Generalized Persistent Homology: Part I, Modules

David Letscher

Saint Louis University

SLU Topology Seminar

Letscher (SLU) TDA 10/31/2017 1 / 21

Goals

- Understand the underlying structure of persistent homology
- Use more general collections of topological spaces, not just filtrations
- Do we have to use homology?

Letscher (SLU) TDA 10/31/2017 2 / 21

Persistent Homology Recap

Filtration

$$X_0 \to X_1 \to X_2 \to \cdots \to X_n \to \cdots$$

A sequence of topological spaces with maps (often inclusion) between them.

Note: can be indexed by rationals, reals, ...

Homology of Filtration

$$H_k(X_0) \to H_k(X_2) \to \cdots \to H_k(X_n) \to \cdots$$

Persistent Homology

$$H_k^p(X_t) = \operatorname{im}(H_k(X_t) o H_k(X_{t+p})) = \operatorname{im}(f_{t,t+p})$$

where $f_{\alpha,\beta}:H_k(X_\alpha)\to H_k(X_\beta)$ is the map induced by the include $X_\alpha\to X_\beta.$

Births and Death Times

Birth

An cycle $c \in H_k(X_t)$ has birth time t if $c \notin im(H_k(X_s) \to H_k(X_t))$ any s < t.

Death

The death time of c is the smallest u such that the map $f_{t,u}: H_k(X_t) \to H_k(X_u)$ maps u to 0.

Letscher (SLU) TDA 10/31/2017 4 / 21

Persistence Module

Definition

 $\mathcal{PH}_k(\mathcal{X})$ is the submodule of $H_k(X_0) \oplus H_k(X_1) \oplus \cdots \oplus H_k(X_n)$ generated by elements of the form $(0, \ldots, 0, c, f_{\alpha,\alpha+1}(c), \ldots, f_{\alpha,\beta}(c) = 0, \ldots 0)$ where $c \in H_k(X_\alpha)$ has birthtime α .

Note: this is equivalent to the original definition (due to Carlsson and Zomordian) of the persistence module as a graded $\mathbb{F}[t]$ -module.

Letscher (SLU) TDA 10/31/2017 5 / 21

Krull-Remak-Schmidt

Theorem

If M is a Noetherian Artinian module the M decomposes uniquely into direction summands

$$M\cong M_1\oplus\cdots\oplus M_n$$

Recall that the standard persistence algorithm calculates birth and death pairs. Each of these pairs is a summand in the decomposition of the persistence module.

$$\mathcal{PH}_k(\mathcal{X}) = igoplus_i \mathbb{F}_{(b_i,d_i)}$$

where $\mathbb{F}_{(b,d)} = 0 \oplus \cdots \oplus \mathbb{F} \oplus \cdots \oplus \mathbb{F} \oplus 0 \oplus \cdots \oplus 0$ has non-zero terms for $b \leq t < d$.

Letscher (SLU) TDA 10/31/2017 6 / 21

Example

$$\begin{array}{lcl} \mathcal{PH}_0(\mathcal{X}) & = & \mathbb{F}_{(0,\infty)} \\ \mathcal{PH}_1(\mathcal{X}) & = & \mathbb{F}_{(1,4)} \oplus \mathbb{F}_{(2,5)} \\ \mathcal{PH}_2(\mathcal{X}) & = & \mathbb{F}_{(3,4)} \end{array}$$

Letscher (SLU) TDA 10/31/2017 7 / 21

Quiver Representation

Quiver

A multi-digraph (Directed graph with multiple edges and loops)

Quiver Representation

Given a quiver G = (V, E), a representation has

- A vector space W_u for each $u \in V$
- A linear map $f:W_u\to W_v$ for each $(u,v)\in E$

Letscher (SLU) TDA 10/31/2017 8 / 21

Quiver Representation: Examples

Standard Persistence

$$H_k(X_0) \to H_k(X_2) \to \cdots \to H_k(X_n) \to \cdots$$

The persistence module is a quiver representation.

Zig-Zag Persistence (Carlsson-de Silva)

$$H_k(X_0) \leftrightarrow H_k(X_2) \leftrightarrow \cdots \leftrightarrow H_k(X_n) \leftrightarrow \cdots$$

Each arrow goes left or right.

Letscher (SLU) TDA 10/31/2017 9 / 21

Quiver Representation: Examples

Multi-dimensional Persistence (Carlsson-Zomordian)

Letscher (SLU) TDA 10/31/2017 10 / 21

Quiver Representation: Examples

DAG Persistence (Chambers-L)

Letscher (SLU) TDA 10/31/2017 11 / 21

Gabriel's Theorem

Theorem

If the underlying undirected graph is an ADE Dynkin diagram that there are finitely many possible irreducible submodules of a quiver representation.

Standard and zig-zag is a Type A Dynkin diagram and irreducible submodules are all of the form $\mathbb{F}_{(b,d)}$.

Letscher (SLU) TDA 10/31/2017 12 / 21

Decompositions in DAG Persistence

