BCB 5300
 Homework 2

1. Sorting by reversals: Can you find an example where the Breakpoint Reversal Sort produces more than 3 times as many reversals as the optimal solution?
2. DNA molecules are not always line segments - simple organisms have circular DNA molecules as a genome. (Visualize a sequences of values written along the perimeter of a circle.). Two such sequences are considered equivalent if you can rotate one of the circles and get the same sequence as written on the other. Devise an algorithm to sort a circular genome by reversals - in other words, given a circular set of input numbers, find a way to transform it to the identity circular permutation. What is your solution's approximation guarantee?
3. Consider two strings v and w, of length n and m respectively, and their longest common subsequence $\operatorname{LCS}(v, w)$ and their edit distance $\operatorname{Edit}(v, w)$, but where only insertions and deletions (and no substitutes) are allowed. Prove that $\operatorname{Edit}(v, w)=n+m-2 L C S(v, w)$. (Hence, edit distance and LCS are connected!)
4. A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping the characters of X and Y in the same order.

For example, the string BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways. Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both shuffles of DYNAMIC and PROGRAMMING.

Given three strings $A[1 . . n], B[1 . . n]$, and $C[1 . . m+n]$, describe and analyze an algorithm to determine whether C is a shuffle of A and B.

