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Goals

@ Understand the underlying structure of persistent homology
@ Use more general collections of topological spaces, not just filtrations

@ Do we have to use homology?
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Persistent Homology Recap

Filtration

Xo—=X1 =X ==X, — -

A sequence of topological spaces with maps (often inclusion) between
them.

Note: can be indexed by rationals, reals, ...

Homology of Filtration

Hk(Xo) — Hk(Xz) - —> Hk(X ) — -

A,

Persistent Homology

HE(Xe) = im(Hi(Xe) = HiXeip)) = im(fei.p)

where f, 53 : Hi(Xo) — Hik(X3) is the map induced by the include
Xa — X/B‘

v
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Births and Death Times

An cycle ¢ € Hi(X¢) has birth time t if ¢ & im(Hi(Xs) — Hi(Xt)) any
s<t.

The death time of c is the smallest u such that the map
fr.u t Hi(Xt) = Hi(Xy) maps u to 0.
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Persistence Module

Definition

PHi(X) is the submodule of Hx(Xo) @ Hk(X1) @ - - - ® Hik(Xn) generated
by elements of the form (0, ...,0,c, fyat+1(c),...,f3(c) =0,...0)
where ¢ € Hi(X,) has birthtime «.

Note: this is equivalent to the original definition (due to Carlsson and
Zomordian) of the persistence module as a graded F[t]-module.
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Krull-Remak-Schmidt

If M is a Noetherian Artinian module the M decomposes uniquely into
direction summands

MM &---d M,

Recall that the standard persistence algorithm calculates birth and death
pairs. Each of these pairs is a summand in the decomposition of the
persistence module.

PHk @F b,,d,

where Fip, y =0® - - @F®---FH0® - &0 has non-zero terms for
b<t<d.
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PHo(X) = F(o0)
PH1(X) = Fua @Fpos
PHo(X) = Fia
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Quiver Representation

A multi-digraph (Directed graph with multiple edges and loops)

Quiver Representation

Given a quiver G = (V/, E), a representation has
@ A vector space W, for each u € V
o A linear map f : W, — W, for each (u,v) € E
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Quiver Representation: Examples

Standard Persistence

Hk(Xo) — Hk(XQ) — s — Hk(Xn) — e
The persistence module is a quiver representation.

Zig-Zag Persistence (Carlsson-de Silva)

Hk(Xo) <~ Hk(Xg) = ooo Hk(Xn) & oo
Each arrow goes left or right.
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Quiver Representation: Examples

Multi-dimensional Persistence (Carlsson-Zomordian)

N

Hi(X1,3) — Hk(Xo,3) — Hk(X33) — - -

T ! T

Hi(X1,2) — Hi(X22) — Hi(X32) — - --

T ! T

Hi(X1,1) — Hi(X2,1) — Hik(X31) — - -
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Quiver Representation: Examples

DAG Persistence (Chambers-L)

Hk(Xl) Hk(XS)

\
Hi(X3) —= Hk(Xs)
>

Hi(X2) —= Hi(Xq) — Hi(Xk)
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Gabriel's Theorem

If the underlying undirected graph is an ADE Dynkin diagram that there
are finitely many possible irreducible submodules of a quiver representation.

Standard and zig-zag is a Type A Dynkin diagram and irreducible
submodules are all of the form F(;, 4.
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Decompositions in DAG Persistence
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