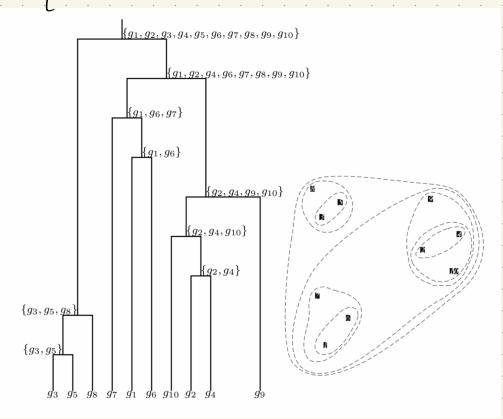
TDA-Fall 2025

Clustering of

Clustery Unsupervised learning/clustering is essentially Odimensional topological inference! understanding connectivity or closeness of points Hyph levels Input: Points PCIRn (possibly also KEM) Output: A set of k Clusters which best reflect connectivity (or "neerness")

Hercochical Clustering
Goal is to build this in layered
fashion - common in computation
biology in particular:

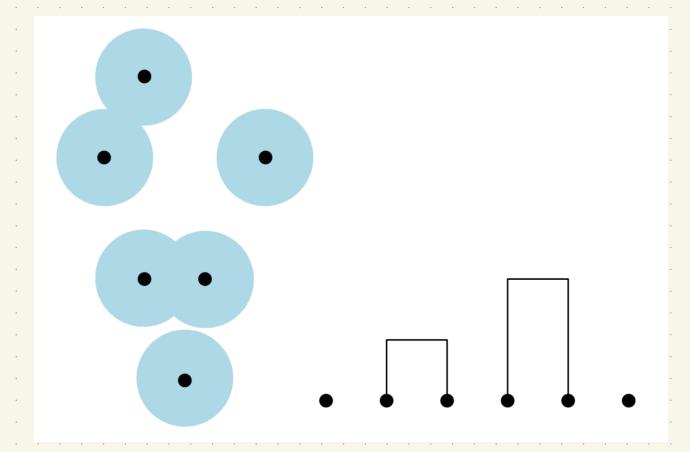


Approach: Be greedy

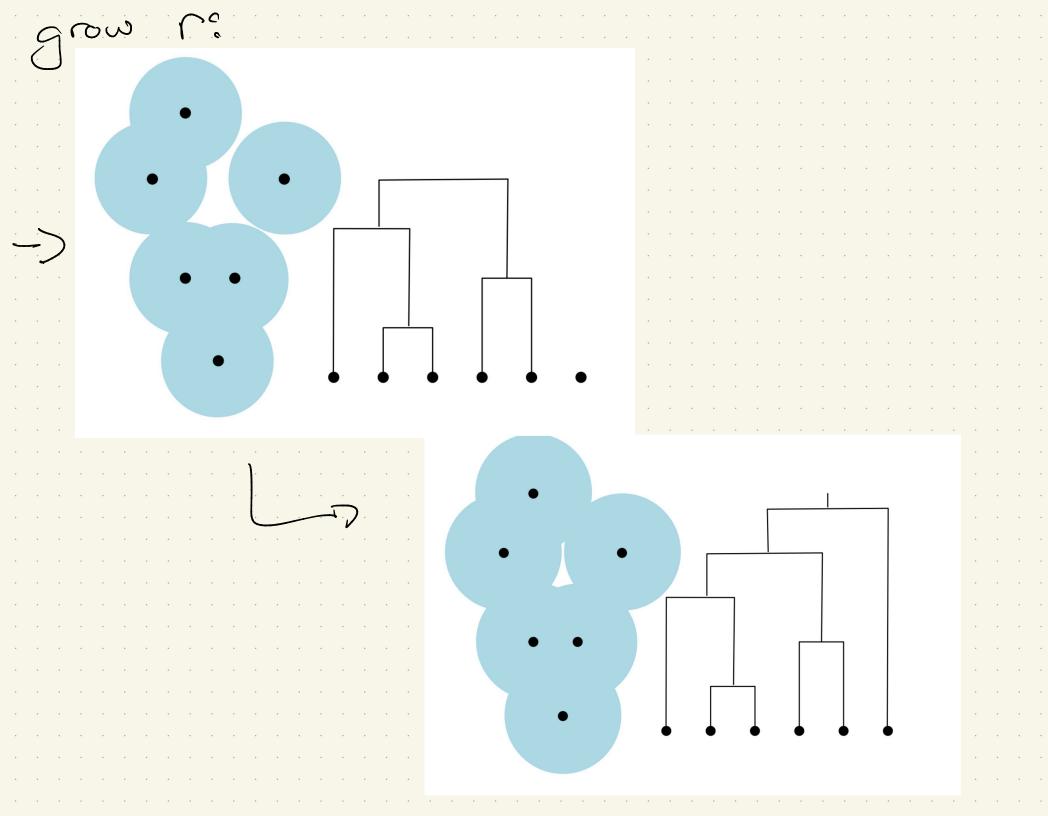
HIERARCHICALCLUSTERING (\mathbf{d}, n)				
1	Form n clusters, each with 1 element			
2	Construct a graph T by assigning an isolated vertex to each cluster			
3	while there is more than 1 cluster			
4	Find the two closest clusters C_1 and C_2			
5	Merge C_1 and C_2 into new cluster C with $ C_1 + C_2 $ elements			
6	Compute distance from C to all other clusters			
7	Add a new vertex C to T and connect to vertices C_1 and C_2			
8	Remove rows and columns of d corresponding to C_1 and C_2			
9	Add a row and column to d for the new cluster C			
10	return T			

Some imprecision here.

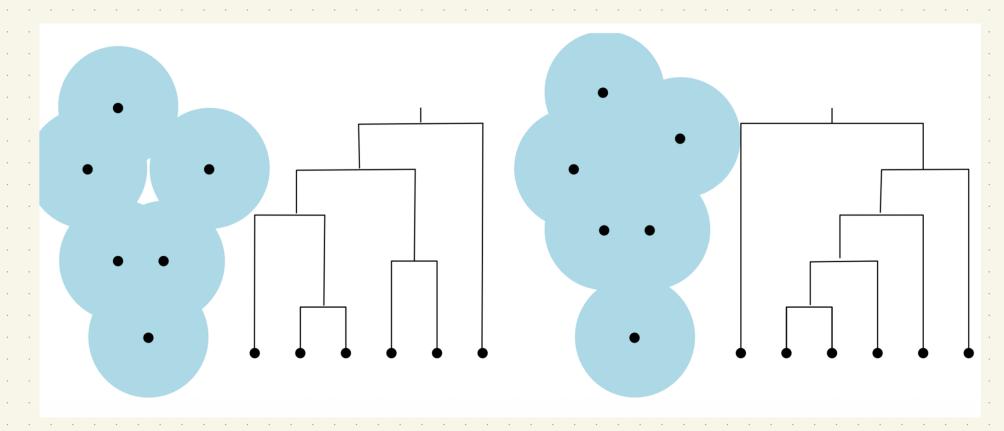
Convection to persistence: via Rips complex



n points, with r-balls around them Barcodes/ Merge mes



Observation? Clustering is unstable but times are not!



Why?

Assignment-based clustering: K-means

Imput! XCIRd, X= {x,,x,xn}, plus a distance d: RdxRd -> R Output: A set of clusters X1, ,Xx, each associated with a point Sie ERd plus Φ_c $\mathbb{R}^d \to \mathbb{C}$, $\mathbb{C}^{=\{s_1,\dots,s_k\}}$ $\Phi_{c}(x) =$

Cost (k-means): MIN &

Lloyd's algorithm tind set of K clusters to minimize. $Cost(X,S) = S || \Phi_s(x) - x||^2$ A Simple idea: Choose k points SCX Repeat for all XES, assign x to center Si Then, update to new Si: "averge" Si until 5 does not change

Algorithm 8.3.1 Lloyd's Algorithm(X, k)

Choose k points $S \subset X$

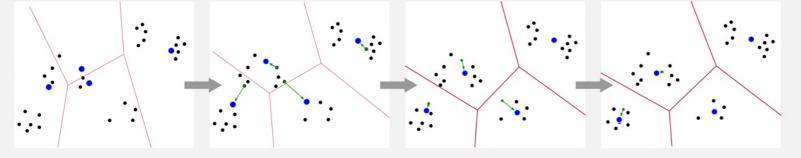
arbitrarily?

repeat

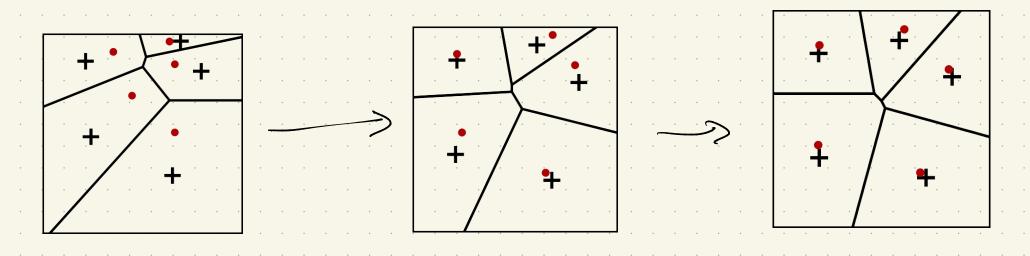
for all $x \in X$: assign x to X_i so $\phi_S(x) = s_i$ the closest site $s_i \in S$ to x for all $s_i \in S$: update $s_i = \frac{1}{|X_i|} \sum_{x \in X_i} x$ the average of $X_i = \{x \in X \mid \phi_S(x) = s_i\}$ until (the set S is unchanged, or other termination condition)

Example: Lloyd's Algorithm for *k***-Means Clustering**

After initializing the sites S as k=4 points from the data set, the algorithm assigns data points in X to each site. Then in each round, it updates the site as the average of the assigned points, and re-assigned points (represented by the Voronoi cells). After 4 rounds it has converged to the optimal solution.



Taken from Mathematical Foundations for Dete Analysis' LTORT Phillips Mote: Can actually do this for all of TRd!
"Centroidal Voronoi tesselations"



But: does this ever converge? Well, cost is always decreasing: Cost $(X,S) = \sum_{\chi \in S} || \phi_s(x) - \chi ||^2$ = 5 5 XEX. If things change in a round, choose Si minimizing L, no 2 steps have some set of centers How many ways to make K groups?

So, downs			
a Runtina	thow it e	nds with	Centers,
but are	fortunately, no		best ones?
Algorithm	can get "stuck		500) minimum

Due key stratesy: initialization	
Lloyd's algorithm originally proposed dividing points into k sets aritherib	
However, not a good, doc	
Central limit theorem 3) mean of each set 1s close to mean	
1s Close to mean	

Better:

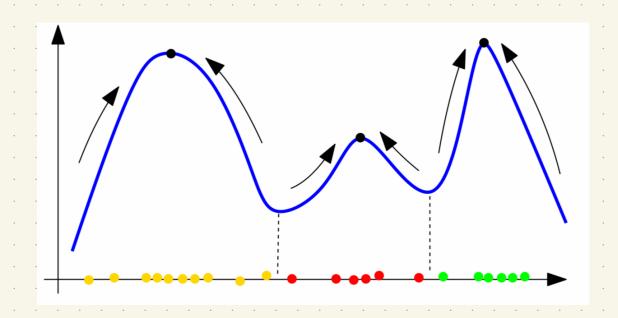
Mode-seeking
Assume date is drawn from some
unknown density function.

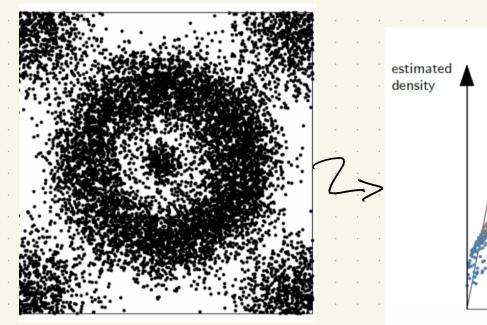
Define clusters according to density!

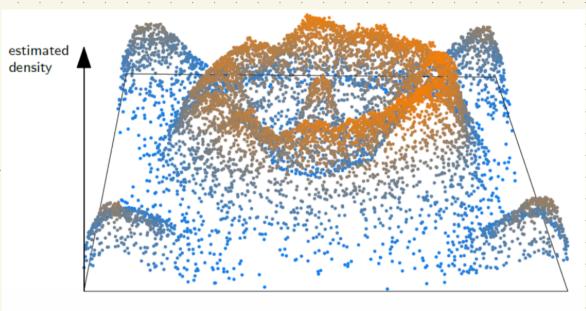
Define clusters according to point(s)

Le distance to next closest Point(s)

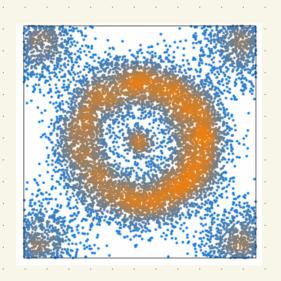
In 1-D:

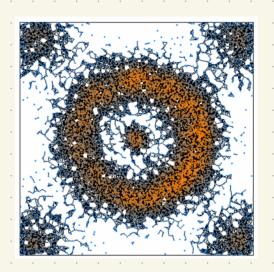






Koontz, Narendara & Fukunaga 1976 Build a neighborhood graph:





Then, they approximate the gradient of this graph:
for each vertex, pick edge to highest value neighbor

More formally: pseudo code

Input: neighborhood graph G with n vertices, n-dimensional vector \hat{f} (density estimator)

Sort the vertex indices $\{1, 2, \dots, n\}$ so that $\hat{f}(1) \geq \hat{f}(2) \geq \dots \geq \hat{f}(n)$; Initialize a union-find data structure (disjoint-set forest) \mathcal{U} and two vectors g, r of size n;

for i=1 to n do

Let $\mathcal N$ be the set of neighbors of i in G that have indices lower than i;

if $\mathcal{N}=\emptyset$ // vertex i is a peak of \hat{f} within G

Create a new entry e in \mathcal{U} and attach vertex i to it;

 $r(e) \leftarrow i$ // r(e) stores the root vertex associated with the entry e

else // vertex i is not a peak of \hat{f} within G

 $g(i) \leftarrow ext{argmax}_{j \in \mathcal{N}} \hat{f}(j)$ // g(i) stores the approximate gradient at vertex i

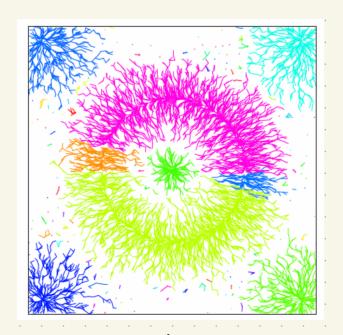
 $e_i \leftarrow \mathcal{U}.\mathtt{find}(g(i));$

Attach vertex i to the entry e_i ;

graph-based hill-climbing (1976)

(Uses union-And date structure)

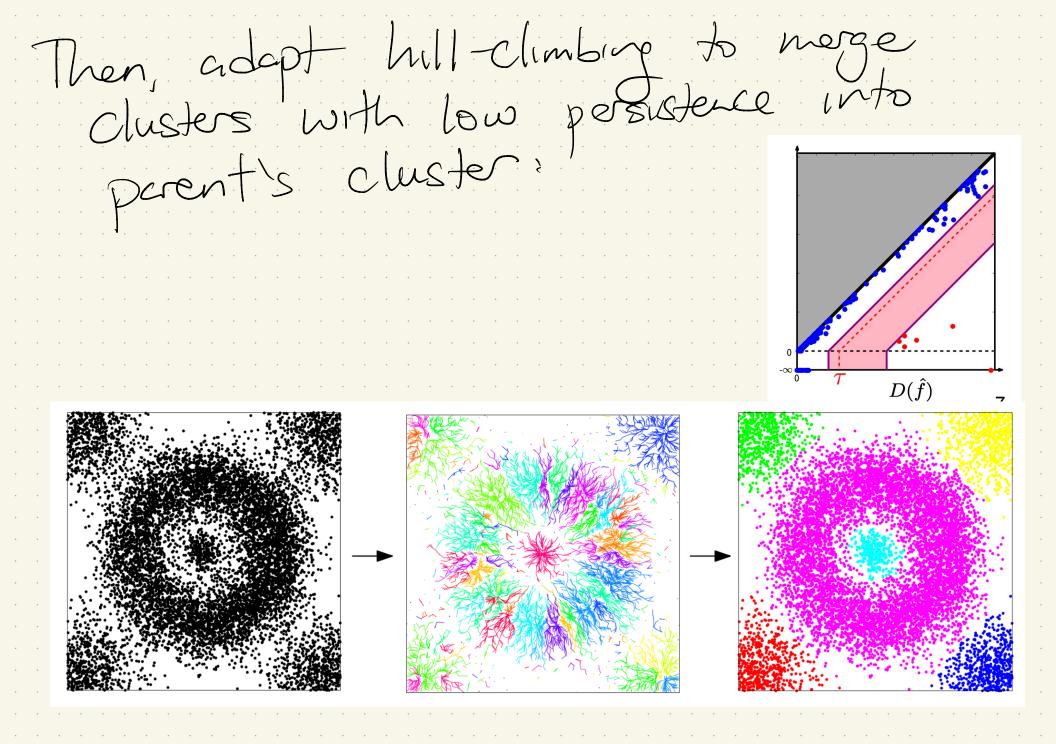
Issue: Vory sensitive to noise



There are as many clusters as there are local maxima of

Vse persistence: loMATO Chazal, Gulas, Oudot & Skraba Build graph, & gives edges weights f((u,v)) = min { density(u), density(v)} Superlevel Set persistence: \hat{f} extended to G

Goal: inter a treshold ?



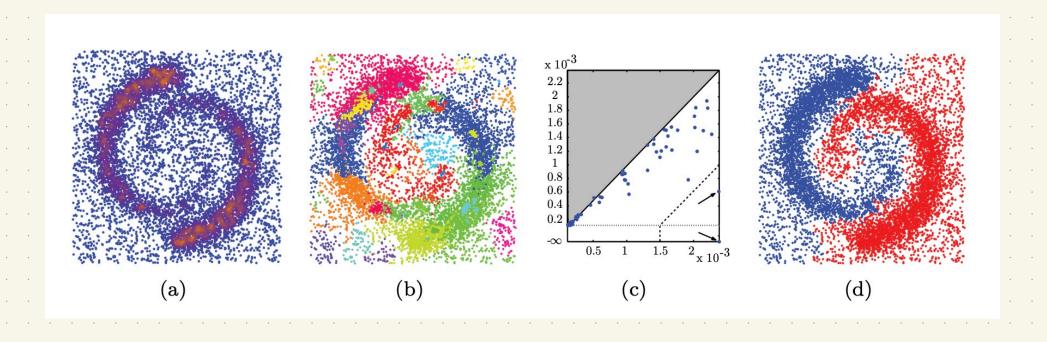
Pseudo codo?

Input: simple graph G with n vertices, n-dimensional vector \hat{f} , real parameter $\tau \geq 0$. Sort the vertex indices $\{1,2,\cdots,n\}$ so that $\hat{f}(1)\geq\hat{f}(2)\geq\cdots\geq\hat{f}(n)$; Initialize a union-find data structure \mathcal{U} and two vectors g, r of size n; for i=1 to n do Let \mathcal{N} be the set of neighbors of i in G that have indices lower than i; **if** $\mathcal{N} = \emptyset$ // vertex i is a peak of \hat{f} within GCreate a new entry e in \mathcal{U} and attach vertex i to it; graph-based $r(e) \leftarrow i$ // r(e) stores the root vertex associated with the entry ehill-climbing **else** // vertex i is not a peak of \hat{f} within G(1976) $g(i) \leftarrow ext{argmax}_{j \in \mathcal{N}} f(j)$ // g(i) stores the approximate gradient at vertex i $e_i \leftarrow \mathcal{U}.\mathtt{find}(g(i));$ Attach vertex i to the entry e_i ; for $j \in \mathcal{N}$ do $e \leftarrow \mathcal{U}.\mathtt{find}(j);$ cluster merges if $e \neq e_i$ and $\min\{\hat{f}(r(e)),\ \hat{f}(r(e_i))\} < \hat{f}(i) + \tau$ with persistence $\mathcal{U}.\mathtt{union}(e, e_i);$ (2013) $r(e \cup e_i) \leftarrow \operatorname{argmax}_{\{r(e), \ r(e_i)\}} \widetilde{f};$

Output: the collection of entries e of \mathcal{U} such that $\hat{f}(r(e)) \geq \tau$.

 $e_i \leftarrow e \cup e_i$;

Resolts impressive!



Stability for persistence 3 Some guarantee of optimality (but relies on good choice of 7 4 "good enough" Sampling)