
Algorithms , a Bioinformatics

Exact pattern
matching Gout)

Recaps
- Email me if

you
're come byoffice hours tomorrow

°

ng

- Hw due Tuesday
- Longer

' '

Midterm "

assignment
is posted(comments welcome !)

today : Pattern Matching
The Boyer - Moore Algorithm-

Align P against T
,

a start

Comparing at end of T :

①

Charademimaeh

:

get to index i with

TE] ¥ Pg] even though hjned

⑨
Say Tci] -

- c :

"

If c is in P
,

shift until
a copy of C is aligned

I

⑤ If c is net in P
,

shift

past to It I

Preprocessing : Bad character rule

We can precalculate the

skips for mismatches to

speed things up
:

Say E = E A , GT , 63
and P = TCG C

space
:OCPll El)

,,bYIpEoTe . . .

t IBag

P : TC GO⑦Eh

T : A AT CCA . -

P : T CEE

Stone : for each position i in P
and X E E

,
the closest

occurrence of x in P to
the Left of i

.

② Good suffix rule :

Given alignment of Tap :

T :
Tt

P :

If t is the Longest suffix of P
that matches T in current

position ,
we can shift P

So that it matches t een her in I?

(In fact
,

character before prau .

Occuranee of t in P should
be different from character
before the Su x of P -

- t
.)

If none :

- Fund smallest shift that matches

prefix of P to su x of P

to Shift .

- Or else shift down by IP)
.

Preprocessing for good suffx :

• For each i
,

Ui) is largest
position a

#
i such that

PE i. on] matches a suffix
of p[1.

olli)]
.

my
Ex : P -

CAITAGTAI483=6-3mL' (8)=3• U Ci) is largest position< Ipl such that

Pfi . . n] matches a su x of
PEI . . .

Eti)]
and preceding character of
suffix ist Pli - I)

Use these to shift !

The algorithm :

Use bad character en good
su x

(whichever gives bigger shift)

Example :

Takeaway : We slapped a lot !

Runtime: 0cm th)

Why ?

-

Preprocessing for BC :

Scan - for each x
,find all positions where

× occurs
.

0M¥02
Ee

:P
: ab a a

babe
x

-

- a : 6,3 ,
I

be :&.§ ,
z Join)

Then : at mismatch
,

scan
list until get # a i

- Good suffx rule :

Similar trick
.

They : trade - off is the key !

Next : KMP

prefx-feetree.si#ed
Consider strings S from an

alphabet E
.

Build a tree :

•

Every node Cexcept root)
gets a label from E .

• order children of a node
In alphabetical order

a There are 1st leaves
,

and
thateach root - to - leaf

path to a leaf gives
a L unique) string from S

.

I

Ex .

O O

O O

Then :

-

How ? Use tree

For each position E "

Scan ' TEI t . . .

Move in tree

at a leaf
, output yes!

increment I

Runt re : build the
-

search : 0cm . max Ipt)

Compressed tries i

Tries are not space
- efferent :

Problem
-

:

redundant nodes!

degree 2

nodes contain

nothing
new

Goat : Make each node have
Z 2 children

Why? Seems like more

space
In single node

.

Strength is really when youstore the string separately,
& use the the to index :

- see

- bear

%YocEbidI O O

id

T
6,1 ,

2

i
3 # S

J Yang e

stringid

^ I(arbitrary
of
characters

Suffix tries
-

!

Suppose all strings in S
are suffixes of some X

.

Can get better representation :

BANANA .

.

T -2-3-45-6
6 suffixes

P
A

IN

y
' A

Why ? Space !

too many suffixes are there ?

It 2t3t -
- - ten - I) = OC n 2)

How big is this tree ?
Ocn)

Saffx tree vs keyword :

String : AT

CITI
a-

Keyword Su x

the : the :

-00

How to use for exact pattern
matching :

-

← black box

Example : P -

- ATG

threading :

stIt¥¥EEfIaA§A#G
p - matching :

leaves below

Suffix tree :

-

>
I -

Difference : trade - off

- Earlier BM alg :

vary T
,

but for

one pattern p

- Suffix the :

pre process T
(fixed

Search for any
pattens quickly

Next time :

Inexact matching

