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Why do computational geometers care about topology?

Many areas, such as graphics, biology, robotics, and networking,
use algorithms which compute information about point sets.
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Surfaces

We’ve already seen algorithms that compute a mesh of these
points in order to represent the original object.

Figures courtesy of Stanford computer graphics laboratory.
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Setting

This output mesh naturally leads to a setting that is at the
boundaries of graph theory, topology, and geometry.

Definition

A combinatorial surface is a 2-manifold which has a weighted graph
embedded on its surface so that every face of the graph is a disk.
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Setting

We will only consider paths and cycles which stay on the edges of
the graph.

The underlying surface is actually unknown - all we have is the
combinatorial structure of the graph (with weights), plus
information about faces.
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Definitions

We will let n be the total size of the graph, but this is not the only
relevant parameter here.

Any orientable surface is topologically equivalent to a sphere with
some number of handles attached to it; this is the genus of the
surface, g .
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Euler characteristic

These parameters are connected:

For any polyhedral manifold M, we know that
v − e + f = χ(M), the Euler characteristic of M.

This is independent of the triangulation on M:
χ = 2− 2g − k if the manifold is orientable, where g is the
genus and k is the number of boundaries.

This means that if the manifold has v vertices, then it has at
most 3v − 6 + 6g edges and at most 2v − 4 + 4g − k faces.
(Equality holds when every face and boundary is a triangle.)

Hence, we’ll let n ≤ 6v − 10 + 10g − k be the total number of
edges, faces, and vertices.
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Dual graphs

Given an embedded graphs, we can form the dual graph:

f g

u

v

u*

v*

f* g*
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The Planar Case

For a planar graph G with a spanning tree T , G ∗ \ E (T )∗ is a
spanning tree of the dual graph G ∗.
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The genus g case

On a surface, we can still consider the dual of a tree, but
G ∗ \ E (T )∗ is NOT a spanning tree of the dual graph G ∗.

Instead, we can decompose into a tree, a co-tree, and O(g)
“extra” edges.

Erin Chambers Surface embedded graphs



What can we compute?

There are many possible questions we can ask in this model, many
of which are generalizations of questions on planar graphs.

How (fast) can we compute topologically interesting cycles?

How can we tell if two curves are similar to each other?

Can we tell if two such graphs are isomorphic?

Can we given efficient ways to morph between two isomorphic
graphs?

Can we compute flows and cuts in these graphs?
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Motivation: Finding simple cycles

For example, in graphics algorithms, we wish to make the mesh
“look like” the original object, and yet be as compact as possible.

Figures courtesy of Joshua Levine, Univ. of Ohio.
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Topological Noise

When creating a mesh, small errors can appear.

[Wood-Hoppe-Desbrun-Schroder 2004]
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Topological Simplification

Simplification algorithms are hurt by this noise.

[Wood-Hoppe-Desbrun-Schroder 2004]
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Why small cycles?

Extra noise in these examples corresponds to small handles in the
mesh.
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“Interesting” cycles

Definition

A homotopy is a continuous deformation of one path to another.
A cycle is contractible if it can be continuously deformed to a
point.
A cycle γ is separating if M − γ has 2 separate pieces.
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Computing interesting cycles

There is a simple algorithm to compute a non-contractible cycle,
based on computing a breadth first search tree.

Starting from a vertex v of the graph, explore all neighbors of
v and add them to the tree. Continue exploring their
neighbors, creating “level sets” of vertices at distance k from
v (in terms of the number of edges, not actual distance).

If we come to a vertex already in the tree, then we have
discovered a cycle. We can test if this is contractible in O(n)
time (using a straightforward computation of the Euler
characteristic).

If the cycle is not interesting, then we can continue our search
to one “side” of the cycle, since the other will be a disk (and
so can be ignored).
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Finding small cycles

However, while we can compute these cycles quickly, they are not
exactly what we were looking for.

Recall that small non-contractible or non-separating cycles may
represent topological noise.
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Shortest non-contractible or non-separating cycles

Computing the shortest non-contractible or non-separating cycle on
a combinatorial surface has been of considerable interest of late.

O(n3) [Thomassen 1990]

O(n2 log n) [Erickson-Har-Peled 2002]

gO(g)n3/2 for non-contractible, gO(g)n3/2 log n for
non-separating [Cabello-Mohar 2005]

gO(g)n4/3 [Cabello 2006]

gO(g)n log n [Kutz 2006]

O(g3n log n) [Cabello-Chambers 2007]

O(g2n log n) [Cabello-Chambers-Erickson 2015]
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Key Tool

Definition

A property satisfies that 3-path condition if for any three paths
α, β, and γ between two points x and y where α · β satisfies your
property, than either α · γ or β · γ will also satisfy your property.

Thomassen proved that
the set of
non-contractible cycles
satisfies the 3-path
property.

This meant that the shortest non-contractible cycle was composed
of 2 shortest paths, which are well studied in the graph theory and
algorithms literature.
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Faster algorithm for non-separating cycles

Let M be an surface of complexity n and genus g . We want to
find a shortest non-separating cycle on M.
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Faster algorithm for non-separating cycles

Let M be an surface of complexity n and genus g . We want to
find a shortest non-separating cycle on M.

Cabello and Mohar gave an algorithm to compute a particular set
of cycles (a homology basis) in O(gn log n) time.
Key fact - this is a set of O(g) simple loops such that the shortest
non-separating cycle must cross one of these loops exactly once.

Erin Chambers Surface embedded graphs



Faster algorithm for non-separating cycles

Let M be an surface of complexity n and genus g . We want to
find a shortest non-separating cycle on M.

Consider any one of these loops.
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Faster algorithm for non-separating cycles

Let M be an surface of complexity n and genus g . We want to
find a shortest non-separating cycle on M.

Find the shortest cycle which crosses the loop exactly once.
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Crossing cycles

Let α be a simple cycle in M. We want to find a shortest cycle
which crosses α exactly once.
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Crossing cycles

Let α be a simple cycle in M. We want to find a shortest cycle
which crosses α exactly once.

Consider the surface N obtained by cutting M along α and gluing
disks to each of the copies of α.
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Crossing cycles

Let α be a simple cycle in M. We want to find a shortest cycle
which crosses α exactly once.

Consider the set of cycles crossing α exactly once on M.
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Crossing cycles

Let α be a simple cycle in M. We want to find a shortest cycle
which crosses α exactly once.

A shortest cycle that crosses α once is a shortest path in N.
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Computing shortest paths

So we now need to be able to compute shortest paths for all the
vertices on this face quickly.

So the goal is now to compute a shortest path tree, which allows
us to find all the relevant shortest paths to consider.
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Shortest Path Trees

Definition

A shortest path tree (or sp-tree) in a graph is a tree consisting of
all shortest paths from some vertex to all other vertices.

In SODA 2005, Klein showed how to compute sp-trees in a planar
graph for all vertices on a single face of the graph. The running
time is O(n log n).
In SODA 2007, we give an algorithm to compute sp-trees for all
vertices on a single face of a genus g graph in O(g2n log n) time.
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Tense edges

Let dT : V → R be the distance in a rooted directed tree T from
the source of the tree to the specified vertex.

Definition

Define the tension of an edge −→uv as
t(−→uv) = d(v)− w(−→uv)− d(u).
We say an edge −→uv is tense if
t(−→uv) > 0.

u

v

s 10

5

2

Fact: T is an shortest path tree if and only if no edges are tense.
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Maintaining shortest path trees

We consider maintaining a shortest path tree kinetically - while the
root is moving from one vertex to another.

In the dual, the first edge to be tense is on a specific path in the
dual tree
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Key Lemma

Lemma

We give a data structure to represent shortest path trees in G such
that:

a distance from the root to a query vertex can be answered in
O(log n) time;

the shortest path tree rooted at u can be changed to the tree
rooted at a neighbor of u in O(k log n) time, where k is the
number of edges entering or leaving the trees.
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The planar data structure

In a planar graph, an edge can only
swap in or out of the shortest path
tree a constant number of times
when the root of the tree moves
around a face.

[Klein 2005]

Using this fact, we can in O(n log n) time construct our data
structure which supports shortest path queries for any vertex on a
common face in O(log n) time.
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Our decomposition

Red vertices: the root is getting further from them.

Blue vertices: the root is getting closer to them.

Green (dual) edges: dual to an edge with both red and blue
endpoints.
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The green edges

Green edges are still the potential tense edges.

Here, they form O(g) paths (called a cut graph) in G ∗ \ E (T )∗.

u

Key idea: Use O(g) different trees to track the tensions of
G ∗ \ E (T )∗; we call this a grove.
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A Genus 1 Example

u
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A Genus 1 Example
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A Genus 1 Example
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How many times to relax?

So we can now relax tense edges quickly. It remains to bound the
number of times an edge can enter or leave the shortest path tree.

Lemma

As the root of the shortest path tree moves along a face, each
edge enters or leaves the tree O(g) times.
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Sketch of the proof

Consider a directed edge e in the graph

, and the roots where it
appears at the tree.

G
f

e

In the planar case, there was a single contiguous region on the
boundary where this edge appeared, since it could swap in and out
at most once.
Here, each contiguous region describes a relative homotopy class of
curves, so instead we get at most O(g) pieces.
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The End

Thanks for your attention!

Questions?
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