Algorithms

MST (part 2)

Recopy Reading due Friday - HW due tomorrow by 5pm (in main office or to me) - Next week : sub on Wed $-\overline{h}$ (In class work day
one of the days / \Rightarrow useful for $\#$ W - Next HW : Oral grading on Monday, 11/4 & $|wes\,, |1|$ Sign - up in class , next Monday !

: Minimum 5 $\frac{1}{100}$ anning Irees
- Given on Weid
- graph G, w, This
- that minimizes Ĝ $\frac{1}{\omega(e)}$ $\overline{\omega}$

Figure 7.1. A weighted graph and its minimum spanning tree.

Generic Algorithm: Build a forest: an acyclic

Dfn Anedre IS USELESS A it connects 2 endpts
M Same component

So idea : Add safe edges
until you get you get ^a tree It everything Isn't connected
must have some safe edge . Why ? Lemma: For any split of 2 sets 5 G into 2 sets S a $V-S$ the minimum edge from M_{\odot} or set 5 to V -S will be in MST.

We'll see 3 ways :

differ: runtime

 $Trst$ one: $(1926 - 15h)$

BORŮVKA: Add ALL the safe edges and recurse.

Figure 7.3. Borůvka's algorithm run on the example graph. Thick red edges are in F_i ; dashed edges are useless. Arrows point along each component's safe edge. The algorithm ends after just two iterations.

More formally: $BOR\overset{\circ}{U}VKA(V,E)$: $E=(V,\varnothing)$ $\textit{count} \leftarrow \text{COUNTANDLABEL}(F) \bigotimes (V + \overleftarrow{\nabla})$ $3a$ while count > 1 \mathcal{P} AppALLSAFEEDGES(E, F, count) $O(V + F)$ k *dunt* \leftarrow COUNTANDLABEL(*F*) retyr**h** F $(V+E)$ Safe \boldsymbol{z} $ADDALLSAREEDGES(E, F, count):$ for $i \leftarrow 1$ to count $M17$ ∞ $safe[i] \leftarrow NULL$ for each edge $uv \in E$ \leftarrow \bigcirc (E) if comp(u) \neq comp(v) \leftarrow if 'not useles each if safe[comp(u)] = NULL or $w(uv) < w(safe[comp(u)])$ $safe[comp(u)] \leftarrow uv$ "Omment if $safe[comp(v)] = NULL$ or $w(uv) < w(safe[comp(v)])$ $safe[comp(v)] \leftarrow uv$ for $i \leftarrow 1$ to count $f|e$ add safe[i] to F min out of u. $0(V+E)$ Monday: WFS-variant from 1/ses $COUNTANDLABEL(G)$: **((Label one component))** $count \leftarrow 0$ $LABELONE(v, count)$: for all vertices ν while the bag is not empty unmark ν take ν from the bag for all vertices ν if ν is unmarked if ν is unmarked $mark v$ $count \leftarrow count + 1$ $comp(v) \leftarrow count$ for each edge vw $LABELONE(v, count)$ put w into the bag return count

Correctness:

- MSI must have any
Safe edge - We keep computing safe edges + adding Stop when # connected components =/

 K_{L} time: $O(V+E)$ \overline{A} bit trickier! $+O((\#\sqrt{log}\kappa)\sqrt[4]{1+\epsilon})$ Depends on Trow many. Claim: There are at Why ? ale edges each time $\frac{1}{304}$ $\lceil \omega h \rceil_e \left(\pm \text{comp} > 1 \right) \rceil$ Chance reduce by to each the

O : runtime:

 $ADDALLSAFEEDGES(E, F, count):$ for $i \leftarrow 1$ to count $safe[i] \leftarrow NULL$ for each edge $uv \in E$ if $comp(u) \neq comp(v)$ if $safe[comp(u)] = NULL$ or $w(uv) < w(safe[comp(u)])$ $safe[comp(u)] \leftarrow uv$ if $safe[comp(v)] = NULL$ or $w(uv) < w(safe[comp(v)])$ $safe[comp(v)] \leftarrow uv$ for $i \leftarrow 1$ to count

add safe[i] to F

 $Prim's algorithm:$ Keep one spanning subtree
Keep one spanning subtree
While ITI+ n
add next safe edge JARNÍK: Repeatedly add T 's safe edge to T . 18 $16¹$ 16 14 $\widetilde{26}$ 16 30 16

Figure 7.4. Jarník's algorithm run on the example graph, starting with the bottom vertex. At each stage, thick red edges are in T , an arrow points along T 's safe edge; and dashed edges are useless.

Implementation : From all from edges going $V(T)$ to $V(G)-V(T)$ add safe one . F- ? ? min weight edge Q: Which data structure? heap (or priority queue) R and M in : $Q(1)$ - Insert or delete Min ? $U(\alpha, t)$

 $\neg\neg\n\begin{array}{c}\n\begin{array}{c}\n\text{Number:} \\
\text{Orb} \\
\text{O(1)}\n\end{array} & \begin{array}{c}\n\text{While} \\
\text{Pic} \\
\text{adv} \\
\text{new } \\
\text{Vs edges} \\
\text{O(1)}\n\end{array} & \begin{array}{c}\n\text{Scdges} \\
\text{Scdges} \\
\text{d(v)}\cdot\text{log} \\
\text{d(v)}\cdot\text{log} \\
\text{d(v)}\n\end{array} & \begin{array}{c}\n\text{Scdges} \\
\text{Sov} \\
\text{d(v)}\n\end{array} & \begin{array}{c}\n\text{$ $\frac{1}{\sqrt{\sqrt{2\pi}}} \leq O((v+\epsilon)(\sigma)^{2})$ Can improve of use abetter
(Book goes over alternative -
don't worry of that's a bit Comparison to Borinka: Faster, unless E= O(V)

Kruskal 's Algorithm

 Iq_0 rithm

 K RUSKAL (V, E) : sort E by increasing weight $F \leftarrow (V, \emptyset)$ for each vertex $v \in V$ M AKESET (ν) for $i \leftarrow 1$ to $|E|$ $uv \leftarrow$ *i*th lightest edge in *E* if $\text{FIND}(u) \neq \text{FIND}(v)$ $Union(u, v)$ add uv to F

return F

a structure: (19 m) amortized
a structure: Per aperation

- MAKESET(v) Create a set containing only the vertex v .
	- $FIND(v)$ Return an identifier unique to the set containing v.

I tou fast?
Amortized running time

• UNION (u, v) – Replace the sets containing u and v with their union. (This operation decreases the number of sets.)