
Topological Measures of Similarity
(for curves on surfaces, mostly)

Erin Wolf Chambers
Saint Louis University
erin.chambers@slu.edu

Erin Chambers Topological Measures of Similarity



Motivation: Measuring Similarity Between Curves

How can we tell when two cycles or curves are similar to each
other?
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Applications

Similarity measures have many potential applications:

Analyzing GIS data

Map analysis and simplification

Handwriting recognition

Computing “good” morphings between curves

Surface parameterizations

There are many different ways to check similarity. Most focus on
either the geometry or the topology of the curve and the ambient
space.

Erin Chambers Topological Measures of Similarity



Applications

Similarity measures have many potential applications:

Analyzing GIS data

Map analysis and simplification

Handwriting recognition

Computing “good” morphings between curves

Surface parameterizations

There are many different ways to check similarity. Most focus on
either the geometry or the topology of the curve and the ambient
space.

Erin Chambers Topological Measures of Similarity



Settings

Most of this talk with focus on one of two settings. First setting:

The plane, sometimes minus a set of (polygonal) obstacles.
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Settings

Second setting: A combinatorial or piecewise linear orientable
surface.

Any such space is homeomorphic to a sphere with a number of
handles attached; we call this number the genus of the surface.
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How we analyze algorithms

Analyzing our algorithms:

In the plane, our algorithms will be analyzed in terms of n and
m, which are the size of the input curves. If there are
obstacles, we generally use p or P to denote the total
complexity of the obstacles.

On a surface, n will be the number of triangles in our input
(which is generally an upper bound on the size of the curves,
although sometimes that is separate). The value g will be the
genus of the underlying surface.
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Complexity of problems

We generally use big-O notation: so an algorithms which takes
3n + 1235 operations will be called O(n).

In addition, we may use the complexity class NP. This means that
any problem in this class has a polynomial time way to check if a
solution is correct.

If a problem is NP-Complete, we do not know of any polynomial
time algorithm; in a sense, the best solution to these problems is to
try all possible solutions.
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Hausdorff distance

Hausdorff distance is one way to measure distance: consider any
point on one curve and find the closest point on the other curve.
Take the largest of all these distances.

More formally, given two curves γ1, γ2 : [0, 1]→ M:
dH(γ1, γ2) = max{sups∈[0,1] inft∈[0,1] d(γ1(s), γ2(t)),

supt∈[0,1] infs∈[0,1] d(γ1(s), γ2(t))}

d
H
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Fréchet Distance

With Fréchet distance (or dog leash distance), the flow of the
curve is accounted for.

Imagine a man walking along one curve and a dog along the other,
with a leash always connecting them, and minimize the length of
the longest leash.
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Fréchet Distance

More formally, given two curves γ1 and γ2, the Fréchet distance is:

F (A,B) = inf
α,β

max
t∈[0,1]

{d(γ1(α(t)), γ2(β(t)))}

where α and β are reparameterizations of [0, 1].

Alt and Godau gave the first algorithm to compute this for
piecewise linear curves in the plane; their algorithm runs in
O(mn log(mn)) time.
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Main tool: Free space diagram

Consider each pair of segments from the two curves, and calculate
which portions are within ε of each other.

We build the free space diagram by forming the n by m grid, and
determine if there is a matching that keeps the leash ≤ ε by
searching in this grid.
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Fréchet distance continued

Since the initial algorithm, it has been studied extensively:
applications, approximations, improved algorithms for restricted
classes of curves, and lower bounds are just a few of the many
results.

In addition, Fréchet distance has also been considered in higher
dimensions:

It is NP-Hard to compute the Fréchet distance between two
surfaces [Godau 1998], even for polygons with holes
[Buchin-Buchin-Schulz 2010].

Still NP hard even for surfaces traced by curves
[Buchin-Ophelders-Speckmann 2015].

Finally, it is computable to compute the Fréchet distance
between surfaces [Neumann 2017].
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surfaces [Godau 1998], even for polygons with holes
[Buchin-Buchin-Schulz 2010].

Still NP hard even for surfaces traced by curves
[Buchin-Ophelders-Speckmann 2015].

Finally, it is computable to compute the Fréchet distance
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Geodesic Fréchet Distance

When not in Rd , distance calculations are more complex since
shortest paths are not unique.

Definition

A geodesic is a path that avoids any obstacles and cannot be
locally shortened by perturbations.

In geodesic Fréchet distance, the leash is required to be a geodesic
in the ambient space.

Algorithms are known in some limited settings, such as convex
polytopes [Maheshwari and Yi 2005] and simple polygons [Cook
Wenk 2008]. However, much remains open.
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Geodesic Fréchet Distance

When not in Rd , distance calculations are more complex since
shortest paths are not unique.

Definition

A geodesic is a path that avoids any obstacles and cannot be
locally shortened by perturbations.

In geodesic Fréchet distance, the leash is required to be a geodesic
in the ambient space.

Algorithms are known in some limited settings, such as convex
polytopes [Maheshwari and Yi 2005] and simple polygons [Cook
Wenk 2008]. However, much remains open.

Erin Chambers Topological Measures of Similarity
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Homotopy

Definition

A homotopy is a continuous deformation of one path to another.
More formally, a homotopy between two curves α and β on a
surface M is a continuous function H : [0, 1]× [0, 1]→ M such
that H(·, 0) = α(·) and H(·, 1) = β(·).

ß
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Testing if two curves are homotopic

Testing if two curves are homotopic has been studied in both of
our settings.

Cabello et al (2004) give an algorithm to test if two paths in
the plane minus a set of obstacles are homotopic in
O(n3/2 log n) time.

Given a graph cellularly embedded on a surface and two
closed walks on that graph, there is an O(n) time algorithm
to decide if the two walks are homotopic [Dey and Guha 1999,
Lazarus and Rivaud 2011, Erickson and Whittlesey 2012].
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Combinatorially optimal homotopies

There is work [Chang-Erickson 2016] on finding the “best”
homotopy, as well; usually, this involves minimizing number of
simplifications moves to untangle a curve.

In the plane, they prove this is Θ(n3/2).

This connects to older results [Steinitz 1916, Francis 1969, Truemper
1989, Feo and Provan 1993, Noble and Welsh 2000], and electrical moves
on the medial graph of the input planar graphs.
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Beyond testing homotopy

However, in many applications we’d like to include more of a
notion of the geometry of the underlying space, as well.
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Homotopic Fréchet Distance

The definition of Fréchet distance or geodesic Fréchet distance will
directly generalize to surfaces, but does not take homotopy into
account. Essentially, either definition allows the leash to jump
discontinously.

Homotopic Fréchet is adds a constraint that the curves must be
homotopic, and the leashes must move continuously in the ambient
space [C.-Colin de Verdiére-Erickson-Lazard-Lazarus-Thite 2009].

Intuitively, curves with small homotopic Fréchet distance will be
close both geometrically and topologically.
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Homotopic Fréchet Distance

The homotopic Fréchet distance is the length of the shortest leash
we can can use for our homotopy. Formally,

dF (γ1, γ2) = inf
homotopies H

{sup{|H(·, t))| | t ∈ [0, 1]}}
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Homotopic Fréchet Distance on a Surface

We could just have easily called this the width of the homotopy:

ß
α

α ß

(Note: it is not known how to compute this on surfaces at all.)
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Computing the Homotopic Fréchet Distance

There is a polynomial time algorithm algorithm to compute the
homotopic Fréchet Distance between two polygonal curves in the
plane minus a set of polygonal obstacles [C.-Colin de
Verdiére-Erickson-Lazard-Lazarus-Thite 2009].

The algorithm has some similarities to the work of Alt and Godau,
but is considerably more complex since there are an infinite
number of homotopy classes to consider.
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Verdiére-Erickson-Lazard-Lazarus-Thite 2009].

The algorithm has some similarities to the work of Alt and Godau,
but is considerably more complex since there are an infinite
number of homotopy classes to consider.

Erin Chambers Topological Measures of Similarity



Key lemma

Lemma

When obstacles are points, an optimal homotopy class contains a
straight line segment.

This allows us to brute force a set of possible homotopy classes
which could be optimal, by trying all straight line segments.
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Homotopic Fréchet Distance in other settings

It is unlikely our algorithm will generalize to surfaces, since it
heavily relies on nonpositive curvature.

We can generalize the key
lemmas to any surface of
nonpositive curvature.
However, the algorithmic tools
in those settings are lacking.

In an upcoming paper (joint with Arnaud de Mesmay and Tim
Ophelders), we are able to show the problem is in NP in the planar
or combinatorial surface setting when the beginning and ending
leash are fixed, but this is slightly different than the planar case,
where these leashes are not fixed.
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Height of a homotopy

The height of a homotopy is an orthogonal definition to homotopic
Fréchet distance:

dHH(γ1, γ2) = inf
homotopies H

{sup{|H(s, ·)| | s ∈ [0, 1]}}

ß
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Computing homotopy height

No algorithm is known to compute the homotopy height between
two curves in any setting.

We do know that the problem is in NP (forthcoming joint work
with Gregory Chambers, Arnaud de Mesmay, Tim Ophelders, and
Regina Rotman).

If you consider the setting where your curves are the boundaries of
a triangulated disk, it is closely connected to parameters such as
cut width which are known to be NP-Complete, but the reductions
do not quite work for this problem.
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Approximation algorithms

[Har-Peled-Nayyeri-Salavatipour-Sidiropoulos 2012] give an
O(log n) approximation algorithm for computing both the
homotopy height and the homotopic Fréchet distance between two
curves on a PL surface.

They use a clever divide and
conquer algorithm based on
shortest paths for homotopy
height, and then use this
algorithm as a subroutine to
solve homotopic Fréchet
distance.

u
v

πv

v�

L

R

s

t

D 1

D 2

Erin Chambers Topological Measures of Similarity



Approximation algorithms

[Har-Peled-Nayyeri-Salavatipour-Sidiropoulos 2012] give an
O(log n) approximation algorithm for computing both the
homotopy height and the homotopic Fréchet distance between two
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Area of a homotopy

Instead of focusing on the length or width, we can also examine
the total area swept by a homotopy [C-Wang 2013].

ß
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Computing homotopy area

Surprisingly, this measure is much more tractable on surfaces than
any other measure which takes topology into account, even for
non-disjoint cycles.

α

ß
α
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Definition

More formally, given a homotopy H, the area of H is defined as:

Area(H) =

∫
s∈[0,1]

∫
t∈[0,1]

∣∣∣∣dH

ds
× dH

dt

∣∣∣∣ dsdt

We are then interested in the smallest such value: infH Area(H).

Note that in generally, this is an improper integral, and the value
for any H is not necessarily even finite.
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Douglas and Rado’s work

Douglas and Rado (1930’s) were the first to consider this problem,
as a variant of Plateau’s problem (1847) dealing with soap bubbles
and minimal surfaces.

[Minimal sub manifolds and related topics, Y. L. Xin]
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Realizing the minimum area

There is an additional problem in that to find the infimum, we
might have a pathological case where a sequence of good H’s
converge to something that is not even continuous.

[Lectures on Minimal Submanifolds, H. B. Lawson]
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Douglas’ theorem

They developed a restricted version using Dirichlet integrals (or
energy integrals) which allow control over the parameterizations of
the minimal surfaces. These integrals not only minimize area, but
also ensure (almost) conformal parameterizations in the space.

Theorem

Let γ be a finite Jordan curve in Rn. Then there exists a
continuous map Γ :

{
(x , y) ∈ R2 : x2 + y2 ≤ 1

}
→ Rn such that:

1 Γ maps the boundary of the disk monontically onto γ.

2 Γ is harmonic and almost conformal

3 Γ realizes the infimum of all areas

(Well, I’m hiding a few details about the Dirichlet integrals here...)
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Necessary assumptions

Our setting is much simpler - we are either in R2 or a piecewise
linear surface. However, we do need some assumptions in order for
the minimum area homotopy to exist.

We must assume that H is continuous and piecewise
differentiable (so it is differentiable everywhere except at a
finite set of points and arcs).

We must also assume the homotopy is monotone along the
boundary of the domain and is regular on the interior
(meaning intermediate curves are “kink-free”).

Finally, we will assume our input curves (on M) are simple
and have a finite number of piecewise analytic components.
(In practice, they will simply be PL curves.)
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Running time in the plane

Let I be the number of intersections and n be the complexity of
the input curves.

We give an algorithm that can be implemented in O(I 2n) time
using dynamic programming, which simply builds up the sets of
anchor points iteratively and uses previous solutions to speed up
future computation.

However, this can be improved to O(I 2 log I ) time with
O(I log I + n) preprocessing if we are more careful about how we
compute the winding numbers.
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More recent algorithms for homotopy area

There has also been recent work to compute the best area
homotopy when the input curve is not so “nice”, but is an
immersion of a disk into the plane.

One result [Nie 2014] connects this problem to the weighted
cancellation norm, which is a very combinatorial way to covert
the best homotopy into a series of reduction moves on a word
problem. The result is a polynomial time algorithm.

Another [Fasy-Karakoc-Wenk 2016] consider a different
approach which is more geometric, building up an exponential
time algorithm, although perhaps faster dynamic
programming techniques can speed this up.
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Homotopy area on a surface

Our paper [C.-Wang] also considers the algorithm for surfaces,
which builds upon the planar algorithm.

ß
α

α ß

Consider two homotopic curves on a triangulated surface M with
positive genus.
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Lifting P and Q

If we fix a lift for the endpoints of P and Q in the universal cover
U(M), then P ◦ Q lifts to a unique closed curve in U(M).
Therefore, any homotopy between P and Q on M will correspond
to a homotopy between their lifts in U(M) with the same area.

P̃P

Q̃
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Algorithm for surfaces

We construct a portion of the universal cover which contains the
lifts of P and Q as well as the regions inside their concatenation.

We then use our planar algorithm in
U(M), since similar results about the
winding number will hold. Since we
can simplify much of the interior of
the regions in our representation, the
total running time here is
O(gK log K + I 2 log I + In).

P̃P

Q̃

R1

R2

R3
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Using homology?

Homology is a coarser invariant than homotopy - all
homotopies produce homologies, but not all homologies come
from homotopies.

In general, much more tractable - reduces to a linear algebra
problem, and software is widely available and highly optimized.

Potentially much wider applications: works for cobordisms,
arbitrary dimension submanifolds of arbitrary dimension
manifolds, etc.
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How to compute homology area

Formally (joint work with Mikael Vejdemo Johansson, and also
considered in more limited settings in Dey, Hirani and
Krishnamoorthy):

Given cycles α and β, try to compute z such that dz = α− β.
Goal: compute z with a smallest area. Recall that d is a linear
operator, and z and α− β are vectors.
Optimization problem is then:
arg minz (area z), subject to dz = α− β.

Note again that this is NOT the same as homotopy area, at
least for d ≤ 3:
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Final algorithm for homology area

In matrix multiply time, we can compute the best area homology
on meshes:
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Chair model
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Crab model
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Isotopy

Definition

An isotopy is a homotopy H such that for each fixed time t,
H(x , t) is a homeomorphism.

A homeomorphism is a function which is a continuous bijection
where the inverse is also continuous. In our setting, this will mean
that every intermediate curve in the homotopy must also have an
image that is simple.
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Testing Isotopy

Algorithmic results here are much newer.

[Colin de Verdière-de Mesmay 2012] give the first algorithms to
test if two graphs are isotopic.

In the plane minus polygonal obstacles, the test takes
O(n3/2 log n) time.

On a combinatorial surface, the test takes O(n) time.

Note that the isotopy is fixed in the sense that you must indicate
which vertices map to each other under the isotopy.
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Isotopic Fréchet Distance

[C.-Ju-Letscher 2009] introduced the idea of isotopic Fréchet
distance:

I(A,B) = inf
h : M × I → M

h(·, t) homeomorphism
h(x , 0) = x ∀x ∈ X

h(A, 1) = B

maxx∈X lenh(x , ·)

In other words, what’s the longest trajectory in an ambient isotopy?
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Isotopic Fréchet Distance

If A and B are not ambiently isotopic then I(A,B) =∞.
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Homotopic versus Isotopic Fréchet Distance

Proposition For any L > 0 and ε ∈ (0, L/2) there exists a pair of
curves C1,C2 ∈ R2 with

F(C1,C2) = H(C1,C2) = ε

I(C1,C2) ≥ 2

9
L
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The best homotopy versus an isotopy

Homotopy:

Isotopy?:
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The best homotopy versus an isotopy

Actually, the best isotopy is even more complicated! The prior
picture gave a distance of

√
L2 + ε2. This was off by a factor of

roughly 2 [Buchin-C.-Ophelders-Speckmann 2017]:

ε

L

In this work, we also consider restricted versions of the problem,
and compute optimal isotopies if there is a direction in which both
input curves are monotone.
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Other notions of morphing

Other types of measures may be worth considering, as topological
notions are not often incorporated in this literature:

Geodesic width [Efrat, Guibas, Har-Peled, Mitchell, and
Murali 2002] is a notion of deformation where intermediate
curves may not cross the initial input curves, and the morph
must stay within the area enclosed by the initial and final
leash (combined with the curves). Since these are geodesic,
again the leashes won’t cross. However, the two input curves
are also not allowed to cross each other.

There are many algorithms (i.e. [Angelini et al, 2014] that
seek to compute a morph which bounds the number of steps
in the morph; these don’t really consider the geometry as
much, but perhaps could use tools or be connected to more
combinatorial notions of homotopy.
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Open questions (part 1)

Other than homology area, very few of these algorithms have
been implemented, despite many practical applications.

There is no algorithm to compute homotopic Fréchet distance
on surfaces (or even polyhedra).

Height of a homotopy algorithms are also open; all that is
known is an O(log n) approximation and that it’s in NP.

(Perhaps both are even NP-Complete...)

It is unknown how to compute homotopy area between cycles
on surfaces.
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Open questions (continued)

Testing isotopy is understood, but using it as a measure of
similarity is pretty wide open.

All of these could be used for finding median trajectories or
perhaps clustering - recent work uses homology area
(practical) and homotopy area (not so practical), but
applications areas could motivate new directions.

Can any of these be made tractable for curves on 3-manifolds,
or even 3-manifolds which are embedded in IR3? (Possibly
instead of area we may need a more combinatorial notion,
such as Hsien’s result - a ”best” homotopy might be one with
fewer uncrossing moves, then.)
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