
Burrows - Wheeler
Transform

Recopy
←

final impbfrognectfn
- HW due next week

- In today a tomorrow

today : The Burrows - Wheeler
Transform

Ide : Data Compression

First
,

recall the steps
:

. Construct all circular
permutations of the

input
• Sort them

• Store last column after
sorting , plus the

index of original
string in sorted Last

Classic banana example :

EOM char
¢ is

smallest
Output :

annbslaa

= E

First -

compression
:

Why does this make
Compression easier ?

Well -

groups common things
together !

Simple example : if " and
-

"

is common but randomlydistributed through the
text

,
harder to And

.

After the BWT
,

all of
these will be a row

(settingswithin
"

Eid:*
Simple compressionalgorithms can then

be used¥-47

Example : Run length encoding
idea : Replace

"

aaaaa
"

by
"

as "

.

Given long runs
, improvement

IS obvious
.↳ simpler - faster

Another : Huffman codes :

Do frequency analysis ,
a make more common

characters have a
smaller encoding string .

C Uses prefix thee codes
& Huffman trees -

often taught in data
structures .)

End product : Tools like
bzip

-

highly effective
for text compression .

Back to BWT :

Again , though - if you're
paying attention

, any
compression could do

this .

Also -

any sort would make
Compression faster .

Key aspect of BWT :

It is invertible !

How ?
HAA - later ,

Well ,
last column contains

all of the characters
,

just in the
wrong

order :

ANNBSIAA
Sort

,
and

you
recover 1st column :

$ AAABNN

Between These
, now have all

pairs :

AT
last ANNBSIAA NA

-

l l I I I l e ⇒

NAU
It . SIAAABNN

BAU
T QB -

BANANA

ANNwww

ANUSort

vaga.is#
last

$13 - A
A- $ - N

x=¥1st :;
BA

- $ Since we know

NA - A the last column
,

Nj
- A

can get all triples

Continuethis
,

a output
row ending with $

.

-

Kast Triples

s¥¥f¥

Etat
AN - B ⇒

NANU
BA

- $

BANU
NA - A $13 A ✓

NAW
- A ANAvc¥ANAV

' 2 > last 4- tuples
$ BA A

-

A $13 N

ANA N
⇒

ANA B

BAN $

NASI A

NAN A

Code is fairly simple , although
complexity analysis can get
interesting

O
c-

IT
og

n
'

O
← input :

nxh

Gf n is length
of the string)

¥
Runtime : gn)

, space Ofi)

BWT tsu x tree connection

r
.

Let -

s
-

- appellee

.$
BWT order

a

IssFlake I
order ! I

BWT= eslelplepa

a

↳ build another rep
:

suffix array
.

 '

Suffx array :

⇐theft*array is the starting
position of sorted suffixes :¥9

←

O
.. .

⑦Elio
⑥ ¥→Can ④fggstrfetsuffffee.MY

This gives
a new ,

faster wayto compute BWT :

use suffx tree !

Example : 5- appellee $

Bwt Suffices

~e
Retable s$

f) I ihdcgast

, appellee $

¥
'IE 's

'eis*¥aa dSuiamay
: 918746532

sudsohamoteaa:LIt} } :L !

Get positron of entryI in BUT

Suffix arrays
t saffx trees '

€pekee$

appellee $
'

th 's hissing

So
, new way to compute :

Compute SA Csa x free - och))

BWTGI -
-

{I Afif-If oOriginal Sakina
,

string $ if Safi]=0

(depending on indexingJ
Ee :

Runt me :

•

Easy 0Cn4og n) algorithm :

compute circular permutations
sort

need last row

• Some direct - space efficient
Ocn) - algorithms .

(won 't cover)
¢ built from :

• Use Suffix array to get BWT
.

⑧ Ocn) time a space
(but - constants can

be large)

Optimality :

BWT is in Act very
good at compression .

Empir.ca/emfropy- : defined

in terms of the # of
occurrences of each symbolor

group of them .

Kth order empirical entropy
gives a lower bound

on achievable compression ,

depending on K symbolsbefore it

[Manzini 2001J showed

BWT is optimal Cup
To constant factor)
for any

K

Uses IS bioinformatics :

Speeding up alignment !

(reducesmemory requirement)

