DA-fa 1 2025

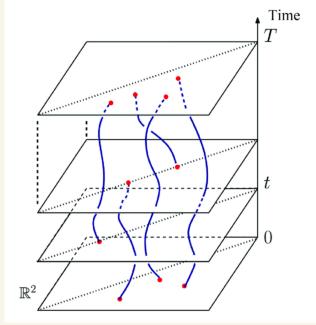
Directional

s Proposals ->
please email to me

Next Wed grest lecture

Kecap Last time, we saw time-verying functions which yielded a family of persistence diagrams. Stability => can connect points between the diagrams

 $V(X) = \left\{ D(X(t)) \middle| t \in [0,1] \right\}$ $[0,1] \longrightarrow D \longrightarrow Space of poss. Jugarens$ $L \longmapsto D(X(t))$ Jam



Vatural question: Are there good families of functions to study which capture teatures Directional transforms are one increasingly popular option: Shape A E IRd take we Sd-1 by fw = height in ws directions ? $f_{\omega}(x) = 4\omega_1 t_2$

Recall: Euler characteristic Vertices - Edges + Foc

conver:

Image

30

12

20

Name

Tetrahedron

Hexahedron or cube

Octahedron

Dodecahedron

Icosahedron

	Euler characteristic:	Faces	Edges	Vertices	
	$\chi = V - E + F$	F	E	V	
٦	2	4	6	4	
	2	6	12	8	
	2	8	12	6	
(2	12	30	20	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Name	Image	Vertices V	Edges <i>E</i>	Faces	Euler characteristic: $\chi = V - E + F$
Tetrahemihexahedron		6	12	7	1
Octahemioctahedron		12	24	12	0
Cubohemioctahedron		12	24	10	-2
Small stellated dodecahedron		12	30	12	-6
Great stellated dodecahedron		20	30	12	2

Generalized Enter Characterista For any Simplicial complex K with Np Simplicies of dimension Po Euler characteristic LS $\chi(r) = (-1)^p n_p$

Example

E B

Collected D

Collected D

$$X(K) = -n_3 + n_2 - n_1 + n_0$$

= -1 + 4-7 +5

Invariant on topological spaces

Name	Image	X
Interval	•	1
Circle		0
Disk		1
Sphere		2
Torus (Product of two circles)		0
Double torus		-2
Triple torus	%	-4
Real projective plane		1
Möbius strip		0

hearem For any simplicial complex K where Np=# of pdin simples, $\chi(K) = \leq (-1) n_p$ Ba= rank (Hp) Be

Cheek:

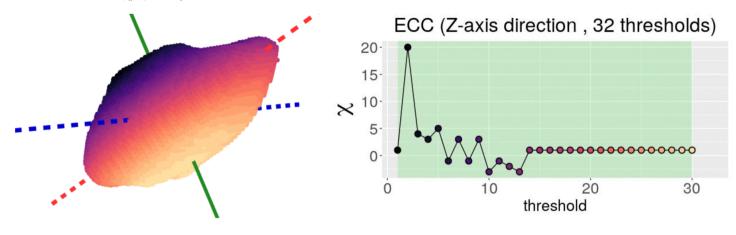
VUSUS

Euler characteristic ouve Let $E(a) = \chi(f^{-1}(-\infty,a))$ For each a

Euler transform · Fix A = TR · Fix direction WESd · Then fw A A > TR where fw(x)=<xxw> for any direction w D Fuler curve wrt w

Euler Characteristic Curve

- ullet Get function $f_\omega:X o\mathbb{R}, x\mapsto \langle x,\omega
 angle$
- Get ECC $a \mapsto \chi f_{\omega}^{-1}(-\infty, a]$



Transform Let MJ = space of all finite simplicial complexes in RJ and AE MJ: ECT(A): Sd-1 -> fens on R $\mathcal{W} + \mathcal{A} \times \mathcal{A}$ Taking a step book; consider all such maps: Ect. Md -> Fons from Sd-1 to Euler curve $A \mapsto \chi_{\omega}(A)$ In other words: ECT takes a space of gets all Euler curves for all possible directions, Theorem Turner, Mukheyee, Boyer 2014 For compact, definable sets in 2022 TRd, the map ECT is In jecture. Translation: Given all directions, thought of all two shapes are identical if all that cal. Why is this surprising?

• Euler characterista 19

Recall

Name	Image	X	
Interval		1	
Circle		0 -	\
Disk		1	\
Sphere		2	
Torus (Product of two circles)		° (K
Double torus	8	-2	
Triple torus	8	-4	
Real projective plane		1	
Möbius strip		° [=	

all directions 6 all sublevel Sets Proof idea (Simplicial complex version) For every simplex, need a direction where ECT "sees the simplex:

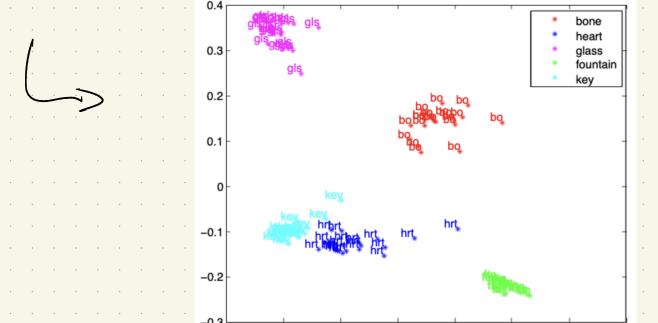
Original proof 15 not in simplicial Setting.

Fasy et al 2019 Verbose How many directions? Curry et al 2022 que a bound based on the number of Euler critical values -> exponental in Junen Sion Lasy et al 2019 show they can use O(n2*td) directions for n simplices embedded in Rd with K-Jimensional complex. (technically using a slight variant called verbose ECT)

Initial proof of concept (2014 peper)

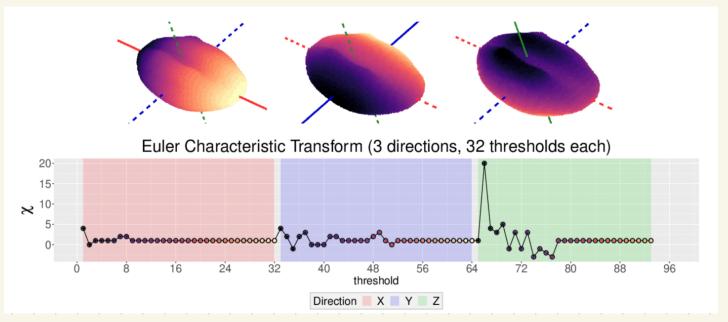
2 + 3d shapes 3 64 directions

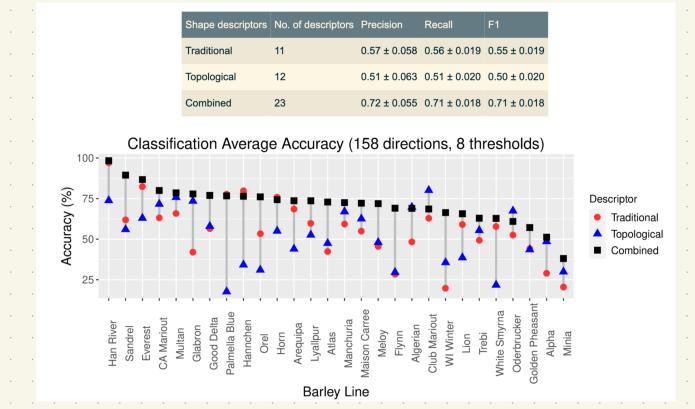
Works well !



In proche Many applications sample a small number of Irrections Loseems to work well! Example: Barley seed demo agein (used 3 Irections on relatively well-algred data) Compared to (a combined with)
more traditional classifications

Results





Persistent Homology Transform Some idea, Dut digrams PHT(A): Sd > Dam $\omega \mapsto PD_{c}(A)$ PHT: Ma > Sfews from?

Soli to Dan $A \leftrightarrow PD_{fu}(A)$

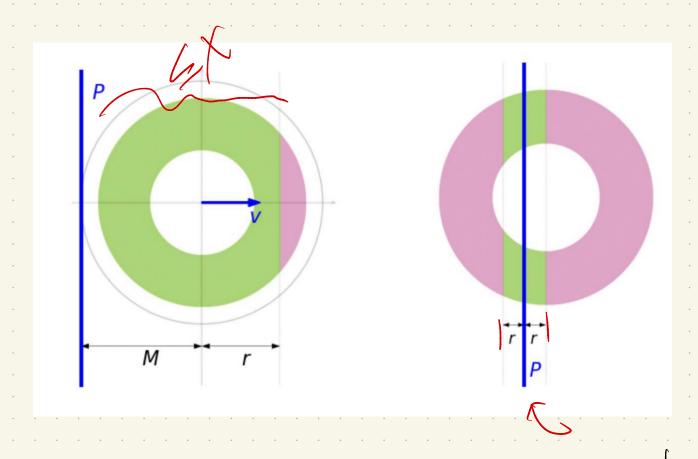
Theorem Curryet al 2022, Ghrist et al 2018
The PHT is injective Con "nice enough" spaces) So: If Persistence Lagrems from all directions are the same 3) Shopes are the same. Again, quite surprising! O(#simplicies & Cho lower bind)

- Jim of A In practice, Still need exponential 2 that)
Number of directors.

Other variants: Merge trees or Reeb graphs C. Munch, Percival, Wang 2024 Not injective in general, but capture some connectivity -> good in preche

2) Instead of directions, consider distance to a point line, or flat. Onus, Otter, Turke's 2024 Let PHT (X): P -> Dan $P \mapsto PD_{e}(x)$ where IP is any space 4 fp is distance to P main example: IP is set of flat subspaces

Why? Fewer directions (we hope)



Any height function is equivalent to distance from a line. To subleve reverse not true: we subleve altration

Turkes, Montofor + Other 2022 Showed that

Listance to a live detects curvature

Today PH simple 0-dim PH simple 10

O-dim PH simple 10

O-dim PH simple 10

O-dim PH simple 1

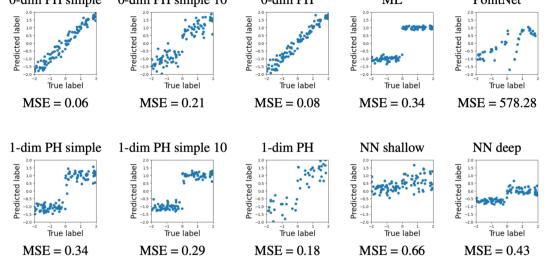
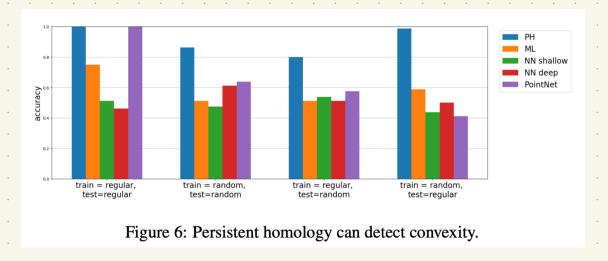


Figure 4: Persistent homology can detect curvature.



Onus et al 2024) then proved it is injective. More precisely! Afre morning

Name	Notation	\mathbb{P}	$\dim(\mathbb{P})$	k
height PHT	$\mathrm{PHT}_{\mathbb{AG}(n-1,n),\mathrm{d}}$	$\mathbb{AG}(n-1,n) = \text{hyperplanes in } \mathbb{R}^n$	n	$0, 1, \dots, n-2$
 tubular PHT radial PHT	$ ext{PHT}_{\mathbb{AG}(1,n), ext{d}} \ ext{PHT}_{\mathbb{AG}(0,n), ext{d}}$	$\mathbb{AG}(1,n) = \text{lines in } \mathbb{R}^n$ $\mathbb{AG}(0,n) = \text{points in } \mathbb{R}^n$	2(n-1) n	 0 "-1" ¹

Prove PHTAG(m,m), d truncated to homology for degree O, m-1, is myeative.

vans lating!		
PHT _{AG(I,n),d}		
To lives in	TRd DII	
only needs O-d completely computational implication	objernine	2 Shope
Computational implication		
	Filtration Distance-to-line Height	
Tho		motrix

Next times Looking at some implications of flese transforms.