
Algorithms in Computational
Biology

More on BWT

today : Last class !

• Please don't forget to submit
And implementation prgectfltw
by next week

(via email
,

or share get
repo)

Not : I would like a

reading overview !

Discuss design designs,
how

you tested Car show
me some tests) , how
to compile fuse ,

and

any comparisons
or

lessons learned .

° All Hw is graded !
Come get HWS next #week .

- Don 't forget instructor
evaluations

today : More on BWT

First
, recap

:

Koi.
- Compressible
- Reversible

- Useful A fast) for searching

Reversing

: → abba $aa
sort But all parsSort

:$
a

7$
:

a b ba

a b ⇒ b a

9 a 99
a # a

as④%÷¥¥sort But -

:

sort
again $9 a

-

'

'

at b
⇒

aabebaa
ab a a ab
ab $ $ ab
ba a a ba
ba a aba

sort :

sort

Batt
aH4-hp#

b
b ⇒
a

$
9
a

sorts sorted But

Stupkab
b ⇒
a

$
9
a

sort :
sorted

Bait
Gtnpks

b ⇒
b

a

$
9
a

sort :
sorted

BAI
7-tnpks

b ⇒
b

a

$
9
a

original : row ending in $

Code : easy
C if slow)

*

Runtime ? 0Cn4ogn)
C Important takeaway - *I line of Code is

not 04) time !)

Last time
-

!

Connect on to suffix trees
t suffix arrays

:

<ap€$

①
EX

-

fBWT.es/elp1epa

=
-

-

=
-

How to reverse more efficiently ?

today: LF Mapping
Give each character a

trank : = # of times

character appeared
previously in string

Ex :

Aoboe
.

azb.az/SWhf?-Look back at BWT :

Keyfact : $ aoboa , azbi
relative order IS b .

Same in bo
Ft L

(of Franks) b ,

$

bo

This is true for
any value :

I

V

Called LF -

mapping :

The ith occurrence

of character c

in L and

character c in R

always correspond
to save
occur and in

original string .

Why? ?
Because we're doinglexicographical Ge alphabetical)
sorted order !

m m

All the a's have same order
.

Ties broken by same
sorted string -

it 's Suffix of one

& prefix of other !

Sometimes called
"

First - Last properly
"

.

Nowy : How can we use BWT
to look far all

'

one string ?
repeats of

Let 's look at a biological
data set "

s a

String : GATGCGAGAG AT 6$
Tr

Compute all cyclic permutations
(or do su x array from

last time)

)
v

⇐ Suffix array[
, , #¥wT

Let 's look for all " GAGA "
in text

.

Counting t backward search :

All

AIGA

end with "

A "

.

Each of these ' '

A 's is 1st
letter of some Su x .

However, only suffices preceded
by a G can be options .

BWT stores this !

-

-

T I -40

67

These must be stored next
to each other in suffix
array C since all start the same)

.

Q : Where is the 1st G
in the string ?

(Remember - descending order)

Since 1st G in 6
,
these are 7-10

So : we

continue

Look

usffrcofneAEFseforoe.tt

! GA "
.

In 710 , only 2 are preceded
by an

" A "

.

These are the fist two
A 's in BWT

⇒ 1st two A 's in sortedsuffx order

<Em:::*::p::;
Both to 2 are

,
use sorted order

⇒ position To 8 match

Implementation :

Need first a Last row

Sorted TBWT

Plug the index Counting
#

of Occurrences :

0

Space For OCC :

-

: one now per alphabetcharacter =

Gor
14

& one column
per inputstring character = N

Each entry stores# bets

Total :O@N log N) fined)
For human genome

- this was

47
. 68 613

searching

)

Tock)

For
query of size k :

k steps ,
each with

2 memory accessed

Not : independent of
size of the text ! !

Ock) hire

Space improvements :

Store 0/1 count

Gusted of

lg_N
bits)

O

Keep I column per 32
,

-

then just count using
binary table .

Now : ON bits
Cplus IGN for

every
32K

(For human
genome, now entry)

down to 2.98 GB
not 47.68 GB) '

Also -

compress the suffx
array :

keep t value out of

every 32

How to compute missingvalues ?

{

Cool trick !
• $ isstored at Ot contains

value 13 a letter G

Where is 12 ?

CIG] to ceca ,
o) - 1

= 6+1-1 ⇒ positron of
12 !Generally:

if y stored at m
,
BWTEMTEX

,

y
- 1 is at ccxx3tocccx.ms - I

If we do this :

Just iterate this : compute
Poston of previoussu x until you reach
a multiple of 32

t look up those values
.

(2 memory access periteration
,

rat most
31 iterations to reach

Eaa

?
http 6 of 32)

& Saves another factor
of 32

.

For human genome , now
down to ~ 300 MB or so

.

(Even more tricks usingadvanced data structures -

bit beyond our scope)

Most famous application :

Seeding step of DNA

alignment
BWA uses exact tricks

we just looked at
.

Particularly good in

biology,
since

' " alphabet
"

so small
.

