
CSCI 3100: Algorithms Homework 0 Fall 2019

CSCI 3100: Algorithms
Homework 0

A note about homework 0: A large goal of this particular assignment is to force you to
review some of what was covered in discrete mathematics and in data structures, both of which are
important prereqs for this course. You can’t design and analyze algorithms without understanding
fundamental data structures, proofs, and big-O notation! So expect to pull out your old textbooks
if you’re rusty on those, or look in the introduction of our textbook for some suggestions, or just
email to ask me for some recommendations if you aren’t sure where to look.

Academic integrity policy: In this class, while you’re welcome to use any reference you’d
like, you are responsible for both citing your sources AND re-writing the solution in your own words.
So feel free to use the internet, but I’d recommend reading, thinking about it, adding a citation for
what you read to your homework, and then putting all that away and writing it from memory, so
you’ll understand the answer properly. Please believe me when I say that ANY verbatim copying
will get you a 0 on the homework, and any second offense will get you a 0 in the class! Please go
check the syllabus for more details.

Required Problems

1. Sort the following functions from asymptotically smallest to asymptotically largest, indicating
ties if there are any. You do not need to turn in proofs (in fact, please don’t turn in proofs),
but you should do them anyway just for practice.

log(22n) 325143
n∑

i=1
i lg n 5 · 2lgn

sinn + 12 n lg(2n)
√
n 6n2 − 4n + 81 n!

(n−3)!

To simplify notation, write f(n) � g(n) to mean f(n) = o(g(n)) and f(n) ≡ g(n) to mean
f(n) = Θ(g(n)). For example, the functions n2, n,

(
n
2

)
, n3 could be sorted either as n �

n2 ≡
(
n
2

)
� n3 or as n�

(
n
2

)
≡ n2 � n3.

[Hint: Hopefully this will become obvious, but my goal here is to make you remember: big-O,
logarithms, summations, and how to ignore constants of various sorts! Go back and check
your discrete math book, as well as that chapter in your data structures book that talked
about big-O, and hopefully these will start to look easier.]

2. Dr. Chambers recently returned from Germany with a new favorite 24-node binary tree, in
which every node is labeled with a unique letter from the German alphabet. (Note that this
is pretty similar to English, but adds interesting characters like the umlaut and ß.) She gives
you the following traversals:

• Preorder: B K Ü E L Z I Ö R C P ß T S O A Ä D F M N U G

• Inorder: Ü E K I Z R Ö C L P B S T O ß D Ä M F A U N G

(a) List the nodes in a postorder traversal of the tree.

(b) Draw the tree.

1



CSCI 3100: Algorithms Homework 0 Fall 2019

3. Suppose you are given a pointer to the head of singly linked list. Normally, each node in the
list has a pointer to the next element, and the last node’s pointer is NULL. Unfortunately,
your list might have been corrupted (by a bug in somebody else’s code, of course), so that
some node’s pointer leads back to an earlier node in the list.

Design and analyze an algorithm to detect if the list is corrupted or not. (So you need
to give an algorithm, give its running time, and justify why it works.) Note that there are
several ways to solve this. Any correct solution will be given almost full credit. However,
to get full credit, I’m looking for an O(n) time algorithm which uses only O(1) extra space,
which means you can’t copy or mark the actual list, but can create only a few new variables.

4. A binomial tree of order k is defined recursively as follows:

• A binomial tree of order 0 is a single node.

• For all k > 0, a binomial tree of order k consists of two binomial trees of order k − 1,
with the root of one tree connected as a new child of the root of the other. (See the
figure below.)

Prove the following claims:

(a) For all non-negative integers k, a binomial tree of order k has exactly 2k nodes.

(b) For all positive integers k, attaching a leaf to every node in a binomial tree of order k−1
results in a binomial tree of order k.

(c) For all non-negative integers k and d, a binomial tree of order k has exactly
(
k
d

)
nodes

with depth d

2


