
Persistent homology 
and clustering 

Based on lecture notes by Frédéric Chazal and Steve Oudot

(as well as various other sources, cited throughout)




Recall: Clustering
• Clustering: A partition of data into groups of similar observations. 

The observations in each group (cluster) are similar to each other 
and dissimilar to observations from other groups.


• Input: a set of points embedded in an Euclidean space (with 
coordinates) or a more general metric space (pairwise distance/
similarity) matrix. 



A motivation for  
persistent homology

• Recall our hierarchical clustering algorithm:


• Make each point its own cluster


• As long as you have more than 1 cluster:


• Merge the two closest clusters C and C’, where 
distance between clusters is: 

d(C,C 0) = inf
x2C,x02C0

d(x, x0)
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Turning this into a k-cluster
• The output of this is a hierarchical cluster; to get a smaller 

number of clusters, you can simply “halt” the process 
early, so that you have fewer clusters, each of which has 
nearby points 

One downside:

Still more about 

similarity, and less

about dissimilarity 



Problem: instability
• Let’s consider two very similar inputs:
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Problem: instability
• Unfortunately, this means this approach is not stable: 

similar point sets can yield very different clusters.



However…
• Small perturbations on the input data may lead to wide 

change in the structure of the trees. 


• However, the “merging times” remain stable. 


• Taking a close look: (At least for Euclidean data), the single 
linkage clustering keeps track of the evolution of the 
connected components of the distance function to the data.



Recall: Koonz, Narendra, and 
Fukunaga algorithm (from 1976)



Problem:  
still sensitive to noise

• There are as many clusters as there are local maxima of 
the density function, which varies with neighborhood 
graph, so also quite sensitive to noise!



First: what is homology?
• More precisely, more often than not, people are interested in 

computing the ranks of the homology groups 

• Formally defined as the maximum number of linearly 
independent generators of a particular group 

• I won’t get into math, but at a high level, we have 1 to k-dimensional 
homology groups for any k-dimensional structure 

• Rank of H0 is the number of connected components 

• Rank of H1 is the number of “handles” (or genus) in an orientable 
2-manifold 

• Rank of H3 captures the number of “voids” in a 3d-complex



Persistent homology 
motivation

Oudot 2015
Oudot 2015

Key idea: depending on what scale we view the 
data, the question “what is the shape” may be quite 
different.  

Just to get us started:



0-dimensional persistent 
homology on a function

• Starting with a simple example: 


• Consider a function f, and track level sets and 
connectedness of f-1(-∞,a), for a = -∞ to ∞:
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• Consider a function f, and track level sets and 
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0-dim PH of a function:
• The result: a representation of which features are 

“persistent”, in the sense that they last a longer or shorter 
time as the input evolves.



How to go beyond 
functions?

• Core notion: 

• A k-simplex is a k-dimensional 
polytope which is the convex 
hull of its k+1 (affinely 
independent) vertices 

• A simplicial complex Ƙ is a 
collection of simplices where (1) 
any face of a simplex is in Ƙ and 
(2) the intersection of any two 
simplicies in Ƙ is also a simplex

Image courtesy of wikipedia



The Ćech complex
• Given a point set X, consider a 

cover built from all radius ε balls 
centered at points x∈X. 

• The Ćech complex is the nerve of 
this covering, where we fill in a k-
simplex {i0, i1,…,ik} is included 
whenever Bi0 ∩…∩ Bik ≠ ∅. 

• Essentially, a k-simplex appears 
whenever k balls intersect.



Vietoris-Rips complex
• Finally, the Rips complex includes all simplicies 

where pairwise distances are less than 2r (even if the 
common intersection is empty) 

• VR(x,r) = {σ ⊆ X | Br(x)∩Br(y)≠∅ for all x,y∈σ} 

• This is strictly larger than the Ćech: can have 
pairwise distances ≤ 2r even when no common point. 

• Both are commonly used to represent those 
neighborhood “graphs” of input points.



Rips versus Ćech
• The topology of these can be VERY different. 

• Even for planar point sets:

points Rips Ćech



Persistence for  
point cloud data

• Build the same connectivity in 2d:
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Persistence for  
point cloud data



A more complex example: 
Rips complexes

Ghrist 2008



Why do we care?
• Stability!  We can define a distance, called the bottleneck 

distance, between these persistence diagrams:



Another example to  
illustrate stability

Munch 2017



Stability result
• Theorem: [Cohen-Steiner et al 2005, Chazal et all 2009, 

de Silva et al 2012]: For any 2 “tame” functions f and g: 
d(Df , Dg)  ||f � g||1
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Now, back to clustering
• We’ll redo the hierarchical clustering algorithm, but use it 

to track 0-dimensional homology.  


• Once two things are grouped in the same cluster, their 
“level sets” combine, just like in the function example



Now use stability
• Now, what if we don’t have perfect information, but just a 

“guess” (or density approximation)?



Final result
• Persistence based clustering: take in a finite point set and 

density estimate, and partition the function using 
persistence. [Chazal et al, J ACM 2013]



Persistence-based 
clustering

• Underneath, they just remove the “noise” using 
persistence, and grab the most prominent peaks of the 
function to cluster with:



Persistence-based 
clustering

• You do still need a threshold function, just like in graph 
based approach:



A different application: 
Shape classification 

• Many other applications in terms of shape recognition 
[Chazal et al, SGP 2009]



Biological applications:
• [Mao et al, 2018]: Using 

persistence to identify leaf 
“morphospace” 



Biological applications:
• [Kovacev-Nikolic et al, 

2016]: Using persistence 
to study proteins and 
detect structures 



Biological applications:
• [Hofmann et al 2018]: 

Finding DNA double 
strand breaks induced by 
radiation


• “The aim of this article is 
to demonstrate a new 
approach to analyze repair 
foci by their topology in 
order to obtain a cell 
independent method of 
categorization”

Similar

Barcodes

Dissimilar

Barcodes


