Algorithms

More reductions

-Slight change on HW: You may do <u>either</u> #3 or #4. (The other is extra credit.)

- HW is due next Monday.

-Final HW-due after break.

P, NP, + CO-NP PENP

Consider only decision problems: so Ves/No output P: Set of decision problems that can be solved in polynomial time. Ex: -Is x in the lot? O(n) or O(log n) Mandaterminite Size 1007 Mandaterminite SF-F: O(VE) NP: 1 Set of problems such that, if the answer is yes of you have proof, yes that verify/check in polynomial time. Ex: Circuit SAT: hand me in puts JP: IF answer Co-NP: If answer is no, I can check that in poly time.

DE: NP-Hard X is NP-Hard (=> IF X could be solved polynomial time, then 15 P=NP. So if any NP-Hard problem Could be solved in polynomial time, then all of NP could be.

To prove NP-Hardness of A:

Reduce a known NP-Hard problem to A.

The Pattern:

Proof: Need if & only if! (ie might be some wierd indep. set that doesn't make a SAT)

Next one: Clique # A clique in a graph is a subgraph which is complete - all possible edges are present. Given Gark! A graph with maximum clique size 4. Typossible How could be check if G has a clique of size K?

Decision version: Does 6 have a clique of sized Input: 5, K Output: Yes/no This is NP-Complete: D In NP. Why? If you give me K vertices: O'verte Each have vertex list. For i=1 to k For i=1 to size of lut k O(kV2) check that (k-1) other, vertices are in list

(2) NP-Herd: What should we reduce to K-Clique? Tod set: 10002) 2000 200 2000 2 $LTF, uv \notin EG, uv \in E(G)$ Obs: If G has indep set of some k vertices, the Est. G' has a clique on some set.

Next: Vertex Cover: A set of vertices which touches every edge in G. K-Vertex cover (decision version): Given Gaik, does Gontain a set of kverhees covering every edge? In NP: If you give me kvertoes: For each edge in 6 Check if one endpt is in k set O(kE)

Next: Graph Coloring A k-coloring of a graph G is a mep: c:V -> £1.0,k} that assigns one of k "colors" to Jeach vertex so that every edge has a different () colors at its endpoints. Goal: Use few colors 1-coloring

Aside: this is famous! Ever heard of map coloring?

Famous theorem: Any planar graph only needs 4 colors.

(Decision version: Given G, output yes/no)

In NP: If you give me coloring: C:V-> E123} Loop through edges uv check ((u) = c(u) O(E)

NP-Herd. Reduction from 35AT. Given formula for 3SAT I, we'll make a graph GI. Key noton: Build gadgets! DTruth gadget - one Must use 3 colors -establishos a "true" color.

3 coloring of GE Is satisfiable

Final reduction image:

A 3-colorable graph derived from the satisfiable 3CNF formula $(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})$

Next time:

- More reductions - Plus some non-graph problems, non-graph