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Why do computational geometers care about topology?

Many areas, such as graphics, biology, robotics, and networking,
use algorithms which compute information about point sets.
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Surfaces

We’ve already seen algorithms that compute a mesh of these
points in order to represent the original object.

Figures courtesy of Stanford computer graphics laboratory.
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Setting

This output mesh naturally leads to a setting that is at the
boundaries of graph theory, topology, and geometry.

Definition

A combinatorial surface is a 2-manifold which has a weighted graph
embedded on its surface so that every face of the graph is a disk.
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Setting

We will only consider paths and cycles which stay on the edges of
the graph.

The underlying surface is actually unknown - all we have is the
combinatorial structure of the graph (with weights), plus
information about faces.
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Definitions

We will let n be the total size of the graph, but this is not the only
relevant parameter here.

Any orientable surface is topologically equivalent to a sphere with
some number of handles attached to it; this is the genus of the
surface, g .
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Euler characteristic

These parameters are connected:

For any polyhedral manifold M, we know that
v − e + f = χ(M), the Euler characteristic of M.

This is independent of the triangulation on M:
χ = 2− 2g − k if the manifold is orientable, where g is the
genus and k is the number of boundaries.

This means that if the manifold has v vertices, then it has at
most 3v − 6 + 6g edges and at most 2v − 4 + 4g − k faces.
(Equality holds when every face and boundary is a triangle.)

Hence, we’ll let n ≤ 6v − 10 + 10g − k be the total number of
edges, faces, and vertices.
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Dual graphs

Given an embedded graphs, we can form the dual graph:

f g

u

v

u*

v*

f* g*
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The Planar Case

For a planar graph G with a spanning tree T , G ∗ \ E (T )∗ is a
spanning tree of the dual graph G ∗.
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The genus g case

On a surface, we can still consider the dual of a tree, but
G ∗ \ E (T )∗ is NOT a spanning tree of the dual graph G ∗.

Instead, we can decompose into a tree, a co-tree, and O(g)
“extra” edges.
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What can we compute?

There are many possible questions we can ask in this model, many
of which are generalizations of questions on planar graphs.

How (fast) can we compute topologically interesting cycles?

How can we tell if two curves are similar to each other?

Can we tell if two such graphs are isomorphic?

Can we given efficient ways to morph between two isomorphic
graphs?

Can we compute flows and cuts in these graphs?
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Flow Networks

We are given:

An undirected graph G = (V ,E )

A capacity function c : E → R+

Two vertices s (the source) and t (the sink)
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Cuts and Flows

Minimum Cut: Compute the minimum set of edges separating s
from t

Maximum Flow: Assign a direction and nonnegative weight to
every edge so that flow through each edge does not exceed its
capacity, flow is conserved at every vertex (other than s and t),
and the flow out of s (and into t) is as large as possible.
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Flows versus cuts

Theorem

The maximum value flow is equal to the minimum capacity cut.

Given the maximum flow, it is easy to compute the minimum cut.
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Applications

Maximum flows and minimum cuts are two fundamental problems
in combinatorial optimization.

Routing

Maximum matchings

Assignment

Scheduling

Load balancing

Image segmentation

Many more...
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Previous work for planar graphs

Near linear time algorithms for planar graphs:

Undirected O(n log n):

Min-Cut [Reif 83], [Frederickson 87]

Max-Flow [Itai and Shiloach 83], [Hassin and Johnson 85]

Directed O(n log n):

Min-Cut [Janiga and Koubek 92], [Henzinger, Klein, Rao and

Subramanian 97]

Max-Flow [Weihe 97], [Borradaile and Klein 06]
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Previous work for sparse graphs

For graphs with n vertices and O(n) edges, we can compute
max flows (and therefore min cuts) in:

Integer capacities with maximum value U: O(n3/2 log n log U)
time [Goldberg Rao 1998]

Real capacities: O(n2 log n) time [Sleater Tarjan 1983]

If the genus is fixed, the maximum flow can be computed in
O(n1.595 log C ) time, where C is the sum of the capacities
[Imai Iwano 1990].

If the graph is planar with k extra edges, max flow can be
computed in O(k3n log n) time [Hochstein Weihe 07].
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Flows in surface graphs

Theorem

Given a directed or undirected flow network embedded on a surface
of genus g, we can compute the minimum s-t flow in gO(g)n3/2

time, or in time g7n log2 n log2 C if the edges have integer
capacities that sum to C . (in STOC 2009)
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Cuts in surface graphs

Theorem

Given an undirected flow network embedded on a surface of genus
g, we can compute the minimum s-t cut in gO(g)n log n time. (in
SOCG 2009)

 of cy
cle

s 

* and t

combinatorial duality

(This was later improved to 2O(g)n log log n, but not by me!)
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Dual Graph

Both of these results rely heavily on dual graphs: flows will be in
the main graph, but we can think of cuts as separating two faces
from the dual graph. Either way, we get a set of edges.

G G ∗
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Cuts in the dual graph

Maximum flow Minimum cut Minimum set  of cycles 
separating s * and t*

flow/cut duality combinatorial duality
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Even Subgraphs

Definition

An even subgraph is a subgraph where every vertex has even
degree.

 of cy
cle

s 

* and t

combinatorial duality

Equivalently, an even subgraph is the union of edge-disjoint cycles.

Note that the dual of the min cut is an even subgraph in G ∗.
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Homology

A few weeks ago, we saw the concept of homology. Here, we’re
only dealing 1-dimensional homology of surfaces, not arbitrary
simplicial complexes, so things are simpler:

Cycles are sets of edges which have no boundary

Boundaries are (unions of) sets of edges that border some
face.

Homology considers all cycles, but mods out by the
boundaries.
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Homologous Subgraphs

Definition

Two even subgraphs are Z2-homologous if their union forms a cut
on the graph.
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Another Characterization of Min Cuts

Lemma

The dual of the minimum cut is the minimum weight even
subgraph homologous to the boundary of s∗ in G ∗ \ {s∗, t∗}.

 of cy
cle

s 

* and t

combinatorial duality
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Theorem

Given any even subgraph H of an embedded graph, we can
compute the minimum even subgraph homologous to H in
gO(g)n log n time.

Since the min cut is the minimum weight even subgraph
homologous to the boundary of s∗, we can compute the min cut in
gO(g)n log n time.
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Crossing Lemma

Again, a key tool will be shortest paths:

Lemma

Let H be an even subgraph of minimum weight in its homology
class. Then any shortest path crosses H at most O(g) times.

So we can cut the surface using shortest paths, and we know the
minimum homologous subgraph can’t cross our shortest paths
many times.

This lets us brute force a solution – but it will only be exponential
in g .
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Sketch of Algorithm

We cut the surface using a greedy system of loops [Erickson Whittlesey

2005]; each loop consists of two shortest paths.

When we cut along the greedy system, we get a topological disk.
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Sketch of Algorithm (cont.)

The minimum weight even homologous subgraph will cross each
shortest path O(g) times.
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1 1

1
0 0

20

This corresponds to a labeled triangulation of a polygon with 2g
edges, each label being a number between 0 and O(g).
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edges, each label being a number between 0 and O(g).

Erin Chambers Flows on surface embedded graphs



Parity Vectors

Definition

The crossing parity vector of an even subgraph H with respect to a
system of loops is a bit vector where the i th bit is equal to 1 if H
crosses the i th loop an odd number of times.

Lemma

Two even subgraphs are homologous if and only if they have the
same crossing parity vectors.
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Algorithm: Final Stage

Given a weighted triangulation homologous
to our original even subgraph, we can
compute the shortest set of corresponding
cycles in O(gn log n) time.
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Total running time is gO(g)n log n time, since there are gO(g)

possible weighted triangulations.
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NP-Hardness: The Bad News

Unfortunately, this approach will not lead to an algorithm to
compute the min cut in polynomial time.

Theorem

Given an even subgraph H of a surface embedded graph,
computing the minimum weight even subgraph homologous to H is
NP-Hard.

Reduction is from min cut in graphs with negative edges.

Erin Chambers Flows on surface embedded graphs



NP-Hardness: The Bad News

Unfortunately, this approach will not lead to an algorithm to
compute the min cut in polynomial time.

Theorem

Given an even subgraph H of a surface embedded graph,
computing the minimum weight even subgraph homologous to H is
NP-Hard.

Reduction is from min cut in graphs with negative edges.

Erin Chambers Flows on surface embedded graphs



NP-Hardness: The Bad News

Unfortunately, this approach will not lead to an algorithm to
compute the min cut in polynomial time.

Theorem

Given an even subgraph H of a surface embedded graph,
computing the minimum weight even subgraph homologous to H is
NP-Hard.

Reduction is from min cut in graphs with negative edges.

Erin Chambers Flows on surface embedded graphs



Key Idea for Flows: Cocycles

Consider the dual G ∗ of G :

f g

u

v

u*

v*

f* g*

A cocycle is the dual of a cycle.

s
tt

s
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Flows in the planar case

Lemma (Itai-Shiloach 83, Hassin-Johnson 85)

There is a feasible (s, t)-flow in G with the same value as a given
(s, t)-flow φ if and only if the dual residual network G ∗

φ contains no
negative cycles.

In planar graphs, this gives a way to compute flows in the primal
by looking at what types of cycles are present in the weighted dual
graph. If there are no negative ones, we have a valid flow.
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Flows in the planar case

This becomes an algorithm if we consider dual shortest paths:

We can compute shortest paths in planar graphs quickly (as we
discussed last time), so this gives a fast way to compute flows.

s
t

s
t
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The planar algorithm (in pictures)
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How to generalize?

Two planar flows φ and ψ have the same total value if and only if
they send equal flow through each cocycle of the graph.

This is essentially computing a max flow by looking at which
co-cycles (or potential cuts) gets saturated.

s
t
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Genus g graphs

However, the flow value does not give enough information when
g > 0: we also need to know what homology class the flow lives in.

s
t

s
t

(Essentially, the planar one uses Jordon curve theorem.)
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Using Homology

Definition

Two flows φ and ψ are called homologous if and only if they send
equal flow through each cocycle of the graph.

Lemma (Planar Case)

There is a feasible (s, t)-flow in G with the same value as a given
(s, t)-flow φ if and only if the dual residual network G ∗

φ contains no
negative cycles.

Lemma

There is a feasible (s, t)-flow in G homologous to a given
(s, t)-flow φ if and only if the dual residual network G ∗

φ contains no
negative cycles.
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Computing homologous flows

We use a generalization of [Klein, Mozes and Weimann 09] to
compute the shortest paths in the dual.
Our algorithm either returns a feasible homologous flow or a
negative cocycle in O(gn log2 n) time.

The problem then reduces to finding the homology class of a
max-flow, which is in R2g+1 for a surface of genus g (or R for
the plane).
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Final optimization algorithm

Each homology class can be presented by a vector, 〈φ0, . . . , φ2g 〉.

Goal:

Maximize
∑2g

i=0 φi ,

Such that no cocycle of the graph is oversaturated.

This gives an LP with exponential number of constraints.

Ellipsoid method: O(g7n log2 n log2 C )

Multidimensional parametric search [Cohen and Megido 93]:
gO(g)n3/2
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The End

This is an interesting trade-off: We give algorithms that are
exponential in g , but flows in general graphs are polynomial time
(although higher in terms of n).

We conjectured in both of these papers (and in followups) that the
right answer is O(g cn log n) for some constant c , but that is still
open.
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