
CSCI 3100: Algorithms Homework 3 Fall 2019

CSCI 3100: Algorithms
Homework 3

Required Problems

1. Consider a graph with n vertices, where each vertex has some real valued weight. Recall that
a subset of the vertices is called independent if no two of them are joined by an edge. Finding
large independent sets is difficult in general, as we will discuss later this semester in class,
but can be done on some simple classes of graphs.

Call a graph a path if its vertices can be written as v1, v2, . . . , vn with an edge between
each vi and vi+1 (but no other edges). With each vertex vi, we associate a weight wi.

Our goal in this problem is to find the largest weight independent set. (Note that this is
different from the largest independent set, since here we take the weights into account!)

(a) Construct an example showing why the following simple greedy algorithm does NOT
always work.

S ← ∅
While G is not empty:

Pick a node vi of maximum weight
Add vi to S
Delete vi and its neighbors from G

Return S

(b) Construct an example showing why the following different simple greedy algorithm does
NOT always work.

S1 ← {vi with i odd}
S2 ← {vi with i even}
oddsum ← sum of all weights in S1

evensum ← sum of all weights in S2

if evensum > oddsum
return S2

else
return S1

(c) Give an algorithm that takes an n-vertex path G with weights and returns an inde-
pendent set of maximum total weight. Your running time should be polynomial in n.
(Hint: Yes, a path is always a tree. But I want you to adapt that algorithm - your data
structure will be much simpler, but must take weights into account! If you understand
dynamic programming on trees, this will be even simpler.)

2. The residents of the last city on Earth, Zion, must defend themselves from an onslaught of
killer flying robots. (Yes, you may have seen this movie.). While they traditionally utilize
heavy artillery and kung fu, their newest and most effective method of defense is setting off
an EMP to disable incoming robots. They must design an efficient and optimal algorithm to
decide when the EMP goes off, so as to kill as many robots as possible as they come in the
front gate; however, this is made more complex by the fact that their EMP must be charged,
and it gets stronger the longer it charges.

1



CSCI 3100: Algorithms Homework 3 Fall 2019

We formalize this in the following way:

• Every second (from 1 to n), some number of robots xi arrives at the gate, where they
can be reached by the EMP if they set it off. Since they have advanced remote sensing
techniques, they know all n values in advance.

• The EMP’s charge is described by a function; if it’s been charging for k seconds, it’s
capable of killing charge(k) or xk robots, whichever is smaller (since you can only kill
as many as are actually arriving). We’ll assume the EMP begins completely drained, so
that if it goes off for the first time at second i in the attack, it will kill min{charge(i), xi}
robots; from then on, if it was set off at time i and then is next set off at time j, it kills
min{charge(j − i), xj} robots.

Your goal is to design an algorithm that, given the arrivals x1, x2, . . . xn and the function
charge, chooses the times to fire the EMP which kill as many robots as possible. (Be sure to
justify correctness as well as runtime and space!)

Example: Suppose n = 4, and we have x1 = 1, x2 = 10, x3 = 10, and x4 = 1, with
charge(i) = 2i−1. Then the best solution is to activate at times 3 and 4; at time 3, it will kill
min 23−1, 10 = 4 robots, and then in the 4th second it will kill 1 more robot, for a total of 4
robots. (You can check that any other solution will not kill as many.)

3. Problem 47 from Chapter 3 of the textbook.

4. Extra Credit: Problem 17 from Chapter 3 of the textbook: go earn style points in vogue
vogue revolution! (Hint: Part a is much easier than it looks. What’s the easiest, or laziest,
strategy you can think of? Part b will take some dynamic programming, though.)

Describe and analyze an algorithm to decide, given 3 strings X, Y , and Z, whether Z is
a smooth shuffle of X and Y .

5. Sample Solved Problem: A shuffle of two strings X and Y is formed by interspersing the
characters into a new string, keeping the characters of X and Y in the same order. For
example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS
in several different ways:
BANANAANANAS, BANANAANANAS, or BANANANANAS.

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING
are both shuffles of DYNAMIC and PROGRAMMING:
PRODGYRNAM AMMIINCG and DYPRONGARMAMMICING.

Given three strings A[1..m], B[1..n], and C[1..m + n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Solution: We define a boolean function Shuf(i, j), which is True if and only if the prefix
C[1..i + j] is a shuffle of the prefixes A[1..i] and B[1..j]. This function satisfies the following
recurrence:

• Shuf(i, j) = true if i = j = 0

• Shuf(0, j − 1) AND (B[j] = C[j]) if i = 0 and j > 0

2



CSCI 3100: Algorithms Homework 3 Fall 2019

• Shuf(i− 1, 0) AND (A[i] = C[i]) if i > 0 and j = 0

• (Shuf(i− 1, j) AND (A[i] = C[i+ j])) OR (Shuf(i, j− 1) AND (B[j] = C[i+ j])) if i > 0
and j > 0

The proof that this formulation is correct can be shown via induction: if you’re considering
the i + jth character of C, it must be from either A[i] or B[j]. We are trying both options,
and returning true if either works. The base cases handle either A or B being empty, in which
case either we’ve matched everything (and both are 0) or we must exactly match the rest of
C to which ever string is left.

We need to compute Shuf(m, n). We can memoize all function values into a two-dimensional
array Shuf[0 .. m][0 .. n]. Each array entry Shuf[i, j] depends only on the entries immediately
below and immediately to the right: Shuf[i-1, j] and Shuf[i, j-1]. Thus, we can fill the array
in standard row-major order.

The algorithm runs in O(mn) time, and (if we keep the entire 2d arrays) takes the same
amount of space. This can be improved to O(m) (or O(n)) by keeping only two rows: the
one we are currently filling in, and the row immediately preceding it.

�

3


