TDA-fall 2025

tomology (finally!) Recop.

firstfW 15 Jue today

Loupland post to Carres

second HW-pasted after also

Last time: Chain complexes

A p-chain: formal sum of p-simplices in Ki Candat  $X = \sum_{i=1}^{n} a_i \sigma_i$  and  $a_i \in \mathcal{I}_{\mathcal{I}}$ > CpH(K) Opri Cp(K) -3... group Boundary maps op: for any simplex 6 = Cp  $\partial_p(\sigma) = Z_{phre} P_{normal}$  Cycles  $Z_p = C_p$ :  $\partial_p(x) = 0$ Boundaries BP = Cp & elements are but

Boundaries BP by dpx1 = 1m dpx1

Note: Since of opti(d) = 0 Hat Cpr(K)

=> every p-boundary is

also a p-cycle

So we get:



Example-Z= Vo Eller Generators of B1(K)? look et C2: 5= [v.v, v3] ~> 02(5) = \(\lambda\_0 \lambda\_1 + \lambda\_1 \lambda\_3 \rangle Generators of Z(K)? Wesenstyles

ker d, feets

V, V2 + V2V3 + V, V3 = d,

Vol, + Vol3 + V2V3 = d2

Vol, + Vol3 + V2V3 = d2 V, VL+V2V3+V3V0+V0V1=03

Quotient spece Take a vector space Vover field F, and WCV a Subspace Define on V by Xny iff X-y E W Equivalence class of X: [X]=X+W= {X+W wew}  $\lambda \in [x] \Rightarrow x - \lambda \in \mathbb{N}$ 

Then, quotient space V/W is E[x] xeV].

Fact: V/W is a vector spece with · Scalar multipheation a[x] = [ax]

· Addition:

Homology The pth homology group is the quotient space:  $H_{p}(K) := Z_{p}(K) B_{p}(K)$ Cp+1 dp Cp+1 dons 1/2 CXJEHP(K)JETR acycle 3 & BP) = { X + Opm } DE Cpm

We say of BE Cp(K) are homologous IP [X] = [B] in Hp(K) So:  $W = B + J X Ar X \in Cpti(K)$ Cycle boundary dem

Time for an example.

Can we had homologous 1-cycles? V4 V3 Consider: 0x = V1V2+ V2V3 + V3V4+ V, V4 B= V, V2+ V2V3+ V3Vy+ VoVq+ VoV It homologous, need a 2-chain 8 s.t.  $\alpha = \beta + \partial_2 8$ ,  $\gamma = Vovi + V_1 V_9 + VoV_9 = [0]$ Here, H<sub>1</sub>(K)= < ×,0> = < ×,0> E B petrobedren incide tens tree!

A C Well:  $C_3(K)^{\frac{1}{2}}$   $C_2(K)^{\frac{1}{2}}$   $C_1(K)$ A H (V) - 1, - 1 = Z2/B2 What is in (3)? un (dz) = 0 (nothing in Cz)

What about ker (dz)? Y-acd+ ace+cde+aed

Chain of Ds, cancels under dz So: H(K) = 50,00 = 12/820

Betti numbers

The pth Bett number is the rank of the p-Jim homology: Br = vank (Hp)

$$\beta_{1}(X')=1$$

$$\mathbb{R}_{\underline{\Lambda}}(\mathbb{X}_{2}) = 0$$

Some common spaces D'Graphs: 1d simplicial spaces  $C_2(G)=0$   $\xrightarrow{\partial_2}$   $C_1(G)$   $\xrightarrow{\partial_1}$   $C_0(G)$   $\xrightarrow{\partial_2}$  0Bo: boundaries of 1-chains (= paths) · So Ho (G) = connected components · For H1: No 2-cells => B1=0 What is Zy? any ople Dasis for Hi- minimum cycle basis



Surfaces (cont):

In the end: non-zero for Ho, H1, 4 Hz

$$\dim H_k(S_g) = \begin{cases} 1 & : & k = 0 \\ 2g & : & k = 1 \\ 1 & : & k = 2 \\ 0 & : & k > 2 \end{cases}.$$



Erickson-Whittlesey 2005

Hz: the only 2-cycle is the union of all D's

H1: 29 cycles per handle

Computing homology groups lo compute Betti number: Bp = dim (Hp(K)) Well, for any linear transformation f.U=>V, Jim (U) = Jim (korf) + Jim (imf) Set f= op: Op! Cp1 dim(Cp) = dim(ker dp) + dim(im dp) Also, for a guohent space V/W, dim(Y/W) = dim(V) - dim(W) BP = dim (Z) - dim (B)

So- computye! Back to boundary metrices  $\begin{array}{c|c} D_{1,N_{p}} & Q_{1,1} \\ D_{2,N_{p}} & \end{array}$ b.11 b 1,2 PSIMPER bupine Lang DN(p-1),1 = p-1 chain Rows are a basis for Cp-1 Columns are a basis for Cp How to find rank?

Simplify to Smith-Normal Columns

(a exchange rous/columns with 0 on Jugard)

Goal: More 15 to diagonal Smith-Normal Form:  $_{-}$  rank  $\mathsf{C}_{n}$  $\sqrt{P} = \operatorname{rank} \mathsf{C}_{p-1}$ then Bp=rank (Zp)-rank (B

example: solid tetrahedron c+dab+ac+bcac+ad+bc+bd bc+bd+cdabc+abd+acd+bcd

Next time: Simplicial Maps of induced homology Diagram Chasing of hopefully persistent homology Recall: A simplicial map between abstract
Simplicial complexes f: K > L 15 Induced
by a map on vertices V(K) > V(L)

Ly a map on vertices V(K) > V(L)

Traction maps: i: K > L, K < L

Traction maps: i(6) = 6

Passing to chain complexes

Any  $f: K \rightarrow L$  naturally extends to

a map on chain complexes:  $f_{\#}: C_{p}(K) \rightarrow C_{p}(L)$ 

Results in a diagram:

--> Cp+1(K) -> Cp(K) -> Cp(K)->...

 $C_{p+1}(L) \longrightarrow C_{p}(L) \longrightarrow C_{p+1}(L) \longrightarrow$ 

Claim: fx d = d Cp (K) Op Cp-1  $C_{p}(L)$   $C_{p-1}(L)$ a GECp(K)

fu (cycle inK) = cycle in L foundary in K) = Doundary in L - commutes! Decause Consider a cycle:  $C_{p}(K) \xrightarrow{\partial p} C_{p-1}(K)$ 

This induces a map on homology."

In the (K) -> Hp(L)

[2] + [f\*(a)]