Algorithms in Bioinformatics

Clustering: Port 1

Recap -HWI is graded -Stay tured for next HW -Stay tured for final exam Joday: Clustoring

Today: Clustering

Biological Motivation: genes + their functions

Not always meaningful to look at sequence similarity.

Approach: - analyze expression levels (amount of mRNA n cell) at different times - look for patterns: if expression patterns are similar, will suspect these genes have similar or related trunctions.

Kesult: We are given an nxm expression matrix I: - n rows (one per gene) - m columns (one per time pt) The entry at position (i,j) represents the expression level of gene (at timestamp) j. Goal: Find Similar rows. Caution: - data is noisy! -also, not a guarantee

Example 10 genes, 3 timestamps

Time	1 hr	2 hr	3 hr
g_1	10.0	8.0	10.0
g_2	10.0	0.0	9.0
g_3	4.0	8.5	3.0
g_4	9.5	0.5	8.5
g_5	4.5	8.5	2.5
g_6	10.5	9.0	12.0
g_7	5.0	8.5	11.0
g_8	2.7	8.7	2.0
g_9	9.7	2.0	9.0
g_{10}	10.2	1.0	9.2

How can we interpret this? Need a way to compare entire rows.

Book to good old geometry ...

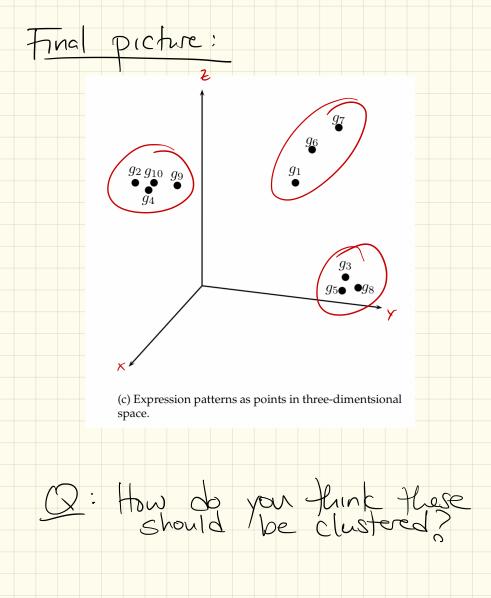
We can simply interpret each gene as a point in Im-dimensional space.

If we do this, automatically get a distance metric! $d(p_{1}, p_{2}) = ?$ $d((x_{1}, y_{1}, z_{1}), (x_{2}, y_{2}, z_{2}))$ $= \sqrt{(x_{1}, y_{2}, z_{1})} \sqrt{(x_{2}, y_{2}, z_{2})}$ $E_{X} = q_{2} q_{1} q_{1} q_{2} q_{2} q_{1} q_{2} q_{1} q_{2} q_{1} q_{2} q_{1} q_{1} q_{1} q_{2} q_{1} q_$

Time	1 hr	2 hr	3 hr		g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}
g_1	10.0	8.0	10.0	g_1	0.0	8.1	9.2	7.7	9.3	2.3	5.1	10.2	6.1	7.0
g_2	10.0	0.0	9.0	g_2	8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	2.0	1.0
g_3	4.0	8.5	3.0	g_3	9.2	12.0	0.0	11.2	0.7	11.1	8.1	1.1	10.5	11.5
g_4	9.5	0.5	8.5	g_4	7.7	0.9	11.2	0.0	11.2	9.2	9.5	12.0	1.6	1.1
g_5	4.5	8.5	2.5	g_5	9.3	12.0	0.7	11.2	0.0	11.2	8.5	1.0	10.6	11.6
g_6	10.5	9.0	12.0	g_6	2.3	9.5	11.1	9.2	11.2	0.0	5.6	12.1	7.7	8.5
g_7	5.0	8.5	11.0	g_7	5.1	10.1	8.1	9.5	8.5	5.6	0.0	9.1	8.3	9.3
g_8	2.7	8.7	2.0	g_8	10.2	12.8	1.1	12.0	1.0	12.1	9.1	0.0	11.4	12.4
g_9	9.7	2.0	9.0	g_9	6.1	2.0	10.5	1.6	10.6	7.7	8.3	11.4	0.0	1.1
g_{10}	10.2	1.0	9.2	g_{10}	7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

(a) Intensity matrix, I

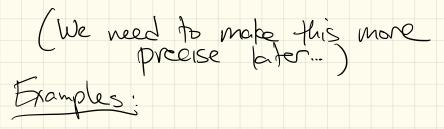
(b) Distance matrix, d

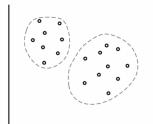


Goal: Male "good" clusters: - homogeneous: thirds within a cluster should be similar

- Separation: Genes in different clusturs should be different

ie large distance



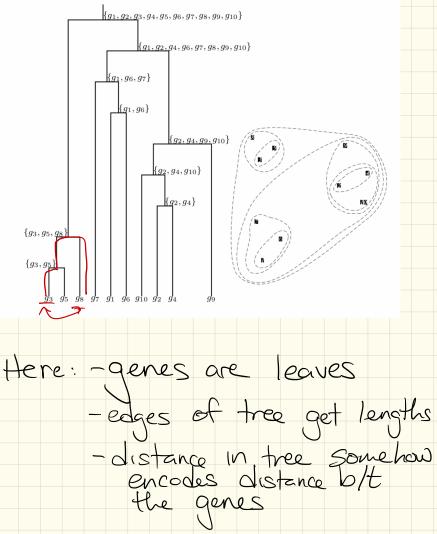


Herarchical Clustering: Tree based idea: (on same data)

Often, we break data into high level clusters, stiften break them down further.

Example: mammals primates Carnivora bats Cats bears seals ///) (37 species)

Gene picture:



leve Idea 91 an obvious good to cluster? Algorithm: HIERARCHICALCLUSTERING(\mathbf{d}, n) Form n clusters, each with 1 element 1 2 Construct a graph *T* by assigning an isolated vertex to each cluster while there is more than 1 cluster *Concerts* n tr 3 **7** Find the two closest clusters C_1 and C_2 5 Merge C_1 and C_2 into new cluster C with $|C_1| + |C_2|$ elements \bigcirc Compute distance from *C* to all other clusters 7 Add a new vertex *C* to *T* and connect to vertices C_1 and C_2 Remove rows and columns of d corresponding to C_1 and C_2 Add a row and column to d for the new cluster *C* return T 10 Ambiquous part:

Many different ways to compute

What's an obvious one? Center: distance from Centroid

Another? - find closest pt - average distance 5 to center 11 points 5 between all points

Run time:

Depends a bit on distances

Naive implementation: Otros Funproved (for some data sets):

 $O(n^2 \log n)$

Pf of correctness:

It suit!

No theoretical guarantee (even approximate)

Try all clusters: exponential

Actually, two ways to compute these : -We saw bottom-up approach - Also top down: decide on a split How DIANA (Divisive Analysis Clustering): - Find element with maximum average distance Chernin = O(n2) - Group all objects with it flat are more similar to it than to old cluster - Recurse on each cluster. (repeat until n clusters) Note: Again, not optimal! Also doesn't give same clustering.

Recent work:

-This is still an active area of research:

In CS: trying to prove any approximation guarantee In Bio: trying to figure out how well it workes on various date sets.

(Maybe a good future essay...)

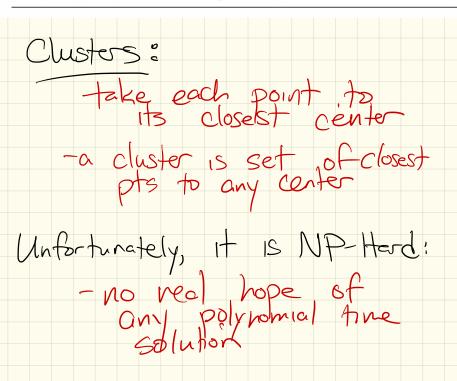
K-means clustering (10.3) A different variant: fix the number of desired clusters, K. n=#pts, m=d=dim Determine a set of k points, or centers, that minimize distance or distortion. More formally: centers $X = \{x_1, \dots, x_k\}$ $d(v, X) = \min_{\substack{i \le i \le k}} d(v_j, X_i^\circ)$ (where d(v, xi) is Enclidean dist) Then Squared error distortion for a set of points $V = \{v_1, \dots, v_n\}$ +centers X = {x1,..., XH} $15: d(V, X) = \underset{i=1}{\overset{X}{=}} d(v_i, X)^2$ strike of the n the centers a ust

k-Means Clustering Problem:

Given n data points, find k center points minimizing the squared error distortion.

Input: A set, V, consisting of n points and a parameter k.

Output: A set \mathcal{X} consisting of k points (called centers) that minimizes $d(\mathcal{V}, \mathcal{X})$ over all possible choices of \mathcal{X} .

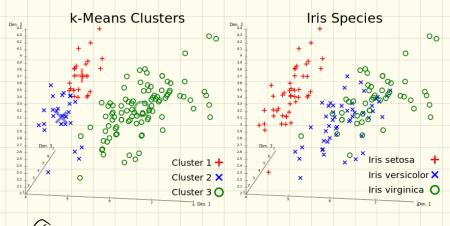


Heuristic approach: Lloyd's algorithm:

-Randomly select an arbitrary partition into k clusters -Improve iteratively, by moving points between clusters First: -elect K points (randomly) as centers, X= {x,,..., x, k} Repeat: (until centers don't change) - assign each point to Its vearest Center Xi - compute "center of gravity" for each cluster: $\leq V$ TCT I make it the new conter

Runtime: Per iteration, = O(n km) # pts Jim No guarantee! - of optimality, at least. However, does tend to converge very quickly. (Usually, only need about g dozen Herchors.) 5006]: # of iterations "super-ial" IS 2 SZ(UTA) Polynomial" [2009]: "Perturbed" inputs are polynomial time [2009]: Better on "nice" inputs.

Example (a some problems)



Iris Abwer data set

"Maise data set: also issues

0.9

Different cluster analysis results on "mouse" data set: Original Data k-Means Clustering EM Clustering

