Reconstructing surfaces from point scans

Talk by Erin Chambers

Representing shapes

- A fundamental problem: given a set of points scanned from some input, reconstruct the underlying shape they represent

Images courtesy of Wikipedia

Reconstructing shape

- However, sometimes it isn't so clear what shape we want:

Image courtesy of the SIAM Journal of Applied Algebra and Geometry

Algorithms for shape reconstruction

- Goal today: Survey some classical shape reconstruction algorithms
- Note that this is a very active area of research
- Methods vary widely
- I'll focus on computational geometry and graphics algorithms, many of which build on the complexes we discussed last time.

Goals for any method

- Output a triangulation which is:
- Homeomorphic to original shape
- Close geometrically to original shape
- Approximates the normals

Recall: alpha shapes

- Given a radius a and a set of points, we take the union of all radius a balls at those points.

Recall: alpha complex

- The a-complex is then the nerve of this set of balls:

3d a-shapes

- In fact, one early reconstruction algorithm was just based on using a-shapes directly [EdelsbrunnerMucke 1994]

Ball-rolling algorithm

- One early extension which used the a-shape was the ball pivot algorithm [Bernardini et al]:
- Starting at a seed triangle, pivot a ball around each edge of the triangle until a new sample point is hit.
- Add that triangle to the mesh and continue.

Ball rolling algorithm (cont.)

- Pros: Conceptually simple, very fast to implement
- Cons:
- No theoretical guarantee of quality in terms of the topology
- Not even always a surface

The crust algorithm: 2d

- If we go back to a 2d idea:
- The Voronoi diagram is the division of the plane into cells where each cell consists of points closest to one of the input points:

Related: medial axis

- The medial axis of a shape is the set of points with more than one closet point on the shape:

The connection

- In 2d, the Voronoi diagram of a point set that closely samples an underlying shape will contain an approximate medial axis of the shape:

Back to curve reconstruction

- Recall the dual to the Voronoi diagram: the Delaunay triangulation is the set of simplicies where the circumcircle of those simplicies is empty of other sites

2d crust algorithm

- In 2d, we want to select any edge of the Delaunay triangulation whose circumcircle is empty not only of sample points, but also of the Voronoi vertices:

Why?

- Key lemma: Any Voronoi disk of a set of points sampled from a curve in the plane must contain a medial axis point of the curve.
- Sketch: Essentially, the Voronoi disk's center is equidistant from more than 1 point on the curve, so it should be on the medial axis.

Why?

- Key lemma: For a fine enough sample S of a curve, an edge between two non-adjacent samples cannot be circumscribed by a circle that is empty of both Voronoi vertices and sample points.
- Proof by picture:

"Fine enough" sample

- More precisely: we must sample based on local feature size, Ifs
- For any x from the curve F, Ifs (x) is the distance from x to the nearest medial axis point

- We say it is ε-sampled if every point p on the underlying curve is within $\varepsilon \times \operatorname{lfs}(\mathrm{p})$ of a sample point

Algorithm for 2d:

- Compute the Delaunay triangulation and the Voronoi diagram of the point set. Include an edge from the triangulation if its circumcircle is empty of all Voronoi vertices.
- Theorem: The crust of an ε-sample of a smooth (twice differentiable) curve, for $\varepsilon \leq .25$, will connect only adjacent sample points.

Moving to 3d

- Unfortunately, this simple filtering will NOT work for surfaces in 3d, because Voronoi vertices do not have to lie near the medial axis, no matter how dense the sample.

Finding a good subset

- However, some of the points are good!

Intuitively, we want to take cells that exclude the points of the cell that are farthest away; these are the ones near the medial axis.

Poles

- To formalize this, in [Amenta-Bern] they define the poles of a sample point to be the two farthest vertices of its Voronoi cell, one on each side of the surface.
- Of course, the algorithm doesn't know the surface!
- Instead, it chooses the point furthest away as the first pole, and then the second is chosen to be the farthest in the opposite half space.

How do to this:

- More formally: if s is the sample point and p the first pole chosen, among all vertices q of the Voronoi cell with the angle $\angle \mathrm{psq}>\pi / 2$, choose the furthest one
- Lemma: Given an ε-sample of a surface, with $\varepsilon<1 / 4$, and a sample point s with farthest pole p. Then the second pole v will be the farthest Voronoi vertex where the vector sv has negative dot product with sp.

The crust

- We then take the Delaunay triangulation of the input points and their poles.
- The crust is the set of Delaunay triangles from this triangulation where all three vertices are sample points.

Quality

- At this point we have a fairly weak theoretical guarantee: it is pointwise convergent to the underlying surface as the sampling density increases.
- However, we can still clearly have extra triangles in the result, as there is no guarantee that the normals at each triangle are close to the actual surface normals.

Additional filtering

- The next step in the algorithm is to filter:
- The bad triangles we want to remove are nearly perpendicular to the underlying surface.
- However, we don't know the underlying surface!

Using the poles

- Instead, we go back to the poles: we can prove that the line from a sample point to each of its pole is nearly orthogonal to the surface, given a sufficiently dense sample.

Next step in the algorithm:

- Remove any triangle T for which the normal to T and the vector to the pole at a vertex of the triangle are too large.
- Greater than θ for the largest angle vertex of T, and greater than 3日/2 for all others.
- θ is another input parameter, which they set to be 4ε to get good practical results, but this can also be varied to find a "nice" output.

Theoretical guarantee

- More precisely: Take an ε-sample, and set $\theta=4 \varepsilon$. Let T be a triangle of the crust, trimmed as described on last slide, and take any point $t \in T$. Then the angle between T's normal and the normal to the actual underlying surface at the point closet to t measures $O(\sqrt{ } \varepsilon)$.

Final cleanup

- After filtering by normals, remaining triangles are roughly parallel to the original surface.
- Can prove that this set of triangles still contains a piece-wise linear surface homeomorphic to F.
- However, we don't necessarily have a surface, since there could be small remaining triangles that enclose pockets:
- All 4 faces of a very flat tetrahedra may make it past the filtering step.

Sharp edges

- Define a sharp edge as one which has a dihedral angle greater than $3 \pi / 2$ between a successive pair of incident triangles in the cyclic order around the edge.
- In other words, an edge is sharp if all incident triangles are in a small wedge.
- If only one incident triangle, then automatically sharp.

Final trimming

- The final step:
- orients triangles and poles consistently
- greedily remove triangles with sharp edges
- take the "outside" of remaining triangles (which makes sense since we oriented things)

Crust: takeaway

- This was the first algorithm with good, provable guarantees on the quality of the reconstruction.
- The main drawback is ε samples: it's hard to guarantee a good enough approximation.
- It is also only good for smooth inputs: anything with sharp edges can have holes

Extension: cocone

- The Cocone algorithm uses the poles from the crust algorithm in order to enumerate a set of triangles that will contain a good reconstruction:

We find any Voronoi edges that intersect the "cocone", and take triangles from the Delaunay triangulation that are dual to one of these edges.

Cocone result

- In the end, the output of cocone is homeomorphic to the original surface, for $\varepsilon \leq .05$.
- In addition, they are also isotopic.
- (Really, same guarantees as in crust, but much simpler to prove and faster to implement.)

Extension: power crust

- The power crust algorithm computes a weighted Voronoi diagram:
- Think of a point c with weight ρ^{2} as a ball $B_{c, \rho}$.
- Then the power distance between a point x and a ball $\mathrm{B}_{\mathrm{c}, \mathrm{\rho}}$ as $\mathrm{d}^{2}(\mathrm{c}, \mathrm{x})-\mathrm{p}^{2}$

Power crust

- The power crust algorithm then just uses the pole vertices (and their Voronoi balls)
- It computes the power diagram of these polar balls, and does a similar filtering as the normal crust algorithm afterwards.
- It does do better on poorly sampled inputs and things with sharp corners, in practice.
- The known theoretical guarantees are similar to crust.

