Topological Data Analysis: History and Challenges

David Letscher

Saint Louis University

SLU Topology Seminar

9/5/2017

1 / 23

Original Question?

Given a finite set of points $X_0 \in \mathbb{R}^d$ what can you say about the topology of the shape they represent.

Original Question?

Given a finite set of points $X_0 \in \mathbb{R}^d$ what can you say about the topology of the shape they represent.

Discrete point set = no interesting topology ... Right?

Original Question?

Given a finite set of points $X_0 \in \mathbb{R}^d$ what can you say about the topology of the shape they represent.

Discrete point set = no interesting topology ... Right?

Followup

Can we detect geometric information using topological information about the points?

Filtrations

Input $X_0 \subset \mathbb{R}^d$. (Assumed to be generic)

$\alpha\text{-shape}$

$$X_{\alpha} = \bigcup_{x \in X_0} B(x, \alpha)$$

$\alpha\text{-filtration}$

$$X_{\alpha_1} \subset X_{\alpha_2} \subset \cdots \subset X_{\alpha_k}$$

More generally

For continuous
$$f : \mathbb{R}^d \to \mathbb{R}$$
, define $X_\alpha = \{x \mid f(x) \le \alpha\}$.
For example, f might measure density (medical imaging, ...).

Image: Image:

★ ∃ ►

Definition

 α 's where $X_{\alpha-\epsilon} \not\cong X_{\alpha}$ for all sufficiently small α .

If X_0 is generic or f is a (generic) Morse function then there are finitely many critical point and at each there is a single change in topology.

Suppose that X is a triangulated space.

Chains

 $C_k(X)$ if the vector space (with base field $\mathbb{Z}/2\mathbb{Z}$) generated by the *k*-simplices of X (vertices, edges, triangles, ...).

Boundary

For a k-simplex σ , $\partial \sigma$ is the formal sum of its (k - 1)-simplices. For chains, the boundary operator can be extended linearly

$$\partial\left(\sum\sigma_i\right)=\sum\partial(\sigma_i)$$

Cycles

 $Z_k(X) =$ subspace of chains c with $\partial c = 0$

Boundaries

 $B_k(X) =$ spaces of boundaries of (k + 1)-chains

Homology

 $H_k(X) = Z_k(X)/B_k(X)$

If $X \subset \mathbb{R}^3$, Rank of $H_0(X)$ = number of components of XRank of $H_1(X)$ = number of independent loops of XRank of $H_2(X)$ = number of voids of X

- 4 回 🕨 🔺 国 🕨 - 4 国

Homology, examples

< ロ > < 同 > < 三 > < 三

Persistent Homology

[L-Edelsbrunner-Zomordian, 2000]

$$H_k^p(X_\alpha) = Z_k(X_\alpha) / (Z_k(X_\alpha) \cap B_k(X_{\alpha+p}))$$

Equivalently,

$$H_k^p(X_\alpha) = image(H_k(X_\alpha) \rightarrow H_k(X_{\alpha+p}))$$

$$\begin{array}{ll} H^p_0(X_\alpha) & \mbox{counts the number of components of } X_\alpha \mbox{ that} \\ & \mbox{are still separate in } X_{\alpha+p}. \\ H^p_1(X_\alpha) & \mbox{measures the number of (independent) loops in} \\ & X_\alpha \mbox{ that are not "filled-in" in } X_{\alpha+p}. \\ H^p_2(X_\alpha) & \mbox{measures the number of voids in } X_\alpha \mbox{ that are not} \\ & \mbox{"filled-in" in } X_{\alpha+p}. \end{array}$$

- Representing persistence
- (Efficiently) calculating persistence
- Isolating signal from noise
- Stability
- Robustness
- Can you simplify a shape to remove topological noise?
- Sample means and variances

Every topological critical point corresponds to a "birth" or "death" of a cycle. (We assume these critical points happen at distinct times.)

Birth time

An α where $H_k(X_\alpha) \cong H_k(X_{\alpha-\epsilon})$ for all sufficiently small $\epsilon > 0$.

Death time

If c is some cycle born at time α , then it's death time is the smallest β such that there exists a cycle $c' \in H_k(X_\alpha)$ such that c + c' bounds a cycle in X_β .

Persistence Diagrams

A persistence diagram [Cohen-Steiner-Edelsbrunner-Harer, 2005] is a plot of the birth-death pairs of the plane.

Letscher (SLU)

9/5/2017 12 / 23

Letscher (SLU)

9/5/2017 14 / 2

Stability of Persistence Diagrams

We will augment the persistence diagrams by adding the diagonal with infinite multiplicity.

Bottleneck distance

If D_k and D'_k are two persistence diagrams the bottleneck distance

$$d_B(D_k, D'_k) = \inf_{\text{bijections } f: D_k o D'_k} \sup_{x \in D_k} ||x - f(x)||_{\infty}$$

Bottle neck distance make the space of persistence diagrams a complete separable metric space.

Stability [Cohen-Steiner-Edelsbrunner-Harer, 2005]

If $f,g:\mathbb{R}^d\to\mathbb{R}$ have k-dimensional persistence diagram D_f and D_g , respectively, then

$$d_B(D_f, D_g) \leq ||f - g||_\infty$$

(日) (四) (日) (日) (日)

Breakdown point

The minimum fraction of data points that need to be changed in order to change a statistic arbitrarily.

e.g. For a sample of *n* points, the breakdown point for the mean is 1/n and is 1/2 for the median.

Breakdown points for persistence diagrams [L]

For *n* points in \mathbb{R}^d filtered using α -shapes, the break down points for the *k*-dimensional persistence diagram is $\frac{k+1}{n}$.

Isolating Features from Noise

Suppose that D is the diagram for space being sampled and D_n is a diagram for an n point subsample (chosen uniformly for some distribution).

Goal

For any p find functions c(n) and f(n) such that

$$\mathbb{P}(d_B(D, D_n) > c(n))$$

where $c(n) \rightarrow 0$ and $f(n) \rightarrow 0$.

[Fasy-Lecci-Rinaldo-Wasserman-Balakrishan-Singh]

Subsampling c(n) = 2/p(n), where p(n) is the probability of a random sample of n points being within Hausdorff distance α from the given point sample and $f(n) = O\left(\frac{1}{(\log n)^{1/4}}\right)$. Concentration of Measure $c(n) = O\left(\left(\frac{\log n}{n}\right)^{1/d}\right)$ and $f(n) = O\left(\frac{1}{n\log n}\right)$. Method of Shells More complicated f(n) for an constant c(n) that is

sufficiently small.

Density Estimation Can have f(n) = 0 for a more complication c(n).

Note all functions depend on invariants of the space the points are sampled from and cannot be estimated (yet) for non-trivial spaces.

Sample Means and Variances

Given diagrams D_1, \ldots, D_n .

[Turner-Mileyko-Mukherjee-Harer]

A Frechet mean is a diagram D that minimizes

$$\sum_i (d_B(D,D_i))^2$$

and the sum is the Frechet variance.

- Frechet means are conjectured to be biased estimators.
- As the sample density for the D_i goes to infinity, is the Frechet mean asymptotically unbiased?
- Are there alternative sample "averages" that are unbiased? Asymptotically unbiased?

Simplification

Question

Suppose $f : \mathbb{R}^d \to \mathbb{R}$ has persistence diagrams D_k . For a fixed $\epsilon > 0$ let D'_k be D_k with all points within a distance ϵ removed. Does there exists f' with $||f - f'||_{\infty} < \epsilon$ and the *k*-dimensional persistence diagrams of f' equal to D'_k .

[Bauer-Lange-Wardetzky]

If $f: \mathbb{R}^2 \to \mathbb{R}$ is a tame Morse function then for any $\epsilon > 0$ there exits $f': \mathbb{R}^2 \to \mathbb{R}$ such that

•
$$||f - f'||_{\infty} < \epsilon$$

• The persistence diagram for f' are the persistence diagrams for f with every point within ϵ of the boundary removed.

Simplification

Similar simplification is not possible in \mathbb{R}^3 using persistent homology.

Simplification

Similar simplification is not possible in \mathbb{R}^3 using persistent homology.

If f' is any function with the second persistence diagram then $||f - f'||_{\infty} \ge 1$ but $d_B(D, D') \le \epsilon$.

9/5/2017

22 / 23

Questions?

2

3

イロン イヨン イヨン イ