Algorithms in Biomformatics

Greedy Algorithms

- Website should be updated - HW- due vort Tuesday - Essays - hopefully Thursday? - On Sep 27- no class

Joday: Ch 5

Problem Motivation: gene flipping Mouse X Chromosome Human X Chromosome Simple version: Rearrangement events can be modeled by reversals. Order of synteny blocks (genes) can be represented by a permutation: a reordering of 1 ... n. $\Pi = \Pi_1 \Pi_2 \cdots \Pi_n$ Reversel: $T = T_1, T_2, T_1, T_1, T_2, T_1, T_1, T_2$ = $T_1, T_2, T_1, T_2, T_1, T_1, T_1, T_2$ E: TT = 1243756 = 12,5734,6

The problem:

Reversal Distance Problem:

Given two permutations, find a shortest series of reversals that transforms one permutation into another.

Input: Permutations π and σ .

Output: A series of reversals $\rho_1, \rho_2, \ldots, \rho_t$ transforming π into σ (i.e., $\pi \cdot \rho_1 \cdot \rho_2 \cdots \rho_t = \sigma$), such that *t* is minimum.

Then t = d(T, 5) is the reversal distance between T + 5.

In practice, one is the main one, a we reset of to be 1...n. (+ update T accordingly) Then: Treptice G: (in T) Then:

Sorting by Reversals Problem:

Given a permutation, find a shortest series of reversals that transforms it into the identity permutation.

Input: Permutation π .

Output: A series of reversals $\rho_1, \rho_2, \ldots, \rho_t$ transforming π into the identity permutation such that *t* is minimum.

Then t=d(TT) is the reversal distance

Pref(TT) = 3Ex: TT = 123 645 What would you do? (4,5) 1234651 123456 $d(\pi) \leq 2$ Can it bc =1? (lover bnd) exhaustively, no

Define prefix (TT) = # of already sorted elements in TT. Try to increase this by 1 iteratively (and greedily): SIMPLEREVERSALSORT(π) for $i \leftarrow 1$ to n-11 $j \leftarrow \text{position of element } i \text{ in } \pi \text{ (i.e., } \pi_j = i \text{)}$ 2 3 if $j \neq i$ 123,645 $\pi \gets \pi \cdot \rho(i,j)$ 4 5 output π 6 **if** π is the identity permutation Does this always work? it's use induction: After round i of loop, After round i of pot. 7 How many flips? worst case: n-1 (not optimal)

Ophmal?

621,345

Worse: 17= N12 (n-2) (n-1)

Similar CS problem: Pancake Alipping Stack of pancales (out of order) in put: goal: All you have is a spatula. (Basically, permutations will all be prefixes.) <u>Ex: 123645</u> 632145 (The minimum # of needed Flips is unknown.)

OK, so greedy doesn't always work! Let's talk approximation: Performance guarantee: A(TT) = Solution produced by algorithm A on input T OPT(IT) = best solution on input T Approximation ratio (for minimization $Max = \frac{A(\pi)}{OPT(\pi)}$ (Worst case scenerio) EX: We showed approx rato of SIMPLEREVERSE SORT $15 \geq \frac{n-1}{2}$ If n=1001, alg could return 500. OPT permutations.

Better: a different notion of greed

Breakpoints: To make it easier, extend TT: $\Pi = \Pi_{n+1} \Pi_{n+1}$ For any i =n, off The The are consecutive, Call it an adjacency. · if not, a break point (4 let b(TT) = # breakpoints) Exm 0,21,345,876,9 b(m) = 4 Note: only 1 permutation has O breck points.

Observation: Every reversal can eliminate al most 2 breakpoint. So: $d(T) \ge \frac{b(T)}{2}$ perometer $\frac{b(T)}{2}$ measure Goal: try to choose flips that lower b(T) But - can removing a breakpoint increase new ones later? Or could we get stuck?

So: if have a decreasing strip, can reduce.

IF not : all strips are increasing. What to do?

Algorithm: reduces IMPROVEDBREAKPOINTREVERSALSORT(π) this, 1 while $b(\pi) > 0$ 2 if π has a decreasing strip Among all reversals, choose reversal ρ minimizing $b(\pi \cdot \rho)$ 3 else 4 5 Choose a reversal ρ that flips an increasing strip in π for every their filterations, 6 $\pi \leftarrow \pi \cdot \rho$ 7 output π 8 return This algorithm is a Happroximation Ihm: (ie it's # of swops is = 4.0PT) # Steps in alg pt; = 2 6(+) SINCE b(TT) goes down (at least) 12 for every 2 iterations by observation 3? stides ago. and)(T OPT= d(TT) = Greamance b(T)=2d(T) # steps in alg $\leq 26(\pi) \leq 2(2d(\pi))$ 至4月(下)

Another example: Motifs again (Sec. 5.5) Moht finding: O(lnt) or O(4ent) Greedy apprach: · Scan each DNA sequence once · Deade which lemers have best contribution as we go More detail: · Scan Sequence 1+2 + find 2 closest 2-mers (in Hemming distance) Time: l(n-l+1) "Then as juin 3 to t Scan juin sequence + select the best limer (max Score(s,i)) Time: l(n-lt))each the

Pseudo code :

lime:

GREEDYMOTIFSEARCH(DNA, t, n, l)1 **bestMotif** \leftarrow (1, 1, ..., 1) **2** $\mathbf{s} \leftarrow (1, 1, \dots, 1)$ 3 for $s_1 \leftarrow 1$ to n - l + 14 for $s_2 \leftarrow 1$ to n - l + 15 if $Score(\mathbf{s}, 2, DNA) > Score(\mathbf{bestMotif}, 2, DNA)$ 6 $BestMotif_1 \leftarrow s_1$ 7 $BestMotif_2 \leftarrow s_2$ 8 $s_1 \leftarrow BestMotif_1$ 9 $s_2 \leftarrow BestMotif_2$ 10 for $i \leftarrow 3$ to t11 for $s_i \leftarrow 1$ to n - l + 112 if $Score(\mathbf{s}, i, DNA) > Score(\mathbf{bestMotif}, i, DNA)$ 13 $bestMotif_i \leftarrow s_i$ 14 $s_i \leftarrow bestMotif_i$ 15 return bestMotif

This tool is called CONSENSUS.

No approximation ratio! So optimal can be missed entirely, or can be bad. Note: - usually de more than - usually run several order fines in random order

Next time:

Greedy approach for Shortest common superstring.

mention in 8.4

(my notes are based on another source - I'll post a line)