
BCB 5300 Homework 3 Fall 2018

BCB 5300

Homework 3:
More fun with dynamic programming

1. RNAs adopt complex 3d structures that are important for biological functions. Pairs of
positions in RNA with complimentary nucleotides can form bonds. Bonds between locations
(i, j) and (i′, j′) are interleaving if i < i′ < j < j′ and are noninterleaving otherwise; see the
figure below.

Every set of noninterleaving bonds corresponds to a potential RNA structure. In a very
naive formulation of RNA folding, one simply tries to find a maximum set of non-interleaving
bonds. Design a dynamic programming algorithm for finding the largest set of noninterleaving
bonds, given an RNA sequence as input.

(Note: There are more adequate folding models, which attempt to minimize energy - these
are quite a bit more difficult!)

1



BCB 5300 Homework 3 Fall 2018

2. (a) Consider a model of virus infection where a virus infects a bacterium, and modifies a
replication process by inserting:

• at every A, between 1 and 5 additional A’s

• at every C, a run of 1 to 10 additional C’s

• at every G, a run of of G’s of arbitrary length ≥ 1

• at every T, a run of of T’s of arbitrary length ≥ 1

The gaps or insertions are allowed for in this virally modified final DNA sequence. For
example, the sequence AAATTAAAGGGGCCCCCTTTTTTTTTCC is an infected ver-
sion of ATAGCTC; however, AAAAAAAATTAAAGCCCCCTTTTTTTTTCC would
not be, since it inserts too many A’s in the first slot and did not insert any extra G’s.

Given two sequences v and w, give an efficient algorithm (including run time and space)
that will determine if v could be an invected version of w.

(b) Now consider a version where the virus will either delete a letter or will insert a run of
arbitrary length, for each A,G,T,C it encounters in the original DNA. Give an efficient
algorithm to decide if v could be an infected version of w under these circumstances.

3. Recall the dynamic programming solution to local alignment that we covered in class (or go
re-read it in the textbook); this algorithm required O(mn) time and space. Adapt the divide
and conquer framework from chapter 7 to get a linear space solution. (Your running time can
still stay higher, though.)

2


