
Reconstructing surfaces
from point scans

Talk by Erin Chambers

Representing shapes
• A fundamental problem: given a set of points

scanned from some input, reconstruct the
underlying shape they represent

Images courtesy of Wikipedia

Reconstructing shape
• However, sometimes it isn’t so clear what shape we

want:

Image courtesy of the SIAM Journal
of Applied Algebra and Geometry

Algorithms for shape
reconstruction

• Goal today: Survey some classical shape
reconstruction algorithms

• Note that this is a very active area of research

• Methods vary widely

• I’ll focus on computational geometry and graphics
algorithms, many of which build on the complexes
we discussed last time.

Goals for any method
• Output a triangulation which is:

• Homeomorphic to original shape

• Close geometrically to original shape

• Approximates the normals

Recall: alpha shapes
• Given a radius α and a set of points, we take the

union of all radius α balls at those points.

Recall: alpha complex
• The α-complex is then the nerve of this set of balls:

3d α-shapes
• In fact, one early reconstruction algorithm was just

based on using α-shapes directly [Edelsbrunner-
Mucke 1994]

Ball-rolling algorithm
• One early extension which used the α-shape was

the ball pivot algorithm [Bernardini et al]:

• Starting at a seed triangle, pivot a ball around
each edge of the triangle until a new sample
point is hit.

• Add that triangle to the mesh and continue.

Ball rolling algorithm (cont.)
• Pros: Conceptually simple,

very fast to implement

• Cons:

• No theoretical guarantee
of quality in terms of the
topology

• Not even always a
surface

The crust algorithm: 2d
• If we go back to a 2d idea:

• The Voronoi diagram is the division of the plane
into cells where each cell consists of points
closest to one of the input points:

Related: medial axis
• The medial axis of a shape is the set of points with

more than one closet point on the shape:

The connection
• In 2d, the Voronoi diagram of a point set that

closely samples an underlying shape will contain
an approximate medial axis of the shape:

Back to curve reconstruction
• Recall the dual to the Voronoi diagram: the

Delaunay triangulation is the set of simplicies
where the circumcircle of those simplicies is empty
of other sites

2d crust algorithm
• In 2d, we want to select any edge of the Delaunay

triangulation whose circumcircle is empty not only
of sample points, but also of the Voronoi vertices:

Why?
• Key lemma: Any Voronoi disk of a set of points

sampled from a curve in the plane must contain a
medial axis point of the curve.

• Sketch: Essentially, the Voronoi disk’s center is
equidistant from more than 1 point on the curve,
so it should be on the medial axis.

Why?
• Key lemma: For a fine enough sample S of a curve,

an edge between two non-adjacent samples
cannot be circumscribed by a circle that is empty
of both Voronoi vertices and sample points.

• Proof by picture:

“Fine enough” sample
• More precisely: we must sample based on local

feature size, lfs

• For any x from the curve F, lfs(x) is the distance
from x to the nearest medial axis point

• We say it is ε-sampled if every point p on the
underlying curve is within ε×lfs(p) of a sample point

Algorithm for 2d:
• Compute the Delaunay triangulation and the

Voronoi diagram of the point set. Include an edge
from the triangulation if its circumcircle is empty of
all Voronoi vertices.

• Theorem: The crust of an ε-sample of a smooth
(twice differentiable) curve, for ε≤.25, will
connect only adjacent sample points.

Moving to 3d
• Unfortunately, this simple filtering will NOT work for

surfaces in 3d, because Voronoi vertices do not
have to lie near the medial axis, no matter how
dense the sample.

Finding a good subset
• However, some of the points are good!

Intuitively, we want to
take cells that exclude

the points of the cell that
are farthest away;
these are the ones

near the medial axis.

Poles
• To formalize this, in [Amenta-Bern] they define the

poles of a sample point to be the two farthest
vertices of its Voronoi cell, one on each side of the
surface.

• Of course, the algorithm doesn’t know the
surface!

• Instead, it chooses the point furthest away as the
first pole, and then the second is chosen to be the
farthest in the opposite half space.

How do to this:
• More formally: if s is the sample point and p the first

pole chosen, among all vertices q of the Voronoi
cell with the angle ∠psq > π/2, choose the furthest
one

• Lemma: Given an ε-sample of a surface, with
ε<1/4, and a sample point s with farthest pole p.
Then the second pole v will be the farthest Voronoi
vertex where the vector sv has negative dot
product with sp.

The crust
• We then take the Delaunay triangulation of the input

points and their poles.

• The crust is the set of Delaunay triangles from this
triangulation where all three vertices are sample
points.

Quality
• At this point we have a fairly weak theoretical

guarantee: it is pointwise convergent to the
underlying surface as the sampling density
increases.

• However, we can still clearly have extra triangles in
the result, as there is no guarantee that the normals
at each triangle are close to the actual surface
normals.

Additional filtering
• The next step in the algorithm is to filter:

• The bad triangles we want to remove are nearly
perpendicular to the underlying surface.

• However, we don’t know the underlying surface!

Using the poles
• Instead, we go back to the poles: we can prove

that the line from a sample point to each of its pole
is nearly orthogonal to the surface, given a
sufficiently dense sample.

Next step in the algorithm:
• Remove any triangle T for which the normal to T

and the vector to the pole at a vertex of the
triangle are too large.

• Greater than θ for the largest angle vertex of T,
and greater than 3θ/2 for all others.

• θ is another input parameter, which they set to
be 4ε to get good practical results, but this can
also be varied to find a “nice” output.

Theoretical guarantee
• More precisely: Take an ε-sample, and set θ=4ε.

Let T be a triangle of the crust, trimmed as
described on last slide, and take any point t∈T.
Then the angle between T’s normal and the normal
to the actual underlying surface at the point closet
to t measures O(√ε).

Final cleanup
• After filtering by normals, remaining triangles are

roughly parallel to the original surface.

• Can prove that this set of triangles still contains a
piece-wise linear surface homeomorphic to F.

• However, we don’t necessarily have a surface, since
there could be small remaining triangles that enclose
pockets:

• All 4 faces of a very flat tetrahedra may make it past
the filtering step.

Sharp edges
• Define a sharp edge as one which has a dihedral

angle greater than 3π/2 between a successive pair
of incident triangles in the cyclic order around the
edge.

• In other words, an edge is sharp if all incident
triangles are in a small wedge.

• If only one incident triangle, then automatically
sharp.

Final trimming
• The final step:

• orients triangles and poles consistently

• greedily remove triangles with sharp edges

• take the “outside” of remaining triangles (which
makes sense since we oriented things)

Crust: takeaway
• This was the first algorithm with

good, provable guarantees on
the quality of the reconstruction.

• The main drawback is ε-
samples: it’s hard to guarantee
a good enough approximation.

• It is also only good for smooth
inputs: anything with sharp
edges can have holes

Extension: cocone
• The Cocone algorithm uses the poles from the

crust algorithm in order to enumerate a set of
triangles that will contain a good reconstruction:

We find any Voronoi edges
that intersect the “cocone”,
and take triangles from the
Delaunay triangulation that are
dual to one of these edges.

Cocone result
• In the end, the output of cocone is homeomorphic

to the original surface, for ε≤.05.

• In addition, they are also isotopic.

• (Really, same guarantees as in crust, but much
simpler to prove and faster to implement.)

Extension: power crust
• The power crust algorithm computes a weighted

Voronoi diagram:

• Think of a point c with
weight ρ2 as a ball Bc,ρ.

• Then the power distance
between a point x and a
ball Bc,ρ as d2(c,x)-ρ2

Power crust
• The power crust algorithm then just uses the pole

vertices (and their Voronoi balls)

• It computes the power diagram of these polar balls,
and does a similar filtering as the normal crust
algorithm afterwards.

• It does do better on poorly sampled inputs and things
with sharp corners, in practice.

• The known theoretical guarantees are similar to
crust.

