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Representing shapes
• A fundamental problem: given a set of points 

scanned from some input, reconstruct the 
underlying shape they represent
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Reconstructing shape
• However, sometimes it isn’t so clear what shape we 

want:
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Algorithms for shape 
reconstruction

• Goal today: Survey some classical shape 
reconstruction algorithms 

• Note that this is a very active area of research 

• Methods vary widely 

• I’ll focus on computational geometry and graphics 
algorithms, many of which build on the complexes 
we discussed last time.



Goals for any method
• Output a triangulation which is: 

• Homeomorphic to original shape 

• Close geometrically to original shape 

• Approximates the normals



Recall: alpha shapes
• Given a radius α and a set of points, we take the 

union of all radius α balls at those points.



Recall: alpha complex
• The α-complex is then the nerve of this set of balls:



3d α-shapes
• In fact, one early reconstruction algorithm was just 

based on using α-shapes directly [Edelsbrunner-
Mucke 1994]



Ball-rolling algorithm
• One early extension which used the α-shape was 

the ball pivot algorithm [Bernardini et al]: 

• Starting at a seed triangle, pivot a ball around 
each edge of the triangle until a new sample 
point is hit.   

• Add that triangle to the mesh and continue.



Ball rolling algorithm (cont.)
• Pros: Conceptually simple, 

very fast to implement 

• Cons: 

• No theoretical guarantee 
of quality in terms of the 
topology 

• Not even always a 
surface



The crust algorithm: 2d
• If we go back to a 2d idea:  

• The Voronoi diagram is the division of the plane 
into cells where each cell consists of points 
closest to one of the input points:



Related: medial axis
• The medial axis of a shape is the set of points with 

more than one closet point on the shape:



The connection
• In 2d, the Voronoi diagram of a point set that 

closely samples an underlying shape will contain 
an approximate medial axis of the shape:



Back to curve reconstruction
• Recall the dual to the Voronoi diagram: the 

Delaunay triangulation is the set of simplicies 
where the circumcircle of those simplicies is empty 
of other sites



2d crust algorithm
• In 2d, we want to select any edge of the Delaunay 

triangulation whose circumcircle is empty not only 
of sample points, but also of the Voronoi vertices:



Why?
• Key lemma: Any Voronoi disk of a set of points 

sampled from a curve in the plane must contain a 
medial axis point of the curve. 

• Sketch: Essentially, the Voronoi disk’s center is 
equidistant from more than 1 point on the curve, 
so it should be on the medial axis.  



Why?
• Key lemma: For a fine enough sample S of a curve, 

an edge between two non-adjacent samples 
cannot be circumscribed by a circle that is empty 
of both Voronoi vertices and sample points.   

• Proof by picture: 



“Fine enough” sample
• More precisely: we must sample based on local 

feature size, lfs 

• For any x from the curve F, lfs(x) is the distance 
from x to the nearest medial axis point 

• We say it is ε-sampled if every point p on the 
underlying curve is within ε×lfs(p) of a sample point



Algorithm for 2d:
• Compute the Delaunay triangulation and the 

Voronoi diagram of the point set.  Include an edge 
from the triangulation if its circumcircle is empty of 
all Voronoi vertices. 

• Theorem: The crust of an ε-sample of a smooth 
(twice differentiable) curve, for ε≤.25, will 
connect only adjacent sample points.



Moving to 3d
• Unfortunately, this simple filtering will NOT work for 

surfaces in 3d, because Voronoi vertices do not 
have to lie near the medial axis, no matter how 
dense the sample.



Finding a good subset
• However, some of the points are good!  

Intuitively, we want to  
take cells that exclude 

the points of the cell that  
are farthest away;  
these are the ones  

near the medial axis.



Poles
• To formalize this, in [Amenta-Bern] they define the 

poles of a sample point to be the two farthest 
vertices of its Voronoi cell, one on each side of the 
surface. 

• Of course, the algorithm doesn’t know the 
surface! 

• Instead, it chooses the point furthest away as the 
first pole, and then the second is chosen to be the 
farthest in the opposite half space.



How do to this:
• More formally: if s is the sample point and p the first 

pole chosen, among all vertices q of the Voronoi 
cell with the angle ∠psq > π/2, choose the furthest 
one 

• Lemma: Given an ε-sample of a surface, with 
ε<1/4, and a sample point s with farthest pole p.  
Then the second pole v will be the farthest Voronoi 
vertex where the vector sv has negative dot 
product with sp.  



The crust
• We then take the Delaunay triangulation of the input 

points and their poles. 

• The crust is the set of Delaunay triangles from this 
triangulation where all three vertices are sample 
points.



Quality
• At this point we have a fairly weak theoretical 

guarantee: it is pointwise convergent to the 
underlying surface as the sampling density 
increases.   

• However, we can still clearly have extra triangles in 
the result, as there is no guarantee that the normals 
at each triangle are close to the actual surface 
normals.



Additional filtering
• The next step in the algorithm is to filter:  

• The bad triangles we want to remove are nearly 
perpendicular to the underlying surface. 

• However, we don’t know the underlying surface!



Using the poles
• Instead, we go back to the poles: we can prove 

that the line from a sample point to each of its pole 
is nearly orthogonal to the surface, given a 
sufficiently dense sample. 



Next step in the algorithm:
• Remove any triangle T for which the normal to T 

and the vector to the pole at a vertex of the 
triangle are too large. 

• Greater than θ for the largest angle vertex of T, 
and greater than 3θ/2 for all others. 

• θ is another input parameter, which they set to 
be 4ε to get good practical results, but this can 
also be varied to find a “nice” output. 



Theoretical guarantee
• More precisely: Take an ε-sample, and set θ=4ε.  

Let T be a triangle of the crust, trimmed as 
described on last slide, and take any point t∈T.  
Then the angle between T’s normal and the normal 
to the actual underlying surface at the point closet 
to t measures O(√ε).



Final cleanup
• After filtering by normals, remaining triangles are 

roughly parallel to the original surface.   

• Can prove that this set of triangles still contains a 
piece-wise linear surface homeomorphic to F. 

• However, we don’t necessarily have a surface, since 
there could be small remaining triangles that enclose 
pockets: 

• All 4 faces of a very flat tetrahedra may make it past 
the filtering step.



Sharp edges
• Define a sharp edge as one which has a dihedral 

angle greater than 3π/2 between a successive pair 
of incident triangles in the cyclic order around the 
edge.   

• In other words, an edge is sharp if all incident 
triangles are in a small wedge. 

• If only one incident triangle, then automatically 
sharp.



Final trimming
• The final step:  

• orients triangles and poles consistently 

• greedily remove triangles with sharp edges 

• take the “outside” of remaining triangles (which 
makes sense since we oriented things)



Crust: takeaway
• This was the first algorithm with 

good, provable guarantees on 
the quality of the reconstruction. 

• The main drawback is ε-
samples: it’s hard to guarantee 
a good enough approximation. 

• It is also only good for smooth 
inputs: anything with sharp 
edges can have holes



Extension: cocone
• The Cocone algorithm uses the poles from the 

crust algorithm in order to enumerate a set of 
triangles that will contain a good reconstruction:

We find any Voronoi edges 
that intersect the “cocone”,  
and take triangles from the  
Delaunay triangulation that are 
dual to one of these edges.



Cocone result
• In the end, the output of cocone is homeomorphic 

to the original surface, for ε≤.05. 

• In addition, they are also isotopic. 

• (Really, same guarantees as in crust, but much 
simpler to prove and faster to implement.) 



Extension: power crust
• The power crust algorithm computes a weighted 

Voronoi diagram: 

• Think of a point c with 
weight ρ2 as a ball Bc,ρ.   

• Then the power distance 
between a point x and a 
ball Bc,ρ as d2(c,x)-ρ2



Power crust
• The power crust algorithm then just uses the pole 

vertices (and their Voronoi balls) 

• It computes the power diagram of these polar balls, 
and does a similar filtering as the normal crust 
algorithm afterwards. 

• It does do better on poorly sampled inputs and things 
with sharp corners, in practice.  

• The known theoretical guarantees are similar to 
crust.


