
Algorithms in Bioinformatics

Exact pattern
matching

Recaps
- HW up ,

due next Tuesday
- No midterm - longer readingassignment instead

- Tomorrow : no office hours
2- 3pm C sorry !)

Instead : tomorrow 11:30 - noon

Friday : 11-12

↳ but please email
to set up !

today : Exactamp:If ding
- 50% of human genome is

repeats
- However

, repeats are also

important !

(Go read Section 9 . I -

associated with

Tds
ease

,
evolution

,
ate .)

In particular : long ,
maximal

repeats .

Different from motifs :

pattern is known

Krsto :

HIE!
ies

Hash tables
,

or associative

arrays ,
are built into

most Languages these

days .

Side note
-

:

Don 't ever

implement These

Yourself !

Hashcngbg :

- Book says duplicateremoval .

This is one goal - but
not the biggest one

from a CS or BCB

perspective !

r

Hashing: Fast data storage
Given key / value pairs ,

want to be able to retrieve
value

qeg
given the

key . OCD
(As well as story .up

date)

Examples
-

:

• Course # to schedule info
• URL and html page
. Flight # a arrival info

a Color and BMP
o Directors a movies

• b- mess a repetition locations
a

In a sequence
:

Dictionary
A data structure which

Supports :

zsnoe

:*Ittefaq
'

fog,
cars . remove Ckey)

Note : An array is a kind
of dictionary !

key : index /position
data : stored value

i

Other implementations :

Linked Last :

not → Do - -
-

Vectors

Hashing ③ →

Tf÷
Assume

In
> >

A#ofEntriesatrrabybkeolakes

too much space .

Goat : On) space
fast lookup Insert

remove

A hashfunotroh h
maps

each key to an integer
in range [O

. . N - I]

Goat : N is Bigger

than
n

,

but much smaller
than m .

Then : Given Ck, e)
,

store

' t ahnrayftfhlkl]In an

Picky :

m
>

37N

e
-

- hlk)¥÷

n actual values

Good hash8945£!"

array
- are fast OGS !

- avoid
.

collisions
↳ if ktk

want hlk) th Ck')
with high probability

So
,

how to do this ?

① Make the

keya
#

② Compress # to [O
,

N - D
③ Handle Collisions

⑦ d② : often combined
,

A saw some of it

in

data
structure

We'll recap
a bit

. a .

First idea

I¥mething

like ASCH
,

can break into pieces street
as bits :

Er I n n

694144765¥10
= #

°

Then what ?
Robbin : this can backfire

w/ words :

h (tempOD=h#mp
to)Ffp

motet)
Want to avoid collisions

.

SO ooo

Pdynomalltashcodes
Split date

.

to 32 - bit
pieces .

X = Go,
. . .

, Xk - i)
Pick a th

.

Let p
Cx) =

Xo at
- t

t X
,
at -2

t - .
. t Xk . aa t X

* ,
t t te Tm Top

Ex : Erin (or

61105,14
,

le
)

and a = 37 :

p
Cx) = 69 . 373to 5.372

t 114 . 37 t 110

Why? - relatively Cast

- avoids Collisions I

(more

tricks
like this)

" ⇒

na :# →
- blt

Ot Nt

Idea : Take h (H mod N
¢

Python % in C

Recall : 3need
10--3SO mod 10 = 0

14 mod 10 = 4

Example : hack k mod

fly
A :

O I 2 3 45 6 789 110

Insert ' or
.

.
nipped11=1(12 ,

E)
(21

,
R) : h 1217=10

(37
, I) h (37=4

(16
,

N) h (16) -

- S

(26
,

C) h (265-4 X

(5
,

H)

Comment : Works best if #s
are

prime
.

Why?
trelatively

go take number
theory

Another

way
.

:
M

:AF
.

Instead

offKkk
) mod N

,

dohdI=Isktblmod N

where a ab are :

-

relatively prime
- less than N

Why ?
go

take NT

Example : h(k)= 31<+5 mod 11

#
A :

↳
0 1 2 3 45 6 789 110

Insert : \
(r , E) =h§¥2=+5mod4=8
(21

,
R)

.

(37
, I) .

.

(16
,

N) ! .

(26
,

C) (collisions
MY

(5
,

H) still happen
)

Why bother ?

µu# belter in practice

Steps : Handle Collisions

(Hint : What date structures
can store more

than I thing ? ?)

Ef : Simple chaining :

A .

÷→ 36 → 13

a -90-312-338

Worst case
,

bad
Run times ' hash function .- ↳ insert lookup list time

01hrteohn.gg :

• linear probing
. quadrate probing

. re -

hashing

Takeaway-

:

Handle collisions

On most date
,

all of

these work well in

practice .

(No theoretical guarantee)

Load Factors
-

Whatever method youuse
, usually starts

to do badly if

n gets close to N :

want I c. S

¥HuH
Rehashing :

When more than half
full

,
most implementations

double the array size

& choose a new

hash function

(Hence
,

don't write these
yourself!)

Baok-topaltonmakh.mg
Naive pattern matching

:

YTp7t string Hongo)

• I - -

Runtime: Ipt - n

IT -

- m

n (m - htt) -
- Ofmn)

[Boyer - Moore]
How to

improve ?
① Skip pointless alignments :

("

Ba¥y
rule

")
Align P at start of 'T :

④Look at position of the
Last occurrence of a

mismatching character

If this character exists in

pattern , realign to last
(prior) occurrence

④ If that character isn't in

pattern , just go past enh rely

Of course
,

if
you

don't And

② Fitsa qK#I , you've

Run - the of this :

Still Ocmn) ,
since could

get all the same character :

AAAA
AAAA -

- - - A

② Good suffix rule

Let t -

- sub string matched

by the inner loop
Look at suffices :

Skip until either
④ no mis matches

between P a t

③ P mores past t

Note : Can break ⑨ down
to cases :

-
- - - - - - -

Algorithm :

Tradeoff HE
These rules

just suffix rule : Ocmn)

