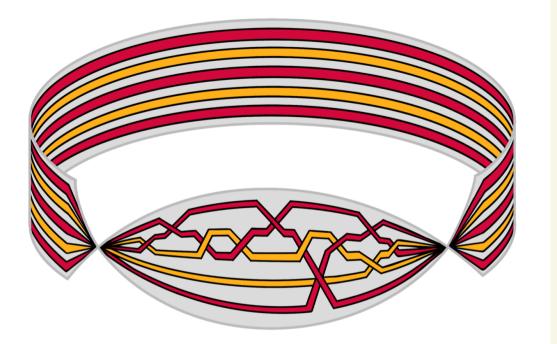




4) Twist annulus in 3d, so non-crossings?
Part is orthogonal. (Note: no new crossings!

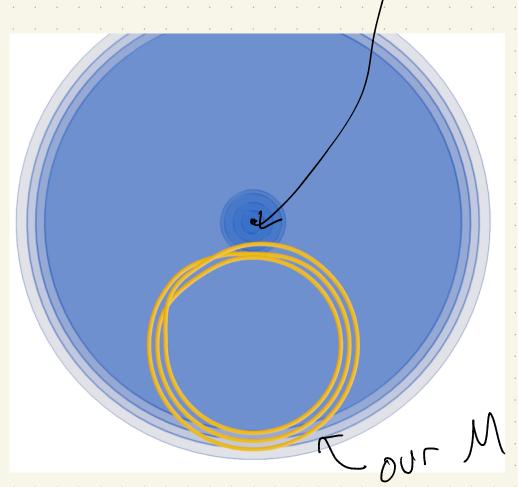
(3) Set observation loop to follow annulus at fixed distance a near "center"





The vineyard Several technical lemmas relying on Morse theory at angles show that Dirths in Ho all occur before dooths: point on 8

This means we can use embedding to control vineyard diagrams.



Back to that extra loop

Elder rule in persistence

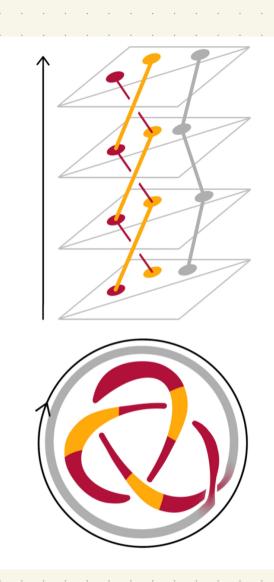
The first birth & last

death are paired.

We added an outer stand

to account for this.

Result: For each component, will be an unlinked strand, which will be an extra circle in uneyard.

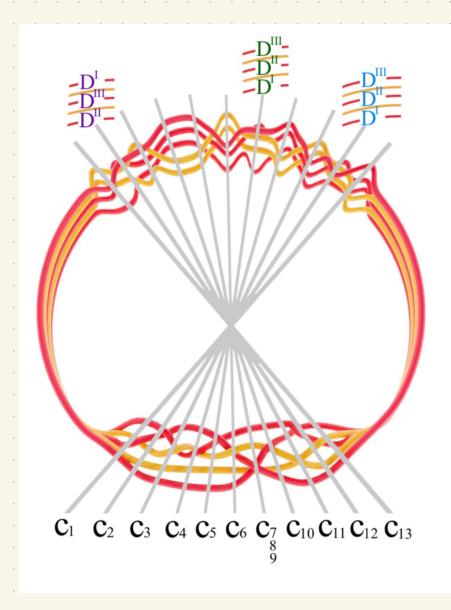


Parameterizing the vinexad Our Vines have $h\otimes \longleftarrow \bigcup \rho$ annular coordinates: O, har P $(\theta, \underbrace{R-b}^{j}, D\underbrace{D^{j'}-2R})$ Away from crossings, vines have distinct P so h doesn't matter. To get correct over/under crossings in vineyard we need to play with the geometry of our embedding a bit ...

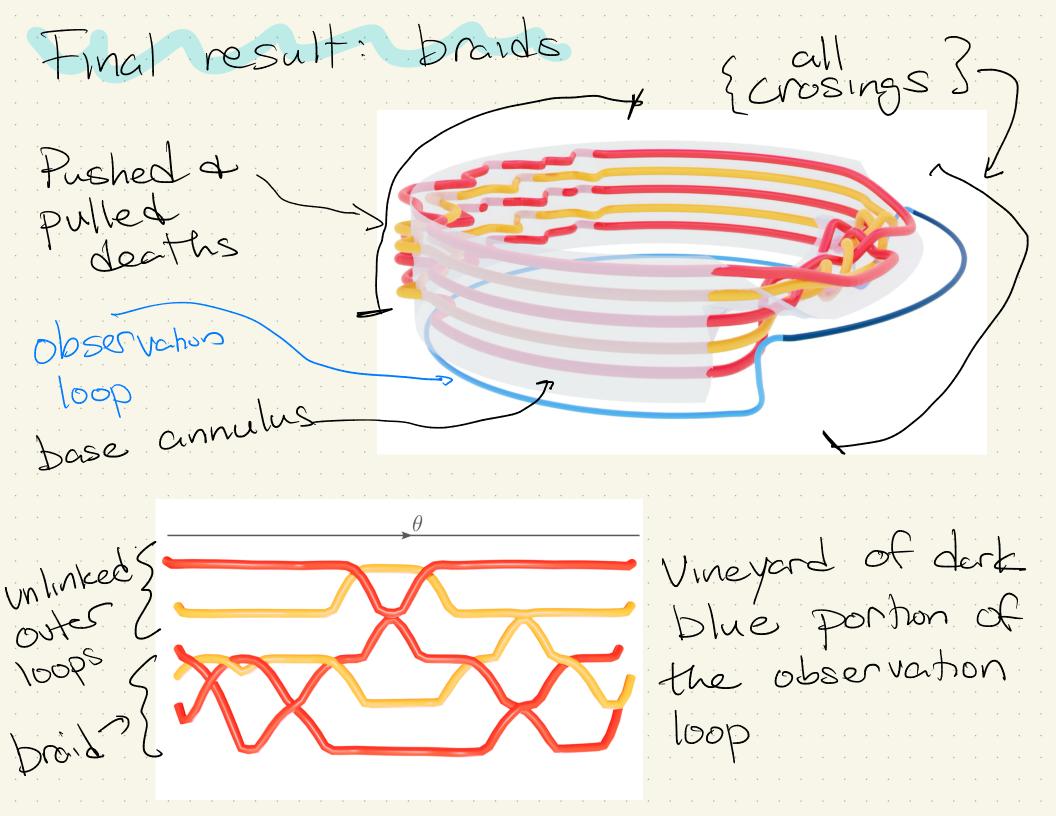
Pushing or Pulling

Our construction ensured that crossings are evenly spaced, of all deaths occur at opposite points.

Therefore, we perturb deaths to make sore uneyard has correct crossings



(Note: hiding some intense calculations here.)



Higher Jimensions To have this cakerlation work for higher dinensions, take (P+1)-dinensional X-offset of braid BXO in R3 DTRl-1 < TRd. Seven this wanifold construction (+ Same base loop), vines in our l-vineyard will be a-close to the

O-vineyardi

So why study vineyords! Recognizing Knots is not easy L) but classifying vineyards might Involve Knots That said, classifying knots is very well

Ther (new!)
approaches
ignore the
knots

Through the Grapevine: Vineyard Distance as a Measure of Topological Dissimilarity

Alvan Arulandu 1 , Daniel Gottschalk 2 , Thomas Payne 3 , Alexander Richardson 4 , and Thomas Weighill 3

¹Harvard University, Cambridge, MA
 ²University of Southern California, Los Angeles, CA
 ³University of North Carolina at Greensboro, Greensboro, NC
 ⁴Bowdoin College, Brunswick ME

October 29, 2025

Abstract

We introduce a new measure of distance between datasets, based on vineyards from topological data analysis, which we call the vineyard distance. Vineyard distance measures the extent of topological change along an interpolation from one dataset to another, either along a pre-computed trajectory or via a straight-line homotopy. We demonstrate through theoretical results and experiments that vineyard distance is less sensitive than L^p distance (which considers every single data value), but more sensitive than Wasserstein distance between persistence diagrams (which accounts only for shape and not location). This allows vineyard distance to reveal distinctions that the other two distance measures cannot. In our paper, we establish theoretical results for vineyard distance including as upper and lower bounds. We then demonstrate the usefulness of vineyard distance on real-world data through applications to geospatial data and to neural network training dynamics.

· Decompose into vives · Project vives into xy plane · Messure length there

