Persistent homology
and clustering

Based on lecture notes by Frédéric Chazal and Steve Oudot
(as well as various other sources, cited throughout)



Recall: Clustering

e Clustering: A partition of data into groups of similar observations.
The observations in each group (cluster) are similar to each other
and dissimilar to observations from other groups.

e Input: a set of points embedded in an Euclidean space (with
coordinates) or a more general metric space (pairwise distance/
similarity) matrix.




A motivation for
persistent homology

e Recall our hierarchical clustering algorithm:
e Make each point its own cluster
e As long as you have more than 1 cluster:

e Merge the two closest clusters C and C’, where
distance between clusters is:

d(C,C"Y= inf d(z,2)

xeC,x’'eC”
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e Result: (input points to left, “tree” to the right)
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Turning this into a k-cluster

 The output of this is a hierarchical cluster; to get a smaller
number of clusters, you can simply “halt” the process

early, so that you have fewer clusters, each of which has
nearby points

One downside: . .
Still more about

similarity, and less
about dissimilarity




Problem: instability

e | et’s consider two very similar inputs:
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Problem: instability

e Unfortunately, this means this approach is not stable:
similar point sets can yield very different clusters.




However...

e Small perturbations on the input data may lead to wide
change in the structure of the trees.

e However, the “merging times” remain stable.

e Taking a close look: (At least for Euclidean data), the single
linkage clustering keeps track of the evolution of the
connected components of the distance function to the data.

nlll Inlh



Recall: Koonz, Narendra, and
ukunaga algorithm (from 1976)

Density estimation

graph

Discrete approximation of
the gradient; for each ver-
tex v, a gradient edge is
selected among the edges
adjacent to w.

-«




Problem:
still sensitive to noise

 There are as many clusters as there are local maxima of
the density function, which varies with neighborhood
graph, so also quite sensitive to noise!

estimated
density




First: what is homology”?

 More precisely, more often than not, people are interested in
computing the ranks of the homology groups

e Formally defined as the maximum number of linearly
iIndependent generators of a particular group

e | won't get into math, but at a high level, we have 1 to k-dimensional
homology groups for any k-dimensional structure

e Rank of Hp is the number of connected components

 Rank of Hy is the number of “"handles” (or genus) in an orientable
2-manifold

« Rank of Hz captures the number of “voids” in a 3d-complex



Persistent homology
motivation

Just to get us started:

Oudot 2015

Oudot 2015

Key idea: depending on what scale we view the
data, the question “what is the shape”™ may be quite
different.



0O-dimensional persistent
homology on a function

e Starting with a simple example:

e Consider a function f, and track level sets and
connectedness of f-1(-e0,a), for a = -o0 t0 oo

R A
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O-dim PH of a function:

e The result: a representation of which features are
“persistent”, in the sense that they last a longer or shorter
time as the input evolves.

Persistence barcode

<Y

Persistence diagram




HOW tO gO beyonao
functions?

e Core notion:

A k-simplex is a k-dimensional
polytope which is the convex

hull of its k+1 (affinely

independent) vertices

A simplicial complex K is a
collection of simplices where (1)
any face of a simplex is in K and
(2) the intersection of any two
simplicies in K is also a simplex




The Cech complex

* (Given a point set X, consider a
cover built from all radius € balls
centered at points xeX.

» The Cech complex is the nerve of
this covering, where we fill in a k-
simplex {io, i1,...,ik} is included
whenever Bion...n Bik # @.

* Essentially, a k-simplex appears
whenever k balls intersect.



Vietoris-Rips complex

* Finally, the Rips complex includes all simplicies
where pairwise distances are less than 2r (even if the
common intersection is empty)

* VR(x,r) = {0 < X | B«(x)nB(y)=2 for all x,yec}

» This is strictly larger than the Cech: can have
pairwise distances < 2r even when no common point.

 Both are commonly used to represent those
neighborhood “graphs” of input points.



Rips versus Cech

* The topology of these can be VERY different.

* Even for planar point sets:

&

points Rips Gech

QP v




Persistence for
point cloud data

e Build the same connectivity in 2d:

T
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Persistence for
point cloud data

e Build the same connectivity in 2d:

arrttren Lt
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Persistence for
point cloud data

Persistence barcode

pqm




A more complex example:
RIpS complexes

(9<% (0™

Ghrist 2008




Why do we care?

o Stability! We can define a distance, called the bottleneck
distance, between these persistence diagrams:

death f_x
m ............................................................

Multiplicity: 2

birth



Another example to
llustrate stability

Persistence Diagrams
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Figure 4: Two example point clouds are overlaid at left, and their persistence diagrams are overlaid at

right. Notice that the point clouds are close in some sense. The fact that the persistence diagrams are
also close is a result of the stability theorem for persistence.

Munch 2017



Stability result

e Theorem: [Cohen-Steiner et al 2005, Chazal et all 2009,
de Silva et al 2012]: For any 2 “tame” functions f and g:

d(Dy,Dg) < ||f — 9llso

Persistence barcode

Persistence diagram



Now, back to clustering

e We'll redo the hierarchical clustering algorithm, but use it
to track 0-dimensional homology.

e Once two things are grouped in the same cluster, their
“level sets” combine, just like in the function example




Now use stability

e Now, what if we don’t have perfect information, but just a
“guess” (or density approximation)?

R A




Final result

e Persistence based clustering: take in a finite point set and
density estimate, and partition the function using
persistence. [Chazal et al, J ACM 2013]
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Persistence-based

clustering

e You do still need a threshold function

t like in graph

jus

based approach




A different application:
Shape classification

e Many other applications in terms of shape recognition

[Chazal et al, SGP 2009]

e Wotlr o 80, 90, W0 S0 NEL W o ¥ o 8
o =t D E
Yo o ¥ ¥ S S L. X
¢éeee @@ e
8808 88 ¢ 8 8 ¢ ¢
T W R 2 R AR o

(@, ON &, a8

1 1

PR
s

o ..:‘.

MDS using bottleneck distance.
o
1

T:‘E‘OOO
o YY)



Biological applications

Correct
27.3%
10.2%
29.1%

Persistent homology
Traditional descriptors
Both methods

Method

Using

persistence to identify leaf

e [Mao et al, 2018]
“morphospace”
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Biological applications:

structure 4 (1IMPD) structure 14 (10MP)

e [Kovacev-Nikolic et al,
2016]: Using persistence
to study proteins and B A

A ol
detect structures
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Figure 1: The biological assembly for the closed-holo 1IMPD conformal structure (left, Shilton N=169222 =020 N=153982

et al. (1996)) and the open-apo 10MP conformal structure (right, Sharff et al. (1992)). Secondary
structures and solvent accessible surfaces of both proteins are shown as blue flat ribbons and gray
transparent surfaces, respectively. Active sites in ribbon representations have yellow color and
interact with ligand maltose shown here as ball and stick model embedded in 1IMPD structure.

N=541199 t=0.25 N=500760

Figure 6: Five snapshots capture the evolution of the filtered Vietoris-Rips complex on the closed-
holo 1IMPD (left) and the open-apo 10MP (right) structure of the maltose-binding protein. The
complex is constructed on 370 vertices (green circles). The number of vertices that enter the
complex (yellow circles) rapidly increases with filtration values. N counts the total number of
simplices.



Biological applications:

e [Hofmann et al 2018]:
Finding DNA double
strand breaks induced by
radiation

e “The aim of this article is
to demonstrate a new
approach to analyze repair
foci by their topology in
order to obtain a cell
independent method of
categorization”
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