
Bioinformatics Algorithms

More Inexact
Matching

Recopy
- No class Tuesday

- Hews back - next week !

More Variations on Inexact Matching :

Bounding the number of
differences

.

Last time : k - mismatch
.

(allow no insert ons or deletions)
direct dynamic programming :

O Cmn)
suffix tree approach :

01km)
Useful because instead of

maximizing a score
, many

applications want onlyexact C or nearly exact)
copies of P in T

.

High level : dyn programming
vs .

su x tree

-

Next : extend to supportboth mismatches and

spaces
But first - why ? ?

Well ,
boils down to speed .

Most DNA comparisons don't
have bounded differences

.

But some do :

-

searching for
sequence

tagged sites C STS)
& expressed sequence
tags C ESTS) In newly
Sequenced DNA

-

searching families for

genetic diseases

- Molecular epidemiology :

tracing transmission of
a virus with a

mutating genome

Key: nearly the same :

bounding # of changes
makes sense

2 variants :

① k - difference global alignment :

Input : St a Sa
,

K

Goat : Find best global
alignment of S

,
* Sz

with at most k
mismatches or spaces

(if one exists)
.

Really a special case of
edit distance

.

(but smaller space of solutions)
② k - difference inexact matching :

Given Pt T
,

And all
copies of

pianos
T which

differ by at most K
substitutions

,
Insertions

,
or

deletions .

Approach : Hybrid

① k . difference global alignment
Same as global alignment,

but ensure E k changes
Could do dynamic programming :

xfI⇒inHi
t store in each cell

the # of insertion , deletions
& Subs so far on

path .

if > k
, reject a try

others

How to
improve

!

Side note : What if k is unknown ?

Run for k -
- O : I no)

Try k - - I :(sblln .)

keep doubling until
get a yes

01km)

#ag¥mporknt

¥¥AM
0dam) tdord.ISsize prosper

② k - difference inexact matching :

CEssentially ,
like k - mismatch

from Tuesday ,
but now

allow spaces .)

Suffix tree
.

issue :

doesn't play well
with insert delete

Recall: wetousesd.de/onsesotueffoHmnmsoms
sub strings .

Se -

-

xa±⇐
C$1)

SEE

:b÷b#¥¥** →¥¥h¥¥¥÷÷¥÷
:* :

.

Also more difficult than globalalignment :

p :D

TT
Since PTT are different

lengths,
the "

diagonal
"

is
not helpful .

Solute : Hybrid approach !

(first due to [Landau - Vishkin]
& [Myers])

Dfg : Main diagonal is againall cells C i
,

i) or f
Of EE n E m .

Ntm other
important

×

:
. n th

P
"

ending
in

raw3

DI : A d-pad startsnd'S '

now 0 a specifies
exactly d mismatchesspaces .

A d- path is farthest reaching
in diagonal i if it :

a ends in diagonal i
° a ending column C in

diagonal i) is Zan

d-path ending in i

Now : Hybrid approach
• Will have k iterations ,

each
in 0cm) time

.

•

in iteration de k
,

And
farthest d - path on diagonal

i (for all - n ± it m) .

How ? use the @- D - paths
from the last iteration

Details
-

:

Ford : this is just tee
longest common extortion :

OC
.

 . in) time
using saffx trees

←
htm

Next : For d - O T diagonal I
,

3 paths to consider :

(to keep farthest reaching
d- path)

① Rt : thefarthest reaching- @- I) - path on diagonalit
, Then a space

C so a vertical edge in table)
,Then longest extension along

diagonal ou

i :

← O 's

T¥¥±¥¥¥÷÷
I

Sa tree
" i in

② Rz : farthest reaching Cd - D
• path on it

, then
horizontal edge , they

longest extension on 8

③ Rz : for test - reaching Cd - 1) path on i
,

Then diagonal mismatch
,

then
longest extension .

The cool part :

These are the only choices !
If there is some better

farthest reaching path
w/ d errors ending in

a

L
• find last entry pointfor I

• Claim : when it crossed
It or it

,
would have

had farther reeking
Cd - It - path

Runtime a Space

-
"

odranges from 0 to k

• Ocntm) diagonals
⇒ 0dam) space

Force
:

-Loop from 0 to k
.

- Inside
,

retrieve Ocmtn)
past solutions

& do longest common

extension queries↳ OG) after linear

preprocessing%
. - owe ⇒ 01km)

Another variant :

so metres

The other book calls this
the

"

thresh hold all - against - all
"

problem .

KeydIe
:

-alignment of all pairsof substage
(not all

pars of strings)

Brute force : Q :
errors

a
For each I

Eietp
:

#jm
,

do dynamic programingtatbhfj
. .
Am}Pci

. .

p] a

- where edit distance can 't
be more than K

If n - the length of

÷:i±÷÷¥÷¥::D
Runtime Ocp ' ni)

For each Ci ;D , quadratic
DP table

~ 044)

Another cool hybrid approach :

Build su x trees for
both p a T :

Tp and Tf
- each node represents a

Sub string of P Cort)
- each sub string in P is

a prefix of some node

Ey : P -
- mississippi

Tp : 17i
,or

"

T -

. maymayi ¥¥¥
.

¥

So : do dynamic programming
↳ but over all parsof nodes from the

trees .

More carefully : ←
Pgroenfetstfix

For ut Xp t V ETF
,

cell Cu
,

v) is the DP
table for edit distance

from u 's Sub string in P
& v 's sub string in T

.

Could solve by taking each
pair of leaves t doingfull PP .

downside :

no better than
normal DP

Instead : use tree !
u

iii.Label nodes by string
length in each tree

← g-
1 2 3 -

- - -

8 7 4 s⑥I/ -
-

-

use parent's answer

Runtime : Well
. . .

Worst case ,
no better

.

But ! In practice :

OCITPHTHTYR)

output
size

So : if tree compresses(
well

, this is faster
.)

Ef : In a few tests
,seemed -100 times

faster for DNA .

(Amino acid test claimed
even better .)

Another (heuristic) approach :

l - her Alfreton : if an n - letter
Sub string

matches an n - letter
P

Sub string of T
,

then some

I - men is identical
.

. l - hers In Common canNIK .

be found by hashing :

If there aren't many
- use

these to isolate likely
. matches

.

Pinning this down :

PI :

Algorithm
a Find all matches of b- hers

,

for b- LIF)
.

. For each potential match
,do Expand to left

t right until KH mismatches
are found .

(besetsuffix trees !)

Note :

