
Persistent homology
and clustering

Based on lecture notes by Frédéric Chazal and Steve Oudot

(as well as various other sources, cited throughout)

Recall: Clustering
• Clustering: A partition of data into groups of similar observations.

The observations in each group (cluster) are similar to each other
and dissimilar to observations from other groups.

• Input: a set of points embedded in an Euclidean space (with
coordinates) or a more general metric space (pairwise distance/
similarity) matrix.

A motivation for
persistent homology

• Recall our hierarchical clustering algorithm:

• Make each point its own cluster

• As long as you have more than 1 cluster:

• Merge the two closest clusters C and C’, where
distance between clusters is:

d(C,C 0) = inf
x2C,x02C0

d(x, x0)
<latexit sha1_base64="r7axgKWYqGt0kh9nPKAoSFdil/o=">AAACFXicbZDLSgMxFIYz9VbrrerSTbDItDCUGRF0IxS7cVnBXqAdhkwm04ZmMkOSkZahL+HGV3HjQhG3gjvfxvSy0NYDIR//fw7J+f2EUals+9vIra1vbG7ltws7u3v7B8XDo5aMU4FJE8csFh0fScIoJ01FFSOdRBAU+Yy0/WF96rcfiJA05vdqnBA3Qn1OQ4qR0pJXtIJy3aqbFXgNe5SHXjaa3rBuwZE5J3MCg/LIGpmFilcs2VV7VnAVnAWUwKIaXvGrF8Q4jQhXmCEpu46dKDdDQlHMyKTQSyVJEB6iPulq5Cgi0s1mW03gmVYCGMZCH67gTP09kaFIynHk684IqYFc9qbif143VeGVm1GepIpwPH8oTBlUMZxGBAMqCFZsrAFhQfVfIR4ggbDSQRZ0CM7yyqvQOq86mu8uSrWbRRx5cAJOQRk44BLUwC1ogCbA4BE8g1fwZjwZL8a78TFvzRmLmWPwp4zPHznemnY=</latexit><latexit sha1_base64="r7axgKWYqGt0kh9nPKAoSFdil/o=">AAACFXicbZDLSgMxFIYz9VbrrerSTbDItDCUGRF0IxS7cVnBXqAdhkwm04ZmMkOSkZahL+HGV3HjQhG3gjvfxvSy0NYDIR//fw7J+f2EUals+9vIra1vbG7ltws7u3v7B8XDo5aMU4FJE8csFh0fScIoJ01FFSOdRBAU+Yy0/WF96rcfiJA05vdqnBA3Qn1OQ4qR0pJXtIJy3aqbFXgNe5SHXjaa3rBuwZE5J3MCg/LIGpmFilcs2VV7VnAVnAWUwKIaXvGrF8Q4jQhXmCEpu46dKDdDQlHMyKTQSyVJEB6iPulq5Cgi0s1mW03gmVYCGMZCH67gTP09kaFIynHk684IqYFc9qbif143VeGVm1GepIpwPH8oTBlUMZxGBAMqCFZsrAFhQfVfIR4ggbDSQRZ0CM7yyqvQOq86mu8uSrWbRRx5cAJOQRk44BLUwC1ogCbA4BE8g1fwZjwZL8a78TFvzRmLmWPwp4zPHznemnY=</latexit><latexit sha1_base64="r7axgKWYqGt0kh9nPKAoSFdil/o=">AAACFXicbZDLSgMxFIYz9VbrrerSTbDItDCUGRF0IxS7cVnBXqAdhkwm04ZmMkOSkZahL+HGV3HjQhG3gjvfxvSy0NYDIR//fw7J+f2EUals+9vIra1vbG7ltws7u3v7B8XDo5aMU4FJE8csFh0fScIoJ01FFSOdRBAU+Yy0/WF96rcfiJA05vdqnBA3Qn1OQ4qR0pJXtIJy3aqbFXgNe5SHXjaa3rBuwZE5J3MCg/LIGpmFilcs2VV7VnAVnAWUwKIaXvGrF8Q4jQhXmCEpu46dKDdDQlHMyKTQSyVJEB6iPulq5Cgi0s1mW03gmVYCGMZCH67gTP09kaFIynHk684IqYFc9qbif143VeGVm1GepIpwPH8oTBlUMZxGBAMqCFZsrAFhQfVfIR4ggbDSQRZ0CM7yyqvQOq86mu8uSrWbRRx5cAJOQRk44BLUwC1ogCbA4BE8g1fwZjwZL8a78TFvzRmLmWPwp4zPHznemnY=</latexit><latexit sha1_base64="r7axgKWYqGt0kh9nPKAoSFdil/o=">AAACFXicbZDLSgMxFIYz9VbrrerSTbDItDCUGRF0IxS7cVnBXqAdhkwm04ZmMkOSkZahL+HGV3HjQhG3gjvfxvSy0NYDIR//fw7J+f2EUals+9vIra1vbG7ltws7u3v7B8XDo5aMU4FJE8csFh0fScIoJ01FFSOdRBAU+Yy0/WF96rcfiJA05vdqnBA3Qn1OQ4qR0pJXtIJy3aqbFXgNe5SHXjaa3rBuwZE5J3MCg/LIGpmFilcs2VV7VnAVnAWUwKIaXvGrF8Q4jQhXmCEpu46dKDdDQlHMyKTQSyVJEB6iPulq5Cgi0s1mW03gmVYCGMZCH67gTP09kaFIynHk684IqYFc9qbif143VeGVm1GepIpwPH8oTBlUMZxGBAMqCFZsrAFhQfVfIR4ggbDSQRZ0CM7yyqvQOq86mu8uSrWbRRx5cAJOQRk44BLUwC1ogCbA4BE8g1fwZjwZL8a78TFvzRmLmWPwp4zPHznemnY=</latexit>

Hierarchical clustering
• Result: (input points to left, “tree” to the right)

Hierarchical clustering
• Result: (input points to left, “tree” to the right)

Hierarchical clustering
• Result: (input points to left, “tree” to the right)

Hierarchical clustering
• Result: (input points to left, “tree” to the right)

Hierarchical clustering
• Result: (input points to left, “tree” to the right)

Hierarchical clustering
• Result: (input points to left, “tree” to the right)

Turning this into a k-cluster
• The output of this is a hierarchical cluster; to get a smaller

number of clusters, you can simply “halt” the process
early, so that you have fewer clusters, each of which has
nearby points

One downside:

Still more about

similarity, and less

about dissimilarity

Problem: instability
• Let’s consider two very similar inputs:

Problem: instability
• Let’s consider two very similar inputs:

Problem: instability
• Let’s consider two very similar inputs:

Problem: instability
• Let’s consider two very similar inputs:

Problem: instability
• Let’s consider two very similar inputs:

Problem: instability
• Unfortunately, this means this approach is not stable:

similar point sets can yield very different clusters.

However…
• Small perturbations on the input data may lead to wide

change in the structure of the trees.

• However, the “merging times” remain stable.

• Taking a close look: (At least for Euclidean data), the single
linkage clustering keeps track of the evolution of the
connected components of the distance function to the data.

Recall: Koonz, Narendra, and
Fukunaga algorithm (from 1976)

Problem:
still sensitive to noise

• There are as many clusters as there are local maxima of
the density function, which varies with neighborhood
graph, so also quite sensitive to noise!

First: what is homology?
• More precisely, more often than not, people are interested in

computing the ranks of the homology groups

• Formally defined as the maximum number of linearly
independent generators of a particular group

• I won’t get into math, but at a high level, we have 1 to k-dimensional
homology groups for any k-dimensional structure

• Rank of H0 is the number of connected components

• Rank of H1 is the number of “handles” (or genus) in an orientable
2-manifold

• Rank of H3 captures the number of “voids” in a 3d-complex

Persistent homology
motivation

Oudot 2015
Oudot 2015

Key idea: depending on what scale we view the
data, the question “what is the shape” may be quite
different.

Just to get us started:

0-dimensional persistent
homology on a function

• Starting with a simple example:

• Consider a function f, and track level sets and
connectedness of f-1(-∞,a), for a = -∞ to ∞:

0-dimensional persistent
homology on a function

• Starting with a simple example:

• Consider a function f, and track level sets and
connectedness of f-1(-∞,a), for a = -∞ to ∞:

0-dimensional persistent
homology on a function

• Starting with a simple example:

• Consider a function f, and track level sets and
connectedness of f-1(-∞,a), for a = -∞ to ∞:

0-dimensional persistent
homology on a function

• Starting with a simple example:

• Consider a function f, and track level sets and
connectedness of f-1(-∞,a), for a = -∞ to ∞:

0-dimensional persistent
homology on a function

• Starting with a simple example:

• Consider a function f, and track level sets and
connectedness of f-1(-∞,a), for a = -∞ to ∞:

0-dimensional persistent
homology on a function

• Starting with a simple example:

• Consider a function f, and track level sets and
connectedness of f-1(-∞,a), for a = -∞ to ∞:

0-dimensional persistent
homology on a function

• Starting with a simple example:

• Consider a function f, and track level sets and
connectedness of f-1(-∞,a), for a = -∞ to ∞:

0-dim PH of a function:
• The result: a representation of which features are

“persistent”, in the sense that they last a longer or shorter
time as the input evolves.

How to go beyond
functions?

• Core notion:

• A k-simplex is a k-dimensional
polytope which is the convex
hull of its k+1 (affinely
independent) vertices

• A simplicial complex Ƙ is a
collection of simplices where (1)
any face of a simplex is in Ƙ and
(2) the intersection of any two
simplicies in Ƙ is also a simplex

Image courtesy of wikipedia

The Ćech complex
• Given a point set X, consider a

cover built from all radius ε balls
centered at points x∈X.

• The Ćech complex is the nerve of
this covering, where we fill in a k-
simplex {i0, i1,…,ik} is included
whenever Bi0 ∩…∩ Bik ≠ ∅.

• Essentially, a k-simplex appears
whenever k balls intersect.

Vietoris-Rips complex
• Finally, the Rips complex includes all simplicies

where pairwise distances are less than 2r (even if the
common intersection is empty)

• VR(x,r) = {σ ⊆ X | Br(x)∩Br(y)≠∅ for all x,y∈σ}

• This is strictly larger than the Ćech: can have
pairwise distances ≤ 2r even when no common point.

• Both are commonly used to represent those
neighborhood “graphs” of input points.

Rips versus Ćech
• The topology of these can be VERY different.

• Even for planar point sets:

points Rips Ćech

Persistence for
point cloud data

• Build the same connectivity in 2d:

Persistence for
point cloud data

• Build the same connectivity in 2d:

Persistence for
point cloud data

• Build the same connectivity in 2d:

Persistence for
point cloud data

• Build the same connectivity in 2d:

Persistence for
point cloud data

A more complex example:
Rips complexes

Ghrist 2008

Why do we care?
• Stability! We can define a distance, called the bottleneck

distance, between these persistence diagrams:

Another example to
illustrate stability

Munch 2017

Stability result
• Theorem: [Cohen-Steiner et al 2005, Chazal et all 2009,

de Silva et al 2012]: For any 2 “tame” functions f and g:
d(Df , Dg)  ||f � g||1

<latexit sha1_base64="av91zFEON7J+OcxtIzn6iPn6QpM=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl+AQJuhoRdDj0B08TnAvsJaSpukWlqYlSYXS7erFr+LFgyJe/Qbe/DZmWw86fSDkx///PCTP308YlcqyvozS0vLK6lp5vbKxubW9Y+7udWScCkzaOGax6PlIEkY5aSuqGOklgqDIZ6Trj66nfveeCEljfqeyhLgRGnAaUoyUljwTBrWmF57Apjc4hg4jcDyG4elAX55Deagyz6xadWtW8C/YBVRBUS3P/HSCGKcR4QozJGXfthLl5kgoihmZVJxUkgThERqQvkaOIiLdfLbJBB5pJYBhLPThCs7UnxM5iqTMIl93RkgN5aI3Ff/z+qkKL92c8iRVhOP5Q2HKoIrhNBYYUEGwYpkGhAXVf4V4iATCSodX0SHYiyv/hc5Z3dZ8e15tXBVxlMEBOAQ1YIML0AA3oAXaAIMH8ARewKvxaDwbb8b7vLVkFDP74FcZH9+92Jh7</latexit><latexit sha1_base64="av91zFEON7J+OcxtIzn6iPn6QpM=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl+AQJuhoRdDj0B08TnAvsJaSpukWlqYlSYXS7erFr+LFgyJe/Qbe/DZmWw86fSDkx///PCTP308YlcqyvozS0vLK6lp5vbKxubW9Y+7udWScCkzaOGax6PlIEkY5aSuqGOklgqDIZ6Trj66nfveeCEljfqeyhLgRGnAaUoyUljwTBrWmF57Apjc4hg4jcDyG4elAX55Deagyz6xadWtW8C/YBVRBUS3P/HSCGKcR4QozJGXfthLl5kgoihmZVJxUkgThERqQvkaOIiLdfLbJBB5pJYBhLPThCs7UnxM5iqTMIl93RkgN5aI3Ff/z+qkKL92c8iRVhOP5Q2HKoIrhNBYYUEGwYpkGhAXVf4V4iATCSodX0SHYiyv/hc5Z3dZ8e15tXBVxlMEBOAQ1YIML0AA3oAXaAIMH8ARewKvxaDwbb8b7vLVkFDP74FcZH9+92Jh7</latexit><latexit sha1_base64="av91zFEON7J+OcxtIzn6iPn6QpM=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl+AQJuhoRdDj0B08TnAvsJaSpukWlqYlSYXS7erFr+LFgyJe/Qbe/DZmWw86fSDkx///PCTP308YlcqyvozS0vLK6lp5vbKxubW9Y+7udWScCkzaOGax6PlIEkY5aSuqGOklgqDIZ6Trj66nfveeCEljfqeyhLgRGnAaUoyUljwTBrWmF57Apjc4hg4jcDyG4elAX55Deagyz6xadWtW8C/YBVRBUS3P/HSCGKcR4QozJGXfthLl5kgoihmZVJxUkgThERqQvkaOIiLdfLbJBB5pJYBhLPThCs7UnxM5iqTMIl93RkgN5aI3Ff/z+qkKL92c8iRVhOP5Q2HKoIrhNBYYUEGwYpkGhAXVf4V4iATCSodX0SHYiyv/hc5Z3dZ8e15tXBVxlMEBOAQ1YIML0AA3oAXaAIMH8ARewKvxaDwbb8b7vLVkFDP74FcZH9+92Jh7</latexit><latexit sha1_base64="av91zFEON7J+OcxtIzn6iPn6QpM=">AAACCXicbZBNS8MwGMfT+TbnW9Wjl+AQJuhoRdDj0B08TnAvsJaSpukWlqYlSYXS7erFr+LFgyJe/Qbe/DZmWw86fSDkx///PCTP308YlcqyvozS0vLK6lp5vbKxubW9Y+7udWScCkzaOGax6PlIEkY5aSuqGOklgqDIZ6Trj66nfveeCEljfqeyhLgRGnAaUoyUljwTBrWmF57Apjc4hg4jcDyG4elAX55Deagyz6xadWtW8C/YBVRBUS3P/HSCGKcR4QozJGXfthLl5kgoihmZVJxUkgThERqQvkaOIiLdfLbJBB5pJYBhLPThCs7UnxM5iqTMIl93RkgN5aI3Ff/z+qkKL92c8iRVhOP5Q2HKoIrhNBYYUEGwYpkGhAXVf4V4iATCSodX0SHYiyv/hc5Z3dZ8e15tXBVxlMEBOAQ1YIML0AA3oAXaAIMH8ARewKvxaDwbb8b7vLVkFDP74FcZH9+92Jh7</latexit>

Now, back to clustering
• We’ll redo the hierarchical clustering algorithm, but use it

to track 0-dimensional homology.

• Once two things are grouped in the same cluster, their
“level sets” combine, just like in the function example

Now use stability
• Now, what if we don’t have perfect information, but just a

“guess” (or density approximation)?

Final result
• Persistence based clustering: take in a finite point set and

density estimate, and partition the function using
persistence. [Chazal et al, J ACM 2013]

Persistence-based
clustering

• Underneath, they just remove the “noise” using
persistence, and grab the most prominent peaks of the
function to cluster with:

Persistence-based
clustering

• You do still need a threshold function, just like in graph
based approach:

A different application:
Shape classification

• Many other applications in terms of shape recognition
[Chazal et al, SGP 2009]

Biological applications:
• [Mao et al, 2018]: Using

persistence to identify leaf
“morphospace”

Biological applications:
• [Kovacev-Nikolic et al,

2016]: Using persistence
to study proteins and
detect structures

Biological applications:
• [Hofmann et al 2018]:

Finding DNA double
strand breaks induced by
radiation

• “The aim of this article is
to demonstrate a new
approach to analyze repair
foci by their topology in
order to obtain a cell
independent method of
categorization”

Similar

Barcodes

Dissimilar

Barcodes

